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NEWTON’S METHOD FOR STOCHASTIC DIFFERENTIAL
EQUATIONS AND ITS PROBABILISTIC SECOND-ORDER
ERROR ESTIMATE

KAZUO AMANO

ABSTRACT. Kawabata and Yamada [5] proposed an implicit Newton’s method
for nonlinear stochastic differential equations and proved its convergence. Later
Amano [2] gave an explicit formulation of method and showed its direct error
estimate. In this article, we prove a probabilistic second-order error estimate
which has been an open problem since 1991.

1. INTRODUCTION

Let a(t,z) and b(t,z) be real-valued bounded C? smooth functions defined in
the two dimensional Euclidean space R?. We assume that there exist nonnegative
constants Ay, Ay, By and Bs satisfying

da 0%a

%(tax)‘SAlv |@(t,£)|SA2
and

ob 0%b

|%(t,$)|SBl, |@(t,$>|§32
in R2.

Let w(t), t > 0 be a standard Brownian motion on a probability space (2, F, P)
and let F;, t > 0 be the natural filtration of 7. We assume that £(¢), t > 0 is a
solution of the initial value problem for stochastic differential equation

dé(t) = a(t,&(t)) dt +b(t,&(t)) dw(t), €(0) =&, (1.1)

where £; is a bounded random variable independent of F;, t > 0. Without loss of
generality, we may assume that £(¢) is continuous with respect to ¢t > 0.

For T'> 0 and 1 < p < oo, LP[0,T] stands for the class of all separable non-
anticipative functions f(¢), ¢t > 0 with respect to {F;} satisfying

P[/()T|f(t)pdt<oo} =1
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and MP[0,T] denotes the subset of L2 [0,T] consisting of all functions f(t) with

E[/OT|f<t)|Pdt} < o0,

It is well-known that £(¢) € M2[0,T] for any T > 0 (see, for example, [4]).
The explicit Newton’s scheme for (1.1)) is formulated as follows (see [2]): We
define a sequence {&,(t)} by & (t) = & and

£n+1(t)
t t
— () n(8) = b n(8)b1 n —na(s) 4 bon(s)e" ™) g
e (§0+/0 (a0,n(5) = bon(s)brn(s))e 8+/0 o,n(8)e w(8)>

forn=0,1,2,..., where
@)= [ (11006) ~ 3 Grn6?) s+ [ brao)aus),
0.(t) = alt,0(8)) — 5% (1, 60(0) (1),
a1n(t) = %(t,sn(t)) :

b (8) = bt €0 (1) — 10 (1:60(0)) €000,

ab
bl,n(t) = %(tagn(t)) :
In this article, we shall estimate the approximation errors
en(t) =&u(t) — &), n=0,1,2,.... (1.2)

Theorem 1.1. For any T > 0, there exists a nonnegative constant C' depending
only on T, A1, As, By and By such that

P[ sup |en(t)] < p implies sup |ep41(f)] < Rpﬂ >1—-CR /2
0<t<T 0<t<T

forallR>1,0<p<1andeveryn=0,1,2,....

Our symbolic Newton’s method may give a new possibility to the study of com-
puter algebraic method in stochastic analysis (see, for example, [3]).

If the positive constants Ty, A1, A2, By and By are given, then a repeated use of
Theorem gives an approximate solution of in terms of multiple stochastic
integrals. For example, we first note that, seeing the proof of Theorem we can
choose R > 1 sufficiently large so that

1
CR_1/2 < TOO, where C' = C(Al,Ag,Bl,BQ,T)
for all positive T' < Ty. Second, we take a small p > 0 so as to satisfy
1
R —.
7= 10

Third, by using a martingale inequality (Lemma , we take a sufficiently small

T > 0 such that

1
P sup |eg(t)] < }217—.
Ogthl o) <p 100
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Now, a repeated use of Theorem and

210

R (Rp)” < e
show that

1
< ] 21
o?tlgT lewo ()] < 101021 | = 10

It is clear, by the definition of {£,(t)}, that the approximate solution &1o(t) has a
multiple stochastic integral representation.
2. PRELIMINARIES
The following two lemmas follow immediately from It6’s formula.
Lemma 2.1. If a(t) € LL[0,T] and 8(t) € L20,T] for any T > 0 and if
dn(t) = a(t) dt + B(t) dw(t) ,
then
de™™® = "™ dn(t) + %62 (t)e™® dt .

Proof. For a function f(x) = e*, It6’s formula gives

4 £(e)) = (£ O)ate) + 5 GG )i + £/ (0)(1) duo(r)
this implies the desired formula. [

Lemma 2.2. If a;(t),az(t) € LL[0,T] and Bi(t), B2(t) € L2[0,T] for any T > 0
and 1
! déi(t) = ou(t) dt + Bs(t) dw(t), i=1,2,
then
d(&1(t) &2(t)) = &a(t) d&r (t) + &1 (t) do(t) + B1(t)B=(t) dt .
Proof. Applying It6’s formula for a 2-dimensional diffusion process (£ (t), &2(t)) and
a function f(x1,x9) = 129, we have

df (&1(t), &2(1))

= ( 3 gi (&1(8), &2()) as(t) + ;]2_:1 azg;j(&(t),@(t))ﬁi(t)gj(t))dt
+3° 2 (60, &) dult);
this completes the proof. 0

Lemmas [2.1] and [2.2] show the following three key lemmas.
Lemma 2.3. Forn=1,2,3,... and
Clo(t) = ao,n (t) ) al(t) = ai,n (t) ) bO(t) = bO,n (t) ) bl (t) = bl,n (t) )

the initial value problem for the linear stochastic differential equation

dé(t) = (ao(t) +ar(t) €(t)) dt + (bo(t) + b1 (t) £(1)) dw(t), €(0) =&
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has an explicit solution

¢(t) = e (50 + /Ot (ao(s) — bo(s)bl(s))e_”(s) ds —l—/ bo(s)e_”(s) dw(s)) ,

0
where

t 1 t
n(t) = / (ax(5) — 530)) ds + / by (s) du(s).
0 0
Proof. Since Lemma [2.] gives
1
de"® = "D dp(t) + 5b?(t)ef'(f) dt = ay(t)e"? dt + by (t)e" D dw(t),

Lemma [2.2] shows
dc(t) = d (en(t) (50 + /Ot (ao(s) — bo(s)br (3))6—77(3) ds + /Ot bo(s)e () dw(s)))
= (50 + /t( o(s) — bo(s)bl(s))e*”(5> ds + /t bo(s)e*W(S) dw(s)) de®

0
+ e ((ag(t) — bo(t)by () )e™"® dt + by (t)e ") dw(t))
( (t)e”(t))( t)e n(t)) dt
= ((t)(aa(t) dt + by (t) duw(t))
+ (ao(t) = bo(t)b1(t)) dt + bo(t) dw(t) + ba(t)bo(t) dt
= (ao(t) + a1 (t) ¢(t)) dt + (bo(t) + b1 (t) C(t)) dw(t).
([l

Remark 2.4. It follows immediately from the definition of &, (t) and Lemma 2.3
that £,41(0) = & and

d&nt1(t) = (aO,n(t) + a1, (t) fn+1(t)) dt + (bO,n(t) + b1, (1) €n+1(t)) dw(t)

for n = 0,1,2,.... Therefore, {£,(t)} is exactly the same sequence introduced by
Kawabata and Yamada [B]; this implies the convergence

lim E[ sup | &(t) — &(1) ﬂ —0
n—oo  lo<i<r

for any T' > 0. By their result, we have only to concentrate on the estimation of
€rrors.

Lemma 2.5. Forn=0,1,2,..., we have

t t
Enp1(t) = em® </0 (cv0,n(s) —ﬁoyn(s)blﬁn(s))e_"”(s)ds—|—/0 ﬁo,n(s)e_””(s)dw(s)) ,

where
Qo.n(t) = si(t)/o 6-1) iZ(t@n(t) — Ben(t)) db,
1 2
onlt) = E2(0) [0 = 1) 53 (16,(0) ~ ,(0)) db.
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Proof. Since &,+1(t) is a solution of the linear stochastic differential equation in

Remark by (L.1) and (1.2)), we have
dent1(t)
= d&nt1(t) — d&(1)

— (alt &a) - % (ta(D)en(t) = alt,€alt) = en(t)) + arn(Densa (1)) dt
+ (b(ta gn(t)) - % (tv gn(t))gn(t) - b(tv gn(t) - Z':n(t)) + bl,n(t)€n+1(t)> dw(t) .

Let us consider an auxiliary function
F(0) =a(t & (t) —en(t)), 0<6<1.

Then, integration by parts shows
1
F(1) = F(0)+ F'(0) +/ (1—6)F"(0)do;
0
this gives

@0, (t) = a(t,&n(t)) — %(t7fn(t))5n(t) - a(t,ﬁn(t) - 5n(t)) .
Similarly, we have

ﬁ(),n(t) = b(tvgn(t)) - %(t,fn(ﬂ)i{n(t) - b(t7§n(t) - En(t)) .

Therefore, we obtain
d€n+1(t) = (ao’n(t) + al’n(t)6n+1(t)) dt + (ﬁo)n(t) + bl’n<t)5n+1(t)) dw(t) ]

seeing the proof of Lemma for ap(t) = an(t), a1(t) = a1, (t), bo(t) = Bon(t)
and by (t) = by »(t), this completes the proof. O

Lemma 2.6. For any t > 0, we obtain
E[‘enn(t) -1 < At (At + Bl)264t(A1\/f+Bl)2 :
E[le™™® —1]2] < 4t((A, + BVt + By) e (Ai+BOViHB)*
Proof. Since Lemma [2.1] implies
de™® = qy ()™ Ddt + by, (t)e™ D dw(t)

we easily have

t t
em® 1= / a1, (s)e™®ds +/ b1 (s)e™H dw(s),
0 0

}a1,n(8)e’7n(s)| < Ay —|—A1|e”"(s) _ 1|’
’bl,n(S)en”(s){ < B1 + Bl‘e”]n(s) _ 1| ]

Hence, the stochastic Gronwall inequality [I] shows one of the desired estimates.
Similarly, by Lemma we obtain

t t
emm® 1 = —/ (a1,n(s) — (blﬁn(s))Q)e_""(s)ds - / by n(s)e™ ") dw(s)
0 0
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and a simple calculation gives
|(a1,n(s) - (bl,n(s))Q)e*nn(s)| < (A1 + Bf) + (AL + B%)‘e*nn(s) T
’bl’n(s)e_ﬁn(s){ S _B1 + Bl‘e_"]n(s) _ 1| .

Therefore, by the stochastic Gronwall inequality [I], we obtain the remaining in-
equality. O

Remark 2.7. By Fubini’s theorem and Lemma we can show that
eEm® = (e 1) + 1€ M2[0,T]

and

T T
E[ / e2nn<f>dt} <2 / A4(AVE + By)2eMAVERBO gt 4 o
0 0

T T
E {/ 6‘2”"<t>dt] < 2/ 4t((A1 + BYVE + By) et BOVERBD® gy 4o
0 0

for any 7" > 0.

Martingale inequalities (see, for example, [4]) play important roles in the proof
of our error estimate.

Lemma 2.8. If f(t) € M2[0,T], T > 0, then

sup ‘/ f(s)dw(s
O<t<T

for any positive number «.

> o <—E/f ds

Lemma 2.9. If f(t) € L2[0,T], T > 0, then

sup /f ) dw(s ——/f ds >6]<e°‘

0<t<T

for any positive numbers o and (3.

Remark 2.10. Since by ,(¢) € L2[0, 7],
¢ ¢ 1 )
M (t) :/ a1,,(s) ds+/ b1 n(s)dw(s) — = / (bi,n(s)) ds
0 0 2 Jo
t 1 t 9
§A1t+/ brn(s) dus) — / (brn(s))ds
0 0

and

_nn(t):‘/o (—alyn(s))ds—i—/o (bl,n(s))QdS
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it follows from Lemma that
P[ sup ") > R]

0<s<t

< P[ sup (/OS by pn(w) dw(u) — % /OS (bl’n(u))gdu) > — At + log R}

0<s<t

S eAltR—l
and
P[ sup e M) > R]

0<s<t
S 1 S 2 9
< P[ sup (/ (=b1,n(w) dw(u) — = / (=b1,n(w)) du) > —(4 +Bl)t+logR}
0<s<t \Jo 2 Jo

< 6(A1+B%) t R*l

foral R>1and 0<¢t<T.

3. PROOF OF THEOREM [I.1]

Proof. Let us take real numbers R > 1 and 0 < p < 1 arbitrarily. Then, by Lemma
2.5} we can show that

sup |ens1(t)] > Rp* and  sup |en(t)] < p

0<t<T 0<t<T
imply
sup e >R
0<t<T
or
t VR
sup / ’ao,n(s) — ﬂom(s)bl’n(s)k*”"(s)ds > ——p?
0<t<T Jo 2
or
t
' R
sup ‘ / ﬂo,n(s)e_""(b)dw(s)‘ > £p2
o<t<T ' Jo 2
for every n = 0,1,2,.... In fact, we have to use only an argument of contradiction.

By Remark we easily have

P[ sup PUAQISN \/E] < elAhp-1/2,
0<t<T

By
[@0,(5) ~ o (s)10(5) | < 3 (A2 + BiB2)<A(s),
Remark [2.10] and direct computation, it follows that
P[ O?tlgT /Ot |ao,n () — ﬁo,n(s)b17n(3)|e—nn(s)ds > @f and o?gT len(t)] < p}
< T(Ag + By By)eTAi B p=1/2
Since

B (s) = min(e3(5).17) (0= 1) 53 (560 = 020 (9) 0
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for 0 <5 < T when supg<,<r |en(t)| < p, Lemma [2.§ and Remark 2.7 show

sup ‘/ Bo.n(s)e™ ™ dw(s )’ > @pz and sup len (t)] gp}
0<t<T 2 0<t<

sup ‘ / min (g2 (s), p*) /01(0 -1) g—:;(s,fn(s) — ben(s)) d0)

O<1<T
2 ]
p

T
< 2B2 (/ 4((Ar + BI)VE + By) e (At BOVERBD gy T) R!
0

x 71 0) du(s) ‘ >

Combining the above estimates, we can show that there exists a nonnegative con-
stant C'= C(A1, A2, B, B2, T) independent of R, p and n such that

P[ sup |enp1(t)] > Rp? and  sup |e,(t)] < p} < CR™Y?
0<t<T 0<t<T

forn =0,1,2,.... Consequently, we have

P{ sup |en(t)| < p implies sup |e,41(t)] < Rpﬂ >1—-CR /2
0<t<T 0<t<T

foral R>1,0< p<1andeveryn=0,1,2,.... O

Finally, we give a slight improvement of Theorem At the beginning of the
proof of Theorem [I.I] where we have made a classification of an event, if we replace

the lower bounds VB VB
R R
VR, et

T_1/3\/E Tl/g\/ﬁpz T1/3\/Ep2
’ 2 ’ 2
respectively, then we can show that the above constant C(A;, As, B1, Be,T) =
O(T'?3) as T — 0. Therefore, our Newton’s method may work better when it is
used with a small time interval.

with
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