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HOMOGENIZATION AND CORRECTORS FOR COMPOSITE
MEDIA WITH COATED AND HIGHLY ANISOTROPIC FIBERS

AHMED BOUGHAMMOURA

Abstract. This article presents the homogenization of a quasilinear elliptic-
parabolic problem in an ε-periodic medium consisting of a set of highly aniso-
tropic fibers surrounded by coating layers, the whole being embedded in a
third material having an order 1 conductivity. The conductivity along the
fibers is of order 1 but the conductivities in the transverse directions and in
the coatings are scaled by µ = o(ε) and εp, as ε → 0, respectively. The
heat flux are quasilinear, monotone functions of the temperature gradient.
The heat capacities of the medium components are bounded but may vanish
on certain subdomains, so the problem may become degenerate. By using
the two-scale convergence method, we can derive the two-scale homogenized
systems and prove some corrector-type results depending on the critical value
γ = limε↘0 εp/µ.

1. Introduction and statement of the problem

Homogenization of problems, in composite media with fibers, has been consid-
ered in [2, 5, 4, 13] and further references therein. Most of the previous works dealt
with the case of the fiber-reinforced composite materials without coatings. Moti-
vated by the study of the effects of the combination of the insulating coatings and
the high anisotropy of fibers in the overall behavior of composite media, we propose
here, a special class of fibrous structure exhibiting non-standard effective models.
Especially, in the present work, we consider the homogenization of a quasilinear
elliptic-parabolic problem in a three-phase conducting composite. One of the con-
stituent materials corresponds to a set of fibers surrounded by a second material
which works as an insulating or coated layers, and the whole is being embedded in
a third material termed matrix. The fibers are considered to be highly anisotropic,
with a longitudinal order 1 conductivity and a very low conductivity in the trans-
verse directions. The conductivity of the matrix is of order 1 but becomes very
small in the coatings. We shall refer to such material as a composite medium with
coated and highly anisotropic fibers.

In [3], the author has dealt with the linear case. Here, we continue this inves-
tigation by studying the case where the heat flux are non-linear functions of the
temperature gradient. One common peculiarity of [3] and the present work is that
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the heat capacities cj , j = 1, 2, 3 are assumed to degenerate at some subdomains
and even to vanish in the whole domain. Thus, our problem covers the quasilinear
elliptic equation as well as the quasilinear parabolic one in a composite medium
with coated and highly anisotropic fibers.

The geometry of the medium is the same as in [3]. We shall recall it and keep
globally the same notations. We denote by Ỹ and Y the cubes ] − 1

2 ,
1
2 [2 and

]− 1
2 ,

1
2 [3 respectively, thus Y = Ỹ × I, I =]− 1

2 ,
1
2 [. We assume that Ỹ is partitioned

as Ỹ = Ỹ1 ∪ Ỹ13 ∪ Ỹ3 ∪ Ỹ23 ∪ Ỹ2 where Ỹ1, Ỹ2, Ỹ3 are three connected open subsets
such that Ỹ1∩ Ỹ2 = ∅, ∂Ỹ ∩ Ỹ3 = ∅ and where Ỹα3, α = 1, 2 is the interface between
Ỹα and Ỹ3; thus Ỹ3 separates Ỹ1 and Ỹ2 (see Figure 1). For i = 1, 2, 3 we denote χi

the characteristic function of Yi := Ỹi × I and θ1, θ2, θ3 their respective Lebesgue
measures which are supposed to be of the same magnitude order. Let Ẽi the Z2-
translates of Ỹi (i.e., Ẽi := Ỹi + Z2) and Γ̃α3, α = 1, 2 the surface separating Ẽα

and Ẽ3. We shall assume that only Ẽ2 is connected. We introduce the contracted
sets Ỹ ε

i := εỸi, Ẽε
i := εẼi, i = 1, 2, 3 and Γ̃ε

α3 := εΓ̃α3, α = 1, 2, where ε is a small
positive parameter. Now, let Ω̃ be a regular bounded domain in R2. We denote by
Ω̃ε

i := Ω̃∩ Ẽε
i , and S̃ε

α3 := Ω̃∩ Γ̃α3. Finally, let Ω := Ω̃× I be the cylinder having a
base Ω̃ and a height 1 and Ωε

i := Ω̃ε
i × I, i = 1, 2, 3.

Henceforth, x = (x̃, x3) and y = (ỹ, y3) denote points of R3 and Y respectively
and by ỹ and x̃ we denote the transverse vectors (y1, y2) and (x1, x2) respectively.
We use the notation ∂xi for the partial derivative with respect to xi. Let T > 0 be
given, we define, then, the corresponding space-time domains Q = (0, T ) × Ω and
Qε

i = (0, T )× Ωε
i , i = 1, 2, 3.

Ỹ1

Ỹ2

Ỹ3

Figure 1. A typical basic cell Ỹ

Let p > 1 be a real number and let p′ its conjugate: p = p′(p−1). For k = 1, 2, 3,
let ck ∈ L∞(R3) be the heat capacity of the k-th component. These functions are
Y -periodic with respect to y with a period Y and satisfy the following assumption:

(A1) 0 ≤ ck(y) a.e. y ∈ Y , k = 1, 2, 3.

The corresponding ε-periodic coefficients are defined by

cεk(x) = ck(
x

ε
), x ∈ Ωε

k, k = 1, 2, 3. (1.1)
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Concerning the heat flux, we shall suppose that they are given by three non-linear
Y -periodic vectorial functions

Ak(y, ξ) : R3 × R3 → R3, k = 1, 2, 3, (1.2)

satisfying the following assumptions
(A2) for all ξ ∈ R3, the function y 7→ Ak(y, ξ) is measurable and Y -periodic,
(A3) for a.e. y ∈ Y , the function ξ 7→ Ak(y, ξ) is continuous,
(A4) there exist a constant c0 > 0 and p > 2 such that, for all ξ ∈ R3,

0 ≤ c0|ξ|p ≤ Ak(y, ξ).ξ

(A5) there exist a constant c > 0 and p > 2 such that for all ξ ∈ R3,

|Ak(y, ξ)| ≤ c(1 + |ξ|p−1),

(A6) the operators Ak are strictly monotone; i.e., for a.e. y ∈ Y ,

(Ak(y, ξ)− Ak(y, η)).(ξ − η) > 0, ∀ξ 6= η in R3.

To prove the corrector results, we need to assume stronger hypotheses of mono-
tonicity:

(A5’) there exist a constant K1 > 0 such that, for ξ, η ∈ R3 and a.e. y ∈ Y ,

|Ak(y, ξ)− Ak(y, η)| ≤ K1(|ξ|+ |η|)p−2|ξ − η|,
(A6’) there exist a constant K2 > 0 such that, for ξ, η ∈ R3 and a.e. y ∈ Y ,

(Ak(y, ξ)− Ak(y, η)).(ξ − η) ≥ K2(|ξ|+ |η|)p−2|ξ − η|2.
(A7) The function A1 is independent of the vertical coordinate and has the fol-

lowing form

A1(y, ξ) := A1(ỹ, ξ) =
(

Ã1(ỹ, ξ̃)
A13(ỹ, ξ3)

)
.

Obviously, the functions

Ã1(ỹ, ξ̃) : R2 × R2 → R2,

A13(ỹ, ξ3) : R2 × R → R

satisfy assumptions (A4)–(A6) by choosing ξ = (ξ̃, 0) and (0, ξ3) respectively.
An example of Ak satisfy the assumptions (A2)–(A7) is

A1(y, ξ) =
(
|ξ̃|p−2ξ̃
|ξ3|p−2ξ3

)
, Aα(y, ξ) = |ξ|p−2ξ, α = 2, 3;

i.e., the corresponding p-Laplacian operators.
Then, the diffusion through the material filling the sets Eε

1 , Eε
2 and Eε

3 is, re-
spectively,

Aε
1(x, ξ) :=

(
µ(ε)Ãε

1(x, ξ̃)
Aε

13(x, ξ3)

)
, Aε

2(x, ξ) := A2(
x

ε
, ξ), Aε

3(x, ξ) := A3(
x

ε
, ξ),

where
Ãε

1(x, ξ̃) = Ã1(
x̃

ε
, ξ̃), Aε

13(x, ξ3) = A13(
x̃

ε
, ξ3).

The global diffusion and the heat capacity of the medium is respectively

Aε(x, ξ) =
2∑

k=1

χε
k(x)Aε

k(x, ξ) + εpχε
3(x)Aε

3(x, ξ),
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cε(x) =
3∑

k=1

χε
k(x)cεk(x).

Let us assume that the lateral and bottom boundaries of Ω are maintained at a
fixed temperature (homogeneous Dirichlet condition), while the top boundary is
insulated (homogeneous Neumann condition), and that the initial distribution of
the temperature on Ω is given for every ε as

uε
0(x) =

3∑
k=1

χε
k(x)uε

0k(x).

Then, the evolution of the temperature uε(t, x) is governed by the following initial
boundary value problem, being in fact, a sequence of problems (Pε) indexed by ε:

∂

∂t
(cε(x)uε(t, x)) = div(Aε(x,∇uε(t, x))) + fε(t, x), x ∈ Ω, t > 0,

uε(t, x) = 0, x ∈ ∂Ω ∩ {−1
2
≤ x3 <

1
2
} =: ΓLB , t > 0,

Aε(x,∇uε(t, x)).n = 0, x ∈ ∂Ω \ ΓLB , t > 0,

uε(0, x) = uε
0(x), x ∈ Ω,

(1.3)

where n denotes the outward normal to the boundary of Ω, the subscript L (resp.
B) stands for lateral (resp. bottom) boundary and fε ∈ Lp′(0, T ;Lp′(Ω)) represents
a given time-dependent heat source. The precise meaning of the initial condition
will be done in the following section.

In the linear context, models of particular interest are developed by Mabrouk-
Samadi [9], Mabrouk-Boughammoura [8] and Showalter-Visarraga [10] for the so-
called highly heteregeneous medium which consits of two connected “hard” com-
ponents having comparable conductivities, separated by a third “soft” material
having a much lower conductivity. The common point of these works is that the
three phases have only highly contrasting isotropic conductivities. These models
do not display a directional dependence of the effective fields in the resulting limit
problems. However, in the present model and in [3], one of the phases (the fibers)
have also highly anisotropic conductivity. This “partially” highly anisotropy in
the fibers leads to some kind of directional dependence on the macro and micro
variables.

Mathematically, the combination of the “partially” highly anisotropy and the
insulating coatings poses an interesting challenge in the homogenization process. In
particular, we will see, in the case γ ∈ R∗+, that the resulting two-scale homogenized
systems is “strongly” influenced by this combination : the effective temperature
field is obtained by solving a homogenized problem in the domain Ω and an auxiliary
problem in the coated fiber Y1∪Y3 with a non-standard boundary conditions across
the interface between the fiber and the coating (see (5.2) and Remark 5.2). Hence,
the main feature of the present work is to provide “rigorous” models for quasilinear
heat transfer problem in fibrous composite materials taking in account the influence
of the physical properties, at the micro-scale, of the coating and the fiber. In
particular, we derive some new effective interface conditions which describe the
interaction between the heat transfer processes of conduction in the fibers and the
coatings (see (5.3) and (5.4)). Furthermore, we improve these models by some
corrector-type results.
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Finally, the closest work, as far as we know, to ours was done by Mabrouk [6],
in which the author studied the homogenization of a nonlinear degenerate heat
transfer problem in a highly heterogeneous medium. Although the mathematical
framework used in [6] is closely similar, the two situations are clearly distinct in
the geometry of the microstructure. Moreover, the homogenized results of [6] are
recovered, here, when γ := limε→0 ε

p/µ = 0 by replacing, formally, the operator
∂x3 by ∇. However, our results in the case 0 < γ <∞ can not be obtained by the
physical setting considered in [6]. The corrector results are not addressed in [6],
that is only weakly convergent results are proved. Yet, here we shall prove strong
convergence of the gradients of temperature as well as the heat flux by adding some
correctors (see Section 5). Thus, the present study is actually quite different and
can be considered as an improvement of [6] and a generalization of [3] to quasilinear
(monotone operators in the gradient) heat transfer problem in composite materials
with coated and highly anisotropic fibers.

2. Mathematical framework

Hereafter, various spaces of functions on Ω will be used. For each p > 1, Lp(Ω)
and W 1,p(Ω) are the usual Lebesgue space and Sobolev space respectively. If R is
a Banach space, we denote R′ its dual ; the value of x′ ∈ R′ at x ∈ R is denoted
x′(x) or sometimes 〈x′, x〉R′,R. If H is a Hilbert space, we denote its scalar product
(., .)H, the dot denotes the usual scalar product in R3. If R is a Banach space and
X is a topological one, C(X; R) is the space of continuous R-valued functions on X
with the sup-norm. For any measure space Ω, Lp(Ω; R) is the space of p-th power
norm-summable functions on Ω with values in R. If Ω = (0, T ) is the time space,
we shall often write Lp(0, T ; R). In particular, spaces of Y -periodic functions will
be denoted by a subscript ]. For example, C](Y ) is the Banach space of functions
which are defined on R3, continuous and Y -periodic. Similarly, Lp

] (Y ) is the Banach
space of functions in Lp

loc(R3) which are Y -periodic. We endow this space with the
norm of Lp(Y ) and remark that it can be identified with the space of Y -periodic
extensions to R3 of the functions in Lp(Y ). Similarly, we define the Banach space
W 1,p

] (Y ) with the usual norm of W 1,p(Y ).
As in [3], to have a weak formulation of the above problem we shall use the con-

venient mathematical model built in [6], using the functional framework, developed
by Showalter for degenerate parabolic equations (see [12], Section III.6). Let us
recall the precise meaning of the weak formulation of the problem we investigate.
For more details see [7, 6, 3].

Let p ≥ 2 and p′ its conjugate. We define the following Banach spaces

V = W 1,p
ΓLB

(Ω) := {u ∈W 1,p(Ω) : u = 0 on ΓLB}, V = Lp(0, T ;V ),

V ′,V ′ = Lp′(0, T ;V ′)

be their dual spaces. For ε > 0, let Cε, Aε : V → V ′ be continuous operators,
which are defined by the continuous bilinear forms on V × V :

〈Cεu, v〉V ′,V = cε(u, v) :=
∫

Ω

cε(x)u(x)v(x)dx,

〈Aεu, v〉V ′,V = aε(u, v) :=
∫

Ω

Aε(x,∇u(x))∇v(x)dx.
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Let V ε
c be the completion of V with the semi-scalar product, defined by the form

cε and let V
′ε
c be its dual. Then, we have V ε

c = {u : (cε)1/2u ∈ L2(Ω)} and
V ε

c
′ = {(cε)1/2u, u ∈ L2(Ω)}. The operator Cε admits a continuous extension from

V ε
c into V ε

c
′ denoted also by Cε. Given fε ∈ Lp′(0, T ;Lp′(Ω)) or more generally

fε in V ′ and wε
0 in V ε

c
′, we are now able to give a weak formulation of the above

initial-boundary value problem as the following abstract Cauchy problem

Find u ∈ V :
d

dt
Cεu+Aεu = fε ∈ V ′, Cεu(0) = wε

0 ∈ V ε
c
′. (2.1)

Here, Aε and Cε are the realization of Aε and Cε as operators from V to V ′, that
is precisely (Aεu(t), Cεu(t)) = (Aε(u(t)), Cε(u(t))) for a.e. t ∈ (0, T ).

Let us underline that, in the abstract formulation above, we implicitly require
that d

dtC
εu belongs to V ′. This allows us to give a precise meaning to the initial

condition Cεu(0). Thus, given uε
0 in V ε

c and wε
0 in V ε

c
′ related by wε

0 = cεuε
0, we

can express the initial condition by one of the two equivalent equalities

(Cεuε)(0) = Cεuε(0) = wε
0 ∈ V ε

c
′ ⇐⇒ (cε)1/2uε(0) = (cε)1/2uε

0 ∈ L2(Ω). (2.2)

We define the Banach space W ε
p (0, T ) := {u ∈ V : d

dtC
εu ∈ V ′}, then, the

abstract Cauchy problem can, thereby, be written more explicitly as: Find u in
W ε

p (0, T ) such that

d

dt
Cεu(t) +Aεu(t) = fε(t) ∈ V ′ for a.e. t ∈ (0, T ),

Cεu(0) = wε
0 in V ε

c
′.

(2.3)

The initial condition is meaningful since u is in W ε
p (0, T ) then Cεu ∈ C(0, T ;V ε

c
′)

by [12, Proposition 6.3].
For the present study, we need to recall some equivalent variational formulations

of the problem (2.3) from [6, Proposition 1.2].

Proposition 2.1. The following statements are equivalent:

(1) u is the solution of (2.3).
(2) u ∈W ε

p (0, T ) and for all v ∈W ε
p (0, T ) with v(T ) = 0, we have

−
∫ T

0

〈u(t), v′(t)〉V ε
c
dt+

∫ T

0

aε(u(t), v(t))dt =
∫ T

0

fε(t)(v(t))dt+wε
0(v(0)), (2.4)

this, by density, holds for all v ∈ Lp(0, T ;V ) such that v′ ∈ Lp′(0, T ;V ε
c ).

(3) u ∈ Lp(0, T ;V ) and for all v ∈W 1,p(0, T ;V ), we have

−
∫

Q

cεuv′dx dt+ µ(ε)
∫

Qε
1

Ãε
1(x̃,∇exu).∇exvdx dt

+
∫

Qε
1

Aε
13(x̃, ∂x3u).∂x3vdx dt

+
∫

Qε
2

Aε
2(x,∇xu).∇xv dx dt+ εp

∫
Qε

3

Aε
3(x,∇xu).∇xv dx dt

=
∫

Q

fv dx dt−
∫

Ω

cεu(T, x)v(T, x)dx+
∫

Ω

cεuε
0v(0, x)dx.

(2.5)
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Remark 2.2. For each ε > 0, the operator Aε : V → V ′ is continuous, monotone,
coercive and bounded, and the operator Cε : V → V ′ is continuous, linear, sym-
metric and monotone. Hence, the Cauchy problem (2.3) admits, for each ε > 0, a
unique solution u ∈W ε

p (0, T ) by [12, Corollary 6.3].

Throughout this work, we shall assume that

uε
0(x) = u0(x) ∈ Lp(Ω).

Hereafter, let f ∈ Lp′(0, T ;Lp′(Ω)) be fixed.
Our objective is to study the behavior of the sequence {uε} as ε→ 0 moreover,

we prove a corrector results for the gradients and flux under the strong monotonicity
conditions (A5’) and (A6’). This will be achieved below, in particular, we will show
that the limit depends on the critical value γ = limε↓0

εp

µ .
Our further analysis will be, as in [3], based on the method of the two-scale

convergence [1, 11]. For the sake of clarity, we recall its definition.

Definition 2.3. A function φ(t, x, y) ∈ Lp(Q× Y, C](Y )) satisfying

lim
ε→0

∫
Q

φ(t, x,
x

ε
)p dt dx =

∫
Q

∫
Y

φ(t, x, y)p dt dx dy. (2.6)

is called admissible test function.

Definition 2.4. A sequence uε in Lp(Q) two-scale converges to a function u0 ∈
Lp(Q× Y ), and we denote this uε 2s,p→ u0 (uε 2s→ u0 if p=2 ), if, for any φ(t, x, y) ∈
D(Q, C](Y )),

lim
ε→0

∫
Q

uε(t, x)φ(t, x,
x

ε
) dt dx =

∫
Q

∫
Y

u0(t, x, y)φ(t, x, y) dt dx dy. (2.7)

Throughout the paper, we denote by C a constant not depending on ε and
whose value may vary from one line to the next. From a bounded sequence in a
Lebesgue space, we can take a subsequence that converges weakly, but virtually
all the subsequences converge to the same limit as the limiting equations have a
unique solution, so we normally ignore to mention the term “subsequence”.

3. A priori estimates

First, we recall the fundamental lemma which generalizes to the case p > 2
lemma 2.1. of [3], proved for p = 2. We shall not give the proof since it involves
only minor modifications of the case p = 2.

Lemma 3.1. There exists a constant C such that, for every v ∈ V , we have

‖v‖p
Lp(Ω) ≤ C(‖∂x3v‖

p
Lp(Ωε

1)
+ ‖∇v‖p

Lp(Ωε
2)

+ εp‖∇v‖p
Lp(Ωε

3)
). (3.1)

The above lemma is used for proving the following a priori estimates.

Lemma 3.2. Let fε = f , then, here exists a constant C such that

‖uε‖Lp(Q) ≤ C, (3.2)

(µ1/p‖∇exuε‖Lp(Qε
1)
, ‖∂x3u

ε‖Lp(Qε
1)

) ≤ C, (3.3)(
‖∇uε‖Lp(Qε

2)
, ε‖∇uε‖Lp(Qε

3)

)
≤ C, (3.4)(

µ1/p′‖Ãε
1(x,∇exuε)‖Lp′ (Qε

1)
, ‖Aε

13(x, ∂x3u
ε)‖Lp′ (Qε

1)

)
≤ C, (3.5)
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(‖Aε
2(x,∇uε)‖Lp′ (Qε

2)
, ε

p
p′ ‖Aε

3(x,∇uε)‖Lp′ (Qε
3)

) ≤ C. (3.6)

Moreover, if 0 < c0 ≤ c3(y), then ‖uε‖L∞(0,T ;L2(Ω)).

Proof. First, let us assume that uε is a solution of (1.3). Since uε ∈ W ε
p (0, T ), we

can choose v = uε(t) in (2.4) and using the following identity from [12, Proposition
3.1], or [6, Proposition 1.1],

1
2
d

dt
〈 Cεu(t), u(t)〉V ′,V = 〈 d

dt
Cεu(t), u(t)〉V ′,V

after integration over (0, T ), we deduce

1
2

∫
Ω

cε(x)(uε(T, x))2dx+
∫ T

0

∫
Ω

Aε(x,∇uε(s, x)).∇uε(s, x) dx ds

=
∫ T

0

∫
Ω

f(s, x)(uε(s, x)) dx ds+
1
2

∫
Ω

cε(x)(u0)2dx.

(3.7)

Thus,

1
2

∫
Ω

cε(x)(uε(T, x))2dx+
∫ T

0

∫
Ω

Aε(x,∇uε(s, x)).∇uε(s, x) dx ds

≤
∫ T

0

∫
Ω

|f(s, x)‖(uε(s, x))| dx ds+ C.

By Young’s inequality, for all η > 0,∫ T

0

∫
Ω

|f(s, x)‖(uε(s, x))| dx ds ≤ η

p
‖f‖p′

Lp′ (Q)
+

1
pηp−1

‖uε‖p
Lp(Q).

Thus, using assumption (A5),

µ

∫
Qε

1

|∇exuε|p dx dt+
∫

Qε
1

|∂x3u
ε|p dx dt

+
∫

Qε
2

|∇xu
ε|p dx dt+ εp

∫
Qε

3

|∇xu
ε)|p dx dt

≤ η

p
‖f‖p′

Lp′ (Q)
+

1
pηp−1

‖uε‖p
Lp(Q) + C.

Since uε(t, .) ∈ V , using lemma 3.1 in the right hand side, we obtain

µ

∫
Qε

1

|∇exuε|p dx dt+
∫

Qε
1

|∂x3u
ε|p dx dt+

∫
Qε

2

|∇xu
ε|p dx dt+ εp

∫
Qε

3

|∇xu
ε)|p dx dt

≤ C
η

p
+

C

pηp−1
(‖∂x3u

ε‖p
Lp(Ωε

1)
+ ‖∇uε‖p

Lp(Ωε
2)

+ εp‖∇uε‖p
Lp(Ωε

3)
) + C,

we can absorb the right-hand side by choosing ηp−1 > 1. Thus

‖uε‖Lp(Q) ≤ C,

(µ‖∇exuε‖p
Lp(Qε

1)
, ‖∂x3u

ε‖Lp(Qε
1)
, ‖∇uε‖Lp(Qε

2)
, ε‖∇uε‖Lp(Qε

3)
) ≤ C.

The bounds of Ãε
1, Aε

13 and Aε
α, α = 2, 3 are obtained using Hölder’s inequality

and assumption (A6). �

As a consequence of the a priori estimates mentioned above, we have the following
result.
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Lemma 3.3. Let γ := limε→0
εp

µ . Assume that γ < +∞ and fε = f . There exists

u2 ∈ Lp(0, T ;V ), v1 ∈ Lp
(
Q;W 1,p

] (Ỹ1)/R
)
, z ∈ Lp(Q× Y ),

(v2, v3) ∈
3∏

i=2

Lp(Q;W 1,p
] (Yi)/R), gk ∈ Lp′(Q× Y ), u∗k ∈ L2(Q× Y ), k = 1, 2, 3,

such that we have the following two-scale convergence holds:

uε(t, x)
2s,p→ χ1(y)v1(t, x, ỹ) + χ2(y)u2(t, x) + χ3(y)v3(t, x, y),

χε
1(x)(u

ε(t, x), ε∇exuε(x))
2s,p→ χ1(y)(v1(t, x, ỹ),∇eyv1(t, x, ỹ)),

χε
1(x)∂x3u

ε(x)
2s,p→ χ1(y)z(t, x, y), such that ∂x3v1(t, x, ỹ) =

∫
I

z(t, x, y)dyN ,

χε
2(x)(u

ε(t, x),∇xu
ε(t, x))

2s,p→ χ2(y)(u2(t, x), [∇xu2(t, x) +∇yv2(t, x, y)]),

χε
3(x)(u

ε(t, x), ε∇xu
ε(t, x))

2s,p→ χ3(y)(v3(t, x, y),∇yv3(t, x, y)),

µ1/p′χε
1(x)Ãε

1(x,∇exuε(t, x))
2s,p′→ χ1(y)g̃1(t, x, y),

χε
1(x)Aε

13(x, ∂x3u
ε(t, x))

2s,p′→ χ1(y)g13(t, x, y),

χε
2(x)Aε

2(x,∇xu
ε(t, x))

2s,p′→ χ2(y)g2(t, x, y),

ε
p
p′ χε

3(x)Aε
3(x,∇xu

ε(t, x))
2s,p′→ χ3(y)g3(t, x, y),

χε
k(x)(cεk)1/2uε(T, x) 2s→ χk(y)u∗k(x, y), k = 1, 2, 3,

(cε)1/2uε(T, x) 2s→ u∗(x, y) :=
3∑

k=1

χk(y)u∗k(x, y).

Moreover, there exists a unique function w3 ∈ Lp(Q;W 1,p
] (Y3)) such that

v3(t, x, y) = u2(t, x) + w3(t, x, y) in Y3

w3(t, x, y) = v1(t, x, ỹ)− u2(t, x) on Y13 := Ỹ13 × I

w3(t, x, y) = 0 on Y23 := Ỹ23 × I

(3.8)

and uε converges weakly in Lp(Q) to the function

U(t, x) = (1− θ1)u2(t, x) +
∫

eY1

v1(t, x, ỹ)dỹ +
∫

Y3

w3(t, x, y)dy.

The proof of the above lemma is the same as that of [3, Lemma 2.3], we omit it.

Remark 3.4. If γ = ∞, the sequence

εχε
1∇exuε =

ε

µ1/p
µ1/pχε

1∇exuε

is not bounded in Lp(Q,R2) in general. The scaled sequence µ1/p

ε χε
1u

ε converges
strongly to zero in Lp(Q) as ε → 0 since ‖χε

1u
ε‖Lp(Q) ≤ C. Thus, hereafter, we

shall consider only the most interesting cases γ = 0 and 0 < γ <∞.
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4. Homogenization in the case γ = 0

Since γ = 0 and supε

(
µ‖∇uε‖p

Qε
1

)
≤ C, the function

εχ1(
x

ε
)∇exuε(t, x) =

ε

µ1/p
µ1/pχ1(

x

ε
)∇exuε(t, x)

converges strongly to zero in Lp(Q; R2). Thus χ1(y)∇eyv1(t, x, ỹ) = 0, then

χ1(y)v1(t, x, ỹ) := u1(t, x)

and especially

U(t, x) = θ1u1(t, x) + (1− θ1)u2(t, x) +
∫

Y3

w3(t, x, y)dy. (4.1)

Moreover, the sequence

µχε
1Ã1(x,∇exuε) = µ1/pµ1/p′χε

1Ã1(x,∇exuε) → 0

strongly in Lp′(Q).
Now, for every datum Z ∈ R3, let

Ahom
13 (Z) :=

∫
fY1

A13(ỹ, Z)dỹ, (4.2)

and let w2,Z be the unique solution (v2) of the following cellular problem

−divy

(
A2(y, Z +∇yw2,Z)

)
= 0 in Y2

A2(y, Z +∇yw2,Z).n(y) = 0 on Y23

y 7→ w2,Z(y), A2(y, Z +∇yw2,Z).n(y)
∣∣
∂Y2∩∂Y

Y − periodic,

(4.3)

we define the function

Ahom
2 (Z) :=

∫
Y2

A2(y, Z +∇yw2,Z(t, x, y))dy. (4.4)

Theorem 4.1. The functions (uα, w3) ∈ Lp(0, T ;V ) × Lp(Q;W 1,p
] (Y3)), α = 1, 2

are the unique solutions of the homogenized coupled problems

c̃1
∂u1

∂t
(t, x)− ∂x3

(
Ahom

13 (∂x3u1(t, x))
)

+
∫

Y13

A3(y,∇yw3(t, x, y))n3(y)dS(y) = θ1f in Q

c̃2
∂u2

∂t
(t, x)− divx

(
Ahom

2 (∇xu2(t, x))
)

+
∫

Y23

A3(y,∇yw3(t, x, y))n3(y)dS(y) = θ2f in Q

c̃αuα(0, x) = c̃αu0(x) in Ω, c̃α =
∫

Yα

cα(y)dy,

uα(t, x) = 0 on ΓLB

(4.5)
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and

c3(y)(
∂u2

∂t
(t, x) +

∂w3

∂t
(t, x, y))− divy

(
A3(y,∇yw3(t, x, y))

)
= f in Y3

w3(t, x, y) = u1(t, x)− u2(t, x) on Y13

w3(t, x, y) = 0 on Y23

c3(y)w3(0, x, y) = c3(y)(u0(x)− u2(0, x)), y ∈ Y3

y 7→ A3(y,∇yw3(t, x, y)).n(y)
∣∣
∂Y ∩∂Y3

Y − periodic

(4.6)

Remark 4.2. Let us comment on these results. These problems involve, roughly
speaking, three coupled fields : two macroscopic functions (u1, u2) and a micro-
scopic one w3. Notice that, only the longitudinal heat flux in the fiber is shown to
be the unique factor contributing on the effective behavior of the composite (see
second term of the first equation in (4.5)). Moreover, the auxiliary problem (4.6)
is defined on the surrounding coating (Y3) of the coated fiber (Y1 ∪ Y3). Besides,
there is no heat flux exchange across the fiber-coating interface.

Proof of Theorem 4.1. Let C1
LB(Ω) = {v ∈ C1(Ω) : v = 0 on ΓLB}. We shall

consider test functions ψα, ψ, φ2 defined as follows:

ψα(t, x) ∈W 1,p(0, T ;C1
LB(Ω))

ψ(t, x, y) ∈W 1,p(0, T ;C1
LB(Ω; C∞] (Y ))), ψ(t, x, y) = ψα(t, x) in Yα a.e.

φ2(t, x, y) ∈ D(Q; C∞] (Y ))

We define the function vε(t, x) = ψ(t, x, x
ε )+ εφ2(t, x, x

ε ). Then vε ∈W 1,p(0, T ;V ),
hence vε is an allowable test function. By putting it in the formulation (2.5), using
the fact that µ = µ1/p′µ1/p and letting ε→ 0, we obtain

−
2∑

α=1

∫
Q

∫
Yα

cα(y)uα(t, x)ψ′α(t, x) dt dx dy

−
2∑

α=1

∫
Ω

∫
Y α

cα(y)u0(x)ψα(0, x) dx dy

+
2∑

α=1

∫
Ω

∫
Y α

c1/2
α (y)u∗α(x, y)ψα(T, x) dx dy

−
∫

Q

∫
Y3

c3(y)
[
u2(t, x) + w3(t, x, y)

]
ψ′(t, x, y) dt dx dy

−
∫

Ω

∫
Y3

c3(y)u0(x)ψ(0, x, y) dx dy (4.7)

+
∫

Ω

∫
Y3

c
1/2
3 (y)u∗3(x, y)ψ(T, x, y) dx dy +

∫
Q

∫
Y1

g13(t, x, y).∂x3ψ1(t, x) dt dx dy

+
∫

Q

∫
Y2

g2(t, x, y).
[
∇xψ2(t, x) +∇yφ2(t, x, y)

]
dt dx dy

+
∫

Q

∫
Y3

g3(t, x, y).∇yψ(t, x, y) dt dx dy

=
∑
α

∫
Q

∫
Yα

f(t, x)ψα(t, x) dt dx dy +
∫

Q

∫
Y3

f(t, x)ψ(t, x, y) dt dx dy.
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(i) Take ψ1 = 0 = ψ2 and φ2 = 0. Then

−
∫

Q

∫
Y3

c3(y)
[
u2(t, x) + w3(t, x, y)

]
ψ′(t, x, y) dt dx dy

−
∫

Ω

∫
Y3

c3(y)u0(x)ψ(0, x, y) dx dy +
∫

Ω

∫
Y3

c
1/2
3 (y)u∗3(x, y)ψ(T, x, y) dx dy

+
∫

Q

∫
Y3

g3(t, x, y).∇yψ(t, x, y) dt dx dy

=
∫

ΩT

∫
Y3

f(t, x)ψ(t, x, y) dt dx dy

for all ψ ∈ W 1,p(0, T ;C1
LB(Ω; C∞] (Y ))) with ψ(t, x, .) = 0 in Y1 ∪ Y2. This remains

true, by density, for all ψ ∈ W 1,p
LB(Ω;W 1,p

] (Y )), ψ = 0 on Y1 ∪ Y2. For a.e. x ∈ Ω,
we have, thus, a cellular problem on Y3: Find w3 = w3(., x, .) ∈ Lp((0, T );W 1,p

] (Y ))
such that

−
∫ T

0

∫
Y3

c3(y)
[
u2(t, x) + w3(t, x, y)

]
ψ′(t, y) dt dy

−
∫

Y3

c3(y)u0(x)ψ(0, y)dy

+
∫

Y3

c
1/2
3 (y)u∗3(x, y)ψ(T, y)dy +

∫ T

0

∫
Y3

g3(t, x, y).∇yψ(t, y) dt dy

=
∫ T

0

∫
Y3

f(t, x)ψ(t, y) dt dy,

(4.8)

for all ψ(t, y) ∈W 1,p((0, T );W 1,p
] (Y )), with ψ = 0 on Y1 ∪ Y2.

Integrating by parts in t and in y successively, we obtain∫ T

0

∫
Y3

c3(y)
∂

∂t

[
u2(t, x) + w3(t, x, y)

]
ψ(t, y) dt dy

+
∫

Y3

c3(y)(u0(x)− (u2(0, x) + w3(0, x, y)))ψ(0, y)dy

−
∫

Y3

c3(y)(u2(T, x) + w3(T, x, y))ψ(T, y)dy +
∫

Y3

c
1/2
3 (y)u∗3(x, y)ψ(T, y)dy

−
∫ T

0

∫
Y3

divy

(
g3(t, x, y)

)
ψ(t, y) dt dy

+
∫ T

0

∫
∂Y ∩∂Y3

(
g3(t, x, y)

)
.n(y)ψ(t, y)dtdS(y)

=
∫ T

0

∫
Y3

f(t, x)ψ(t, y) dt dy.

This is the variational form of an evolution problem on Y3 which we write in a more
explicit form (x is a parameter): Find w3 ∈ Lp(Q;W 1,p

] (Y3)) such that c3(y)w′3 ∈
Lp(Q; (W 1,p

] (Y3))) and

c3(y)
(∂u2

∂t
(t, x) +

∂w3

∂t
(t, x, y)

)
− divy

(
g3(t, x, y)

)
= f in Y3
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w3(t, x, y) = u1(t, x)− u2(t, x) on Y13

w3(t, x, y) = 0 on Y23 (4.9)

c3(y)w3(0, x, y) = c3(y)(u0(x)− u2(0, x)) y ∈ Y3

y 7→ g3(t, x, y).n(y)
∣∣
∂Y ∩∂Y3

Y − periodic

and the final condition

c
1/2
3 (y)u∗3(x, y) = c3(y)(u2(T, x) + w3(T, x, y))

which is however not a part of the problem. It will be only used below to identify
the functions g13, g2, g3.

(ii) Taking now φ2 = 0 and ψ = 0 in Y3 ∪ Y1, and using an integration by parts
and the initial and final conditions satisfied by w3, we have

−
∫

Q

∫
Y2

c2(y)u2(t, x)ψ′2(t, x) dt dx dy −
∫

Ω

∫
Y2

c2(y)u0(x)ψ2(0, x) dx dy

+
∫

Ω

∫
Y2

c
1/2
2 (y)u∗2(x, y)ψ2(T, x) dx dy

+
∫

Q

∫
Y2

g2(t, x, y)
[
∇xψ2(t, x) +∇yφ2(t, x, y)

]
dt dx dy

+
∫

Q

∫
Y23

g3(t, x, y).n(y)ψ2 dt dx dS(y)

=
∫

Q

∫
Y2

fψ2 dt dx dy.

(4.10)

Taking φ2 = 0 and ψ2 arbitrary in W 1,p(0, T ;V ), we obtain the variational form of
the following initial-boundary value problem in Q:

c̃2
∂u2

∂t
(t, x)− divx

(∫
Y2

g2(t, x, y)dy
) ∫

Y23

g3(t, x, y).n(y)dS(y) = θ2f in Q

c̃2u2(0, x) = c̃2u0(x) in Ω, c̃2 =
∫

Y2

c2(y)dy (4.11)

u2(t, x) = 0 on ∂Ω

and the final condition

c̃2u2(T, x) =
∫

Y2

c1/2(y)u∗2(x, y)dy.

Now, taking ψ2 = 0 and φ2 arbitrary in D(Q;W 1,p
] (Y2)), we have∫

Q

∫
Y2

g2(t, x, y)∇yφ2(t, x, y) dt dx dy = 0,

by integration by parts in y, we obtain

−
∫

Y2

divy

(
g2(t, x, y)

)
dy +

∫
Q

∫
∂Y2

g2(t, x, y).n(y)φ2(t, x, y) dt dx dS(y) = 0
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for a.e. (t, x) ∈ Q. This remains true, by density, for all φ2 ∈ Lp(Q;W 1,p
] (Y2)) and

gives for each (t, x) ∈ Q the variational formulation of a cellular problem on Y2,

−divy

(
g2(t, x, y)

)
= 0 in Y2(

g2(t, x, y)
)
.n(y)

∣∣
∂Y2∩∂Y3

= 0

y 7→ g2(t, x, y).n(y)
∣∣
∂Y ∩∂Y3

Y − periodic

(4.12)

Similarly, for all ψ1 ∈W 1,p(0, T ;W 1,p
LB(Ω)), we obtain

−
∫

Q

∫
Y1

c1(y)u1(t, x)ψ′1(t, x) dt dx dy −
∫

Ω

∫
Y1

c1(y)u0(x)ψ1(0, x) dx dy

+
∫

Ω

∫
Y1

c
1/2
1 (y)u∗1(x, y)ψ1(T, x) dx dy

+
∫

Q

∫
eY1

g13(t, x, y)∂x3ψ1(t, x) dt dxdỹ

+
∫

Q

∫
Y13

g3(t, x, y).n(y)dS(y)

=
∫

Q

∫
Y1

fψ1 dt dx dy,

(4.13)

which is the variational formulation of the following initial-boundary value problem
in Q.

c̃1
∂u1

∂t
(t, x)− ∂x3(g13(t, x, y)) +

∫
Y13

g3(t, x, y).n(y)dS(y) = θ1f in Ω

c̃1u1(0, x) = c̃1u0(x) in Ω, c̃1 =
∫

Y1

c1(y)dy

u1(t, x) = 0 on ∂Ω

(4.14)

and the final condition

c̃1u1(T, x) =
∫

Y1

c1/2(y)u∗1(x, y)dy.

From this, we obtain the homogenized problem (4.5). It remains to identify gk in
terms of vk, u2. Before proceeding, we prove the following useful identity.

Lemma 4.3.
2∑

α=1

1
2
c̃α

∫
Ω

|uα(T, x)|2dx+
1
2

∫
Ω

∫
Y3

c3(y)|v3(T, x, y)|2dx dy

− 1
2

3∑
k=1

c̃k

∫
Ω

|u0(x)|2dx+
∫

Q

∫
Y1

g13(t, x, y)∂x3u1(t, x) dt dx dy

+
∫

Q

∫
Y2

g2(t, x, y)
(
∇xu2(t, x) +∇yv2(t, x, y)

)
dt dx dy

+
∫

Q

∫
Y3

g3(t, x, y).∇yv3(t, x, y) dt dx dy

=
∫

Q

f(t, x)U(t, x)dt dx.
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Proof. We start from the two-scale homogenized problem (4.7) and we consider the
sequences

ψk,n, k = 1, 2, 3, φ2,n, φ3,n

such that

(1) ψα,n → uα in Lp(0, T ;V ), ∂
∂tψ1,n → ∂

∂tuα1 in Lp′(0, T ;V ′), α = 1, 2,
(2) ψ3,n → v3 in Lp(0, T ;W 1,p

] (Y3)), ∂
∂tψ3,n → ∂

∂tv3 in Lp′(0, T ;W 1,p
] (Y3)′),

(3) ∇yφ2,n → ∇yv2 in Lp(Q× Y2), ∇yφ3,n → ∇yv3 in Lp(Q× Y3).

Note that the smoothness of the above sequences ψk,n, k = 1, 2, 3, φ2,n, φ3,n implies
their two-scale convergence in strong sense to the corresponding limits [1, Theorem
1.8]. Therefore, passing to the limit with respect to n and taking in account of the
final conditions, we obtain

−
2∑

α=1

∫
Q

∫
Yα

cα(y)uα(t, x)u′α(t, x) dt dx dy −
3∑

k=1

∫
Ω

∫
Y α

ck(y)u0(x)2 dx dy

+
2∑

α=1

∫
Ω

∫
Y α

cα(y)uα(T, x)2 dx dy

−
∫

Q

∫
Y3

c3(y)v3(t, x, y)v′3(t, x, y) dt dx dy +
∫

Ω

∫
Y3

c3(y)v3(T, x, y)2 dx dy

+
∫

Q

∫
Y1

g13(t, x, y).∂x3u1(t, x) dt dx dy

+
∫

Q

∫
Y2

g2(t, x, y).
[
∇xu2(t, x) +∇yv2(t, x, y)

]
dt dx dy

+
∫

Q

∫
Y3

g3(t, x, y).∇yv3(t, x, y) dt dx dy

=
∫

Q

f(t, x)U(t, x) dt dx.

Integrating the above equality with respect to the t variable, we obtained the states
result. �

We are now equipped to identify g13, g2 and g3.

Identification of g13, g2 and g3. Let φ and Φ be in C∞0 (Q; C∞] (Y ))N and
C∞0 (Q; C∞] (Y )) respectively. For ε > 0 and h > 0 we define the test function

ηε(t, x) = χε
1(x)

(
0
∂x3

)
u1(t, x) + χε

2(x)∇xu2(t, x)

+ ε∇xφ(t, x,
x

ε
) + hΦ(t, x,

x

ε
).

(4.15)

Note that ηε and (by the continuity assumption) Aε
k(x, ηε) := Aε

k(x
ε , η

ε(t, x)), k =
1, 2, 3 are admissible test functions (in Lp(Q)) for the two-scale convergence and

ηε(t, x)
2s,p′→ η(t, x, y) =: χ1(y)

(
0
∂x3

)
u1(t, x) + χ2(y)∇xu2(t, x)

+∇yφ(t, x, y) + hΦ(t, x, y).
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The monotonicity condition (A6) yields∫
Q

(
Aε(x,∇xu

ε(t, x))− Aε(x, ηε(t, x))
)(
∇xu

ε(t, x)− ηε(t, x)
)
dt dx ≥ 0. (4.16)

Expanding this expression and employing (3.7) yields∫ T

0

∫
Ω

f(t, x)uε(t, x) dx dt− 1
2

∫
Ω

cε(x)uε(T, x)2dx+
1
2

∫
Ω

cε(x)(uε
0)

2dx

−
∫

Q

(
Aε(x,∇xu

ε(t, x))ηε(t, x) + Aε(x, ηε(t, x))(∇xu
ε(t, x)− ηε(t, x))

)
dt dx ≥ 0.

Letting ε→ 0, the two-scale convergence of uε and χε
kAε

k and the continuity of Ak

give in the limit∫
Q

f(t, x)U(t, x) dx dt− lim inf
ε→0

1
2

∫
Ω

cε(x)uε(T, x)2dx+
1
2

∫
Ω

∫
Y

c(y)dy(u0)2dx

−
∫

Q

∫
Y1

g13(t, x, y)
(
∂x3u1(t, x) + hΦN (t, x, y)

)
dt dx dy

−
∫

Q

∫
Y2

g2(t, x, y)
(
∇xu2(t, x) +∇yφ(t, x, y) + hΦ(t, x, y)

)
dt dx dy

−
∫

Q

∫
Y3

g3(t, x, y)
(
∇yφ(t, x, y) + hΦ(t, x, y)

)
dt dx dy (4.17)

+
∫

Q

∫
Y1

A13(x, ηN (t, x, y))
(
∂x3u1(t, x) + hΦN (t, x, y)

)
dt dx dy

+
∫

Q

∫
Y2

A2(x, η(t, x, y))
(
−∇xu2(t, x) +∇yφ(t, x, y) + hΦ(t, x, y)

)
dt dx dy

+
∫

Q

∫
Y3

A3(x, η(t, x, y))
(
∇yφ(t, x, y) + hΦ(t, x, y)

)
dt dx dy ≥ 0.

Since Ak is continuous we may replace φβ , β = 2, 3 by a sequence converging
strongly in Lp(Q;W 1,p

] (Yβ)/R) to vβ ; thus replacing η(t, x, y) in (4.17) with ∇xu2+
∇yv2 + hΦ and ∇yv3 + hΦ successively and using Lemma 4.3, the above sum sim-
plified to∫

Q

∫
Y1

[
A13

(
ỹ, ∂x3u1(t, x) + hΦ(t, x, y)

)
− g13(t, x, y)

]
hΦN (t, x, y) dt dx dy

+
∫

Q

∫
Y2

[
A2

(
x,∇xu2 +∇yv2 + hΦ(t, x, y)

)
− g2(t, x, y)

]
hΦ(t, x, y) dt dx dy

+
∫

Q

∫
Y3

g3(t, x, y)
[
A3

(
x,∇yv3 + hΦ(t, x, y)

)
− g3(t, x, y)

]
hΦ(t, x, y) dt dx dy

≥ 1
2

∫
Ω

cε(x)uε(T, x)2dx+
1
2

∫
Ω

∫
Y

c(y)dy(u0)2dx

+ lim inf
ε→0

[1
2

∫
Ω

cε(x)uε(T, x)2dx+
1
2

∫
Ω

∫
Y

c(y)dy(u0)2dx
]
.
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Thus, dividing by h and letting h→ 0 we see that for every Φ,∫
Q

∫
Y1

[
A13

(
ỹ, ∂x3u1(t, x)− g13(t, x, y)

]
hΦN (t, x, y) dt dx dy

+
∫

Q

∫
Y2

[
A2

(
y,∇xu2 +∇yv2

)
− g2(t, x, y)

]
hΦ(t, x, y) dt dx dy

+
∫

Q

∫
Y3

g3(t, x, y)
[
A3

(
y,∇yv3

)
− g3(t, x, y)

]
hΦ(t, x, y) dt dx dy ≥ 0.

(4.18)

We therefore have proved the desired results, namely, that

g13(t, x, y) = A13(ỹ, ∂x3u1(t, x))

g2(t, x, y) = A2(y,∇xu2(t, x) +∇yv2(t, x, y))

g3(t, x, y) = A3(y,∇yv3(t, x, y))

Hence equations (4.5)-(4.6) are satisfied. To complete the proof it suffices to show
that {u2, v1, v2, v3} is the unique solution of (4.5)-(4.6). In fact, the uniqueness is a
consequence of the strict monotonicity of Ak, k = 1, 2, 3. Indeed, if {u1

2, v
1
1 , v

1
2 , v

1
3}

and {u2
2, v

2
1 , v

2
2 , v

2
3} are two solutions of (4.5)-(4.6), using (4.7), by difference we

obtain

−
2∑

α=1

∫
Q

∫
Yα

cα(y)(u1
α − u2

α)ψ′α dt dx dy

+
2∑

α=1

∫
Ω

∫
Y α

c1/2
α (y)(u∗α

1 − u∗α
2)ψα(T, x) dx dy

−
∫

Q

∫
Y3

c3(y)(v1
3 − v2

3)ψ′ dt dx dy +
∫

Ω

∫
Y3

c
1/2
3 (y)(v∗3

1 − v∗3
2)ψ dx dy

+
∫

Q

∫
Y1

(A13(ỹ, ∂x3u
1
1)− A13(ỹ, ∂x3u

2
1)).∂x3ψ1 dt dx dy

+
∫

Q

∫
Y2

(A2(y,∇xu
1
2 +∇yv

1
2)− A2(y,∇xu

2
2 +∇yv

2
2)).(∇xψ2 +∇yφ2) dt dx dy

+
∫

Q

∫
Y3

(A3(y,∇yv
1
3)− A3(y,∇yv

2
3)).∇yψ dt dx dy = 0.

In particular, for ψα = u1
α − u2

α, φ2 = v1
2 − v2

2 and ψ = v1
3 − v2

3 , we obtain, in view
of the initial and final conditions satisfied by uα, v3 and by the strict monotonicity
of Ak, k = 1, 2, 3:

∂x3(u
1
1 − u2

1) = 0, ∇y(v1
3 − v2

3) = 0 in Q× Y3,

since (u1
1−u2

1) = 0 on (0, T )×ΓLB and (v1
3 − v2

3) = 0 on (0, T )×Y23, thus u1
1 = u2

1

and v1
3 = v2

3 . As a consequence,∫
Q

∫
Y2

(A2(y,∇xu
1
2 +∇yv

1
2)− A2(y,∇xu

2
2 +∇yv

2
2)).(∇xψ2 +∇yφ2) dt dx dy = 0,

so this problem has a unique solution in the space W 1,p
LB(Ω) × Lp(Ω;W 1,p

] (Y2)) by
an application of Lax-Milligram lemma, then u1

2 = u2
2 and v1

2 = v2
2 .
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5. Homogenization in the case 0 < γ <∞

In this case we shall proof the following result.

Theorem 5.1. Functions (u2, v1, w3) ∈ Lp(0, T ;W 1,p
LB(Ω))×Lp(Q;W 1,p

] (Ỹ1)/R)×
Lp(Q;W 1,p

] (Y3)) are the unique solutions of the two-scale homogenized problems

c̃2
∂u2

∂t
− divx(Ahom

2 (∇xu2(t, x)))

+
∫

Y23

A3(y,∇yw3(t, x, y)).n3(y)dS(y) = θ2f in Q

c̃2u2(0, x) = c̃2u0(x) in Ω, c̃2 =
∫

Y2

c2(y)dy

u2(t, x) = 0 on (0, T )× ∂Ω̃× [0, 1[

(5.1)

where Ahom
2 is define by (4.4).

〈c1〉I(ỹ)
∂v1
∂t

(t, x, ỹ)− 1
γ1/p

divey (
Ã1(ỹ,∇eyv1(t, x, ỹ)))

− ∂x3(A13(ỹ, ∂x3v1(t, x, ỹ))) = f in Ỹ1

c3(y)
(∂u2

∂t
(t, x) +

∂w3

∂t
(t, x, y)

)
− divy(A3(y,∇yw3(t, x, y))) = f in Y3

Ã1(ỹ,∇eyv1).n(ỹ) = γ1/p〈A3(y,∇yw3).n(y)〉I on Ỹ13

w3(t, x, y) = v1(t, x, ỹ)− u2(t, x) on Y13, w3(t, x, y) = 0 on Y23

〈c1〉I(ỹ)v1 = 〈c1〉I(ỹ)u0, ỹ ∈ Ỹ1

c3(y)w3(0, x, y) = c3(y)(u0(x)− u2(0, x)), y ∈ Y3

y 7→ A3(y,∇yw3(t, x, y)).n(y)
∣∣
∂Y ∩∂Y3

Y − periodic

(5.2)

where 〈.〉I denotes the integration with respect to y3 over I.

Remark 5.2. Contrary to the previous case, here the problems (5.1)-(5.2) involve a
unique macroscopic function u2 and two microscopic functions v1, w3. The functions
v1, w3 are “strongly” coupled via the following non-standard boundary conditions

w3(t, x, y)− v1(t, x, ỹ) = u2(t, x) on (0, T )× Y13, (5.3)

Ã1(ỹ,∇eyv1).n(ỹ) = γ1/p〈A3(y,∇yw3).n(y)〉I on (0, T )× Ỹ13. (5.4)

As a consequence, the above interface conditions exhibit a remarkable temperature
jump and a transverse heat flux continuity. This, might be interpreted as the
combined effects of fiber coatings together with the high anisotropy of the fibers
in the overall behavior of the composite. In addition, it should be noted that the
auxiliary problem (5.2) is defined in the coated fiber Y1 ∪ Y3 and involves both the
longitudinal and the transverse thermal conductivities of the fiber.

Proof of Theorem 5.1. Let ψ2, ψ, φ2 be test functions as defined in the proof of
Theorem 4.1 and let

ψ1(t, x, ỹ) ∈W 1,p(0, T ;C1
LB(Ω; C∞] (Ỹ )))

be a test function such that ψ(t, x, y) = ψ1(t, x, ỹ) in Y1 a.e.
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As in the previous case, we take vε(t, x) = ψ(t, x, x
ε ) + εφ2(t, x, x

ε ) in (2.5) and
letting ε→ 0, we deduce the following two-scale limit

−
∫

Q

∫
Y1

c1(y)v1(t, x, ỹ)ψ′1(t, x, ỹ) dt dx dy −
∫

Ω

∫
Y1

c1(y)u0(x)ψ1(0, x, ỹ) dx dy

+
∫

Ω

∫
Y1

c
1/2
1 (y)u∗1(x, y)ψ1(T, x, ỹ) dx dy

−
∫

Q

∫
Y2

c2(y)u2(t, x)ψ′2(t, x) dt dx dy −
∫

Ω

∫
Y 2

c2(y)u0(x)ψ2(0, x) dx dy

+
∫

Ω

∫
Y2

c
1/2
2 (y)u∗2(x, y)ψ2(T, x) dx dy

−
∫

Q

∫
Y3

c3(y)
[
u2(t, x) + w3(t, x, y)

]
ψ′(t, x, y) dt dx dy

−
∫

Ω

∫
Y3

c3(y)u0(x)ψ(0, x, y) dx dy

+
∫

Ω

∫
Y3

c
1/2
3 (y)u∗3(x, y)ψ(T, x, y) dx dy

+
1

γ1/p

∫
Q

∫
Y1

g̃1(t, x, y)∇eyψ1(t, x, ỹ) dt dxdy

+
∫

Q

∫
Y1

g13(t, x, y)∂x3ψ1(t, x, ỹ) dt dxdy

+
∫

Q

∫
Y2

g2(t, x, y)
[
∇xψ2(t, x) +∇yφ2(t, x, y)

]
dt dx dy

+
∫

Q

∫
Y3

g3(t, x, y)∇yψ(t, x, y) dt dx dy

=
∫

Q

∫
Y1

f(t, x)ψ1(t, x) dt dxdy +
∫

Q

∫
Y2

f(t, x)ψ2(t, x) dt dx dy

+
∫

Q

∫
Y3

f(t, x)ψ(t, x, y) dt dx dy.

(i) We choose ψ1 = 0 = ψ2 and φ2 = 0. Then, we have the cellular problem in
Y3.

(ii) Taking φ2 = 0 and ψ2 = 0 and an integration by parts with respect to x3,
we obtain ∫

Q

∫
Y1

g13(t, x, y)∂x3ψ1(t, x, ỹ) dt dx dy

=
∫

Q

∫
eY1

(
∫

I

g13(t, x, y)dy3)∂x3ψ1(t, x, ỹ) dt dx dỹ

= −
∫

Q

∫
eY1

∂x3(
∫

I

g13(t, x, y)dy3)ψ1(t, x, ỹ) dt dx dỹ.

After integration by parts with respect to t and ỹ successively we have∫
Q

∫
eY1

〈c1〉I(ỹ)v′1(t, x, ỹ)ψ1 dt dxdỹ −
∫

Ω

∫
eY1

〈c1〉I(ỹ)
(
u0(x)− v1(0, x, ỹ)

)
ψ1dx dỹ
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+
∫

Ω

∫
Y1

(
c
1/2
1 (y)u∗1(x, y)− 〈c1〉I(ỹ)v1(T, x, ỹ)

)
ψ1(T, x, ỹ) dx dy

− 1
γ1/p

∫
Q

∫
eY1

divey(
g̃1(t, x, y)

)
ψ1dỹ dt dx

− 1
γ1/p

∫
Q

∫
eY13

g̃1(t, x, y).n(y)ψ1dS(ỹ) dt dx (5.5)

−
∫

Q

∫
eY1

∂x3〈g13(t, x, y)〉I(ỹ)ψ1 dt dx dỹ

+
∫

Q

∫
eY13

〈g3(t, x, y).n(y)〉I(ỹ)ψ1 dt dx dS(ỹ)

=
∫

Q

∫
eY1

fψ1 dt dx dỹ

for all ψ1 ∈W 1,p
(
0, T ;C1

LB(Ω; C∞] (Ỹ1))
)
. Thus, we get the cell problem in Ỹ1 (5.2).

(iii) Taking (ψ1 = 0, φ2 = 0), then (ψ1 = 0, ψ2 = 0) we obtain the initial-
boundary value problem (5.1).

It remains to identify g̃1 and g13. This is done as in the preceding case. More pre-
cisely, let φ(t, x, y), Φ(t, x, y) and ψ1(t, x, ỹ) be in C∞0 (Q; C∞] (Y ))N , C∞0 (Q; C∞] (Y ))
and C∞0 (Q; C∞] (Ỹ1)) respectively. For ε > 0 and h > 0 we define the following test
function

ηε(t, x) = χε
1(x)∇ε

xψ1(t, x,
x̃

ε
) + χε

2(x)∇xu2(t, x)

+ ε(1− χε
1(x))∇xφ(t, x,

x

ε
) + hΦ(t, x,

x

ε
),

where

∇ε
x =

(
ε∇ex
∂x3

)
. (5.6)

Note that Aε
k(x, ηε) := Aε

k(x
ε , η

ε(t, x)), k = 1, 2, 3 are admissible test functions (in
Lp(Q)) for the two-scale convergence and

ηε(t, x)
2s,p′→ η(t, x, y),

where

η(t, x, y) = χ1(y)
(
∇ey
∂x3

)
ψ1(t, x, ỹ) + χ2(y)∇xu2(t, x)

+ (1− χ1(y))∇yφ(t, x, y) + hΦ(t, x, y).

Using monotonicity condition (A6) and letting ε → 0, exactly as in the previous
case, we obtain∫

Q

f(t, x)U(t, x) dx dt− lim inf
ε→0

1
2

∫
Ω

cε(x)uε(T, x)2dx+
1
2

∫
Ω

∫
Y

c(y)dy(u0)2dx

− 1
γ1/p

∫
Q

∫
Y1

g̃1(t, x, y)
(
∇eyψ1(t, x, ỹ) + hΦ̃(t, x, y)

)
dt dx dy

−
∫

Q

∫
Y1

g13(t, x, y)
(
∂x3ψ1(t, x, ỹ) + hφ3(t, x, y)

)
dt dx dy

−
∫

Q

∫
Y2

g2(t, x, y)
(
∇xu2(t, x) +∇yφ(t, x, y) + hΦ(t, x, y)

)
dt dx dy
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−
∫

Q

∫
Y3

g3(t, x, y)
(
∇yφ(t, x, y) + hΦ(t, x, y)

)
dt dx dy

+
1

γ1/p

∫
Q

∫
Y1

Ã1(x, η(t, x, y))
(
∇eyψ1(t, x, ỹ) + hΦ̃(t, x, y)

)
dt dx dy

+
∫

Q

∫
Y1

A13(x, η(t, x, y))
(
−∂x3ψ1(t, x, ỹ) + hφ3(t, x, y)

)
dt dx dy

+
∫

Q

∫
Y2

A2(x, η(t, x, y))
(
−∇xu2(t, x) +∇yφ(t, x, y) + hΦ(t, x, y)

)
dt dx dy

+
∫

Q

∫
Y3

A3(x, η(t, x, y))
(
∇yφ(t, x, y) + hΦ(t, x, y)

)
dt dx dy ≥ 0.

Now, we may replace ψ1 and φβ , β = 2, 3 by a sequence converging strongly in
Lp(Q;W 1,p

] (Ỹ1)/R) and Lp(Q;W 1,p
] (Yβ)/R) to v1 and vβ respectively, thus replac-

ing η(t, x, y) in (4.17) with
(
∇eyv1
∂x3v1

)
, ∇xu2+∇yv2+hΦ and ∇yv3+hΦ successively.

Using the conservation of energy given by the lemma 4.3 adapted to the present
case, the above sum simplified to

1
γ1/p

∫
Q

∫
Y1

[
Ã1

(
ỹ,∇eyv1(t, x, ỹ) + hΦ̃(t, x, y)

)
− g̃1(t, x, y)

]
hΦ̃(t, x, y) dt dx dy

+
∫

Q

∫
Y1

[
A13

(
ỹ, ∂x3v1(t, x, ỹ) + hφ3(t, x, y)

)
− g13(t, x, y)

]
hφ3(t, x, y) dt dx dy

+
∫

Q

∫
Y2

[
A2

(
x,∇xu2 +∇yv2 + hΦ(t, x, y)

)
− g2(t, x, y)

]
hΦ(t, x, y) dt dx dy

+
∫

Q

∫
Y3

g3(t, x, y)
[
A3

(
x,∇yv3 + hΦ(t, x, y)

)
− g3(t, x, y)

]
hΦ(t, x, y) dt dx dy

≥ 1
2

∫
Ω

cε(x)uε(T, x)2dx+
1
2

∫
Ω

∫
Y

c(y)dy(u0)2dx

+ lim inf
ε→0

[
1
2

∫
Ω

cε(x)uε(T, x)2dx+
1
2

∫
Ω

∫
Y

c(y)dy(u0)2dx

]
.

Thus dividing by h and letting h→ 0 we see that for every Φ,

1
γ1/p

∫
Q

∫
Y1

[
Ã1

(
ỹ,∇eyv1(t, x, ỹ))− g̃1(t, x, y)

]
hΦ̃(t, x, y) dt dx dy

+
∫

Q

∫
Y1

[
A13

(
ỹ, ∂x3v1(t, x, ỹ)

)
− g13(t, x, y)

]
hφ3(t, x, y) dt dx dy

+
∫

Q

∫
Y2

[
A2

(
y,∇xu2 +∇yv2

)
− g2(t, x, y)

]
hΦ(t, x, y) dt dx dy

+
∫

Q

∫
Y3

g3(t, x, y)
[
A3

(
y,∇yv3

)
− g3(t, x, y)

]
hΦ(t, x, y) dt dx dy ≥ 0.

Thus,

〈g̃1(t, x, y)〉I = Ã1(ỹ,∇eyv1(t, x, ỹ)),
〈g13(t, x, y)〉I = A13(ỹ, ∂x3v1(t, x, ỹ)).
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Therefore we have proved the desired results. Now, to complete the proof of The-
orem 5.1 we shall show the uniqueness of the solution following exactly the same
lines as in the proof of Theorem 4.1.

6. Corrector results

Now, we prove corrector results for the gradients of temperature and the corre-
sponding flux under the stronger hypotheses (A5’)–(A6’) of monotonicity. Let uε

be the solution of the problem (1.3). Let v1, u2, v2, v3 be as in Theorem 4.1 (when
γ = 0 we recall that v1(t, x, ỹ) = u1(t, x)). We define the sequences of functions

ξ1(t, x, y) := χ1(y)∇ey,x3v1(t, x, ỹ),

ξ2(t, x, y) := χ2(y)(∇xu2(t, x) +∇yv2(t, x, y)),

ξ3(t, x, y) := χ3(y)∇yv3(t, x, y),

ξε
k(t, x) := χε

k(x)ξε
k(t, x,

x

ε
), k = 1, 2, 3,

Bε
1(x, ξ) := χε

1(x)
(

µ
ε Ãε

1(x̃, ξ̃)
Aε

13(x̃, ξ3)

)
,

Bε
2(x, ξ) := χε

2(x)Aε
2(x̃, ξ̃),

Bε
3(x, ξ) := χε

3(x)ε
p−1Aε

3(x̃, ξ̃),

(6.1)

where ∇ey,x3 =
(
∇ey
∂x3

)
. Note that Bε

k satisfies the strong monotonicity condition

(A5’), since µ
ε = µ1/p

ε µ1/p′ → 0; thus, for example, we have

|Bε
3(x, ξ)− Bε

3(x, η)| = |εp−1Aε
3(x, ξ)− εp−1Aε

3(x, η)|
≤ K1ε

p−1(|ξ|+ |η|)p−2|ξ − η|
≤ K1(|ξ|+ |η|)p−2|ξ − η|.

(6.2)

In a similar manner, we get the same inequality for Bε
1 and Bε

2.

Theorem 6.1. If the functions, ∇eyv1, ∇yv2 and ∇yv3 are admissible (cf. Defini-
tion 2.6), then

lim sup
ε↘0

‖χε
1(∇ε

xu
ε − ξε

1)‖Lp(Q) = 0, (6.3)

lim sup
ε↘0

‖χε
2(∇xu− ξε

2)‖Lp(Q) = 0, (6.4)

lim sup
ε↘0

‖χε
3(ε∇xu

ε − ξε
3)‖Lp(Q) = 0. (6.5)

lim sup
ε↘0

‖χε
k(Bε

k(x,∇xu
ε)− Bε

k(x, ξε
k))‖Lp′ (Q) = 0, k = 1, 2, 3. (6.6)

Where ∇ε is defined by (5.6).

Let us mention that the convergence (6.3)-(6.6) means that, under hypothe-
ses (A5’)-(A6’) and ∇eyv1, ∇yv2 and ∇yv3 are admissible, the oscillations of the
sequences, in the above, are all contained in the corresponding two-scale limits.
Moreover, the proof of this theorem is motivated by the approach based on the
two-scale convergence.

Now, let us introduce some more notation, functions and quantities which we
will use hereafter. We will use M to denote a generic constant which does not
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depend on ε, but probably on p, K1, K2, c0, c and the Lp′ (resp. Lp) norm of
the data f (resp. u0). Let κ ∈]0, 1[ be a constant and ψk(t, x, y), k = 1, 2, 3, be
admissible test functions such that

‖∇ey,x3v1 − ψ1‖p
Lp(Q×Y1)

+
3∑

α=2

‖∇yvα − ψα‖p
Lp(Q×Yα) ≤ κ. (6.7)

Define the following functions:

ηε
1(t, x) := χε

1(x)(∇ε
xu

ε(t, x) + ψ1(t, x,
x

ε
)),

ηε
2(t, x) := χε

2(x)(∇xu
ε(t, x) + ψ2(t, x,

x

ε
)),

ηε
3(t, x) := χε

3(x)ψ3(t, x,
x

ε
).

(6.8)

Note that the functions ηε
k and Bε

k(x, ηε
k), k = 1, 2, 3 arise from admissible test

functions and we have the following two-scale convergence (cf. Lemma 3.3):

ηε
1(t, x)

2s,p→ η1(t, x, y) := χ1(y)(∇ey,x3v1(t, x, y) + ψ1(t, x, y)),

ηε
2(t, x)

2s,p→ η2(t, x, y) := χ2(y)(∇xu2(t, x) + ψ2(t, x, y)),

ηε
3(t, x)

2s,p→ η3(t, x, y) := χ3(y)ψ3(t, x, y),

Bε
k(x, ηε

k)
2s,p′→ χk(y)Bk(y, ηk(t, x, y)), k = 1, 2, 3,

where B1(y, η) =
(
νÃ1(ỹ, η̃)

A13(ỹ, η1N )

)
, (ν = 0 if γ = 0 and ν = 1

γ1/p else), B2 = A2 and

B3 = A3.

Lemma 6.2.
3∑

k=1

‖ξk‖p
Lp(Q×Yk) ≤

c

c0
(‖f‖p′

Lp′ (Q)
+ ‖u0‖p

Lp(Ω)).

The proof of the above lemma follows from the identity in Lemma 4.3 and as-
sumption (A5).

Lemma 6.3. Let ξk, ηk, Bε
k, ξ

ε
k, η

ε
k, Bk, k = 1, 2, 3 be functions as defined above.

Then

lim sup
ε↘0

∫
Qε

1

(Bε
1(x,∇xu

ε)− Bε
1(x, η

ε
1)).(∇εuε − η1) dx dt ≤ E,

lim sup
ε↘0

∫
Qε

2

(Bε
2(x,∇xu

ε)− Bε
2(x, η

ε
2)).(∇uε − η2) dx dt ≤ E,

lim sup
ε↘0

∫
Qε

3

(Bε
3(x,∇xu

ε)− Bε
3(x, η

ε
3)).(ε∇uε − η3) dx dt ≤ E,

where

E :=
3∑

k=1

∫
Q×Yk

(Bk(y, ξk)− Bk(y, ηk)).(ξk − ηk)dy dx dt.
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Proof. Firstly, we denote the integrals appearing in the left-side of the above in-
equalities by Eε

1, Eε
2 and Eε

3 respectively. Secondly, we put

Dε(T ) =
∫

Ω

cε(x)uε(T, x)2dx, Dε(0) =
∫

Ω

cε(x)u0(x)2dx,

D0(T ) =
2∑

α=1

c̃α

∫
Ω

|uα(T, x)|2dx+
∫

Ω

∫
Y3

c3(y)|v3(T, x, y)|2 dx dy

D0(0) =
3∑

k=1

c̃k

∫
Ω

|u0(x)|2dx.

Then, for k = 1, 2, 3, using (3.7), we obtain

Eε
k ≤

3∑
j=1

Eε
j =

∫
Q

f(t, x)uε(t, x) dt dx+
1
2

Dε(0)− 1
2

Dε(T )

−
3∑

j=1

∫
Qε

3

Bε
j(x,∇xu

ε).ηε
j dt dx−

∫
Qε

1

Bε
1(x, η

ε
1).(∇ε

xu
ε − ηε

1) dt dx

−
∫

Qε
2

Bε
2(x, η

ε
2).(∇xu

ε − ηε
2) dt dx−

∫
Qε

3

Bε
3(x, η

ε
3).(ε∇xu

ε − ηε
3) dt dx.

Now, using the two-scale convergence, we deduce

lim sup
ε↘0

3∑
j=1

Eε
j ≤

∫
Q×Y

f(t, x)U(t, x) dt dx dy +
1
2

D0(0)− lim inf
ε↘0

1
2

Dε(T )

−
3∑

j=1

∫
Q×Yj

Bj(y, ξj).ηj dt dx dy

−
3∑

j=1

∫
Q×Yj

Bj(y, ηj).(ξj − ηj) dt dx dy.

The right-hand side can be written as∫
Q×Y

f(t, x)U(t, x) dt dx dy +
1
2

D0(0)− lim inf
ε↘0

1
2

Dε(T )

−
3∑

j=1

∫
Q×Yj

Bj(y, ξj).ξj dt dx dy

+
3∑

j=1

∫
Q×Yj

(Bj(y, ξj)− Bj(y, ηj)).(ξj − ηj) dt dx dy.

From the energy identity (cf. Lemma 4.3) we obtain

3∑
j=1

∫
Q×Yj

Bj(y, ξj).ξj dt dx dy

=
∫

Q×Y

f(t, x)U(t, x) dt dx dy +
1
2

D0(0) +
1
2

D0(T )
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≥
∫

Q×Y

f(t, x)U(t, x) dt dx dy +
1
2

D0(0)− lim inf
ε↘0

1
2

Dε(T ).

This completes the proof. �

Lemma 6.4. Let ξk, ηk, κ be as defined above. Then

E :=
3∑

k=1

∫
Q×Yk

(Bk(y, ξk)− Bk(y, ηk).(ξk − ηk)dy dx dt ≤Mκ2/p.

Proof. Using (A5’) and Hölder’s inequality,

E ≤
3∑

k=1

∫
Q×Yk

(Bk(y, ξk)− Bk(y, ηk)(ξk − ηk)dy dx dt

≤ K1

3∑
k=1

∫
Q×Yk

(|ξk|+ |ηk|)p−2|ξk − ηk|2dy dx dt

≤ K1

3∑
k=1

( ∫
Q×Yk

(|ξk|+ |ηk|)pdy dx dt
) p−2

p ‖ξk − ηk‖2Lp

≤ K1

3∑
k=1

(‖ξk‖Lp + ‖ηk‖Lp)p−2‖ξk − ηk‖2Lp

≤ K1

( 3∑
k=1

(‖ξk‖Lp + ‖ηk‖Lp)p
) p−2

p
( 3∑

k=1

(‖ξk − ηk‖p
Lp)

)2/p

≤ K1

( 3∑
k=1

(2‖ξk‖Lp + ‖ξk − ηk‖Lp)p
) p−2

p
( 3∑

k=1

(‖ξk − ηk‖p
Lp)

)2/p

≤ K1

( 3∑
k=1

2p(2p‖ξk‖p
Lp + ‖ξk − ηk‖p

Lp)
) p−2

p
( 3∑

k=1

(‖ξk − ηk‖p
Lp)

)2/p

.

By the estimate proved in Lemma 6.2, we deduce the result. �

Now, we prove some preliminary corrector results.

Theorem 6.5. Under the same assumption as in Theorem 6.1, we have:

lim sup
ε↘0

‖χε
1∇ε

xu
ε − ηε

1‖Lp(Q) ≤Mκ2/p, (6.9)

lim sup
ε↘0

‖χε
2∇xu

ε − ηε
2‖Lp(Q) ≤Mκ2/p, (6.10)

lim sup
ε↘0

‖χε
3ε∇xu

ε − ηε
3‖Lp(Q) ≤Mκ2/p. (6.11)

lim sup
ε↘0

‖Bε
k(x,∇xu

ε)− Bε
k(x, ηε

k)‖Lp′ (Q) ≤Mκ2/(p−1), k = 1, 2, 3. (6.12)

Proof. From (6.2), we obtain

|χε
1∇ε

xu
ε(t, x)− ηε

1(t, x)|p ≤
1
K2

(Bε
1(x,∇ε

xu
ε)− Bε

1(x, η
ε
1)).(∇ε

xu
ε − ηε

1),

|χε
2∇xu

ε(t, x)− ηε
2(t, x)|p ≤

1
K2

(Bε
2(x,∇xu

ε)− Bε
3(x, η

ε
3)).(∇xu

ε − ηε
3),
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|χε
3ε∇xu

ε(t, x)− ηε
3(t, x)|p ≤

1
K2

(Bε
3(x,∇xu

ε)− Bε
3(x, η

ε
3)).(ε∇xu

ε − ηε
3).

Therefore,

‖χε
1∇xu

ε − ηε
1‖

p
Lp(Qε

1)
≤ 1
K2

∫
Qε

1

(Bε
1(x,∇ε

xu
ε)− Bε

1(x, η
ε
1)).(∇ε

xu
ε − ηε

1) dt dx,

‖χε
2∇xu

ε − ηε
2‖

p
Lp(Qε

2)
≤ 1
K2

∫
Qε

2

(Bε
2(x,∇xu

ε)− Bε
2(x, η

ε
2)).(∇xu

ε − ηε
2) dt dx,

‖χε
3ε∇xu

ε − ηε
3‖

p
Lp(Qε

3)
≤ 1
K2

∫
Qε

3

(Bε
3(x, ε∇xu

ε)− Bε
3(x, η

ε
3)).(ε∇xu

ε − ηε
3) dt dx.

Now, let

Gε := ‖χε
1∇ε

xu
ε − ηε

1‖
p
Lp(Qε

1)
+ ‖χε

2∇xu
ε − ηε

2‖
p
Lp(Qε

2)
+ ‖χε

3ε∇xu
ε − ηε

3‖
p
Lp(Qε

3)
,

and

Fε :=
∫

Qε
1

(Bε
1(x,∇ε

xu
ε)− Bε

1(x, η
ε
1)).(∇ε

xu
ε − ηε

1) dt dx

+
∫

Qε
2

(Bε
2(x,∇xu

ε)− Bε
2(x, η

ε
2)).(∇xu

ε − ηε
2) dt dx

+
∫

Qε
3

(Bε
3(x, ε∇xu

ε)− Bε
3(x, η

ε
3)).(∇xu

ε − ηε
3) dt dx.

From th above estimates, we have Gε ≤ Fε/c0. Therefore, passing to the limit-sup
as ε→ 0 and using Lemmas 6.3 and 6.4, we obtain

lim sup
ε↘0

Gε ≤Mκ2/p.

This concludes the proof of (6.9)-(6.11). To achieve the proof, we will only prove
the estimate (6.12) for k = 1, the others are proved in a similar manner. Let
q = p′ = p

p−1 , then by (6.2) we have∫
Qε

1

|Bε
1(x,∇ε

xu
ε)− Bε

1(x, η
ε
1)|q dt dx

≤ K1

∫
Qε

1

(|∇ε
xu

ε|+ |ηε
1|)(p−2)q|∇ε

xu
ε − ηε

1|q dt dx.

Since
1

p− 1
+
p− 2
p− 1

= 1,

by Hölder’s inequality,∫
Qε

1

|Bε
1(x,∇ε

xu
ε)− Bε

1(x, η
ε
1)|q dt dx

≤ K1

( ∫
Qε

1

(|∇ε
xu

ε|+ |ηε
1|)p dt dx

) p−2
p−1

( ∫
Qε

1

|∇ε
xu

ε − ηε
1|p dt dx

) 1
p−1

≤M‖χε
1(∇ε

xu
ε − ηε

1)‖
q
Lp(Q).

Now, using (6.9), we obtain the desired estimate. �
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Proof of Theorem 6.1. Since the functions ∇yv2 and ∇yv3 are assumed to be
admissible test functions, we can choose ψ1 = ∇yv2 and ψ2 = ∇yv3. Therefore, κ
can be taken arbitrarily small and thus, Theorem 6.1 follows from Theorem 6.5. �
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E-mail address: Ahmed.Boughammoura@laposte.net


	1. Introduction and statement of the problem
	2. Mathematical framework
	3. A priori estimates
	4. Homogenization in the case =0
	Proof of Theorem 4.1
	Identification of  g13,g2 and g3

	5. Homogenization in the case 0<<
	Proof of Theorem 5.1

	6. Corrector results
	Acknowledgments

	References

