
Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 10, pp. 1–14.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

REAL INTERPOLATION SPACES BETWEEN THE DOMAIN OF
THE LAPLACE OPERATOR WITH TRANSMISSION
CONDITIONS AND Lp ON A POLYGONAL DOMAIN

AISSA AIBECHE, WIDED CHIKOUCHE, YASMINA DAIKH

Abstract. We provide a description of the real interpolation spaces between
the domain of the Laplace operator (with transmission conditions in a polygo-
nal domain Ω) and Lp(Ω) as interpolation spaces between W2,p(Ω) (possibly
augmented with singular solutions) and Lp(Ω). This result relies essentially
on estimates on the resolvent and the reiteration theorem.

1. Introduction

Let Ω be a polygonal domain of R2 divided into two polygons Ω1 and Ω2 sepa-
rated by an interface Σ. Let the transmission conditions be defined as

u1 = u2 and
2∑

i=1

αi
∂ui

∂νi
= 0 on Σ, (1.1)

where νi denotes the unit normal vector to Σ directed outside Ωi, ui means the
restriction of u to Ωi, and α1, α2 are two positive real numbers such that α1 6= α2.

Let Ap be the operator defined by

DAp
(Ω) = {u ∈ H1

0 (Ω) : ∆ui ∈ Lp(Ωi), i = 1, 2; (1.1) is satisfied },
Ap : u 7→ {−∆ui}i=1,2 .

Then Ap is the infinitesimal generator of an analytic semigroup on Lp(Ω) [3].
Let us define Ws,p(Ω) := {u ∈ H1

0 (Ω);ui ∈ W s,p(Ωi), i = 1, 2 satisfying (1.1)}
the space of piecewise W s,p functions on Ω which satisfies the transmission condi-
tions (1.1). The space Ws,p(Ω) will be equipped with the usual product norm of
Π2

i=1W
s,p(Ωi).

We know that DAp(Ω) = span(W2,p(Ω);S), the space spanned by W2,p(Ω) and
S, where S is the finite set of singular solutions [6, 8].

By analogy with [2] who considered the Laplace operator subject to Dirichlet
boundary conditions, we give a description of the real interpolation spaces related
to the operator Ap. This result relies essentially on estimates on the resolvent and
the reiteration theorem of real interpolation [7]. It is well known that information
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concerning real interpolation spaces between the basic space and the domain of the
operator is crucial to get results of maximal regularity for parabolic problems.

This article is organized as follows: in Section 2, we recall the results concerning
existence, uniqueness and regularity of the variational solution u of the following
transmission problem with complex parameter λ

−∆ui + λui = fi in Ωi,

ui = 0 on ∂Ωi \ Σ,

u1 = u2 on Σ,

2∑
i=1

αi
∂ui

∂νi
= 0 on Σ,

(1.2)

where f ∈ Lp(Ω), p > 1.
The aim of Section 3 is to state the following estimates of problem (1.2) on the

resolvent in an infinite sector G

‖u‖Ws,p(G) ≤
c

λ1− s
2
‖f‖0,p,G, s < λm +

2
p

for all m,

‖u‖span(Ws,p(G);S) ≤
c

λ1− s
2
‖f‖0,p,G, s > λm +

2
p

for some m,

(see Section 3 for the definition of S and λm). For this purpose, we firstly establish
the result for the case λ = 1. Applying the transformation (x, y) 7→ (tx, ty),
t = λ−1/2, problem (1.2) in G becomes

−∆ui(tx, ty) + ui(tx, ty) = t2fi(tx, ty) in Gi,

ui(tx, ty) = 0 on ∂Gi \ Σ,

u1(tx, ty) = u2(tx, ty) on Σ,

2∑
i=1

αi
∂ui

∂νt
i

(tx, ty) = 0 on Σ,

where νt
i is the normal vector with respect to the variables (tx, ty) directed outside

Gi. This method of dilation relies on the invariance of the infinite sector G, under
dilations and the homogeneity of the singular functions, therefore we come back to
the previous case.

Section 4 is devoted to state such estimate in Ω polygonal. Via a partition of
unity, problem (1.2) is locally reduced to a similar problem in an infinite sector,
then we used the results of the previous section.

Thanks to the results of Section 4 and the reiteration theorem, we give in Section
5 a characterization of DAp(θ; p), 0 < θ < 1, as interpolation spaces between
span(W2,p(Ω);S) and Lp(Ω) or between W2,p(Ω) and Lp(Ω).

Let us finish this introduction with some notation used in the whole paper: if
D is an open subset of R2, we denote by Lp(D), (p > 1) the Lebesgue spaces,
and by W s,p(D), s ≥ 0, the standard Sobolev spaces built on. The usual norm
of W s,p(D) is denoted by ‖ · ‖s,p,D. The space H1

0 (D) is defined as usual by
H1

0 (D) :=
{
v ∈ H1(D); v = 0 on ∂D

}
.
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2. Regularity results of transmission problem in a polygonal domain

Let Ω be a bounded polygonal domain of R2 with a Lipschitz boundary Γ. We
suppose that Ω is decomposed into two polygons Ω1 and Ω2 with an interface Σ
satisfying

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Ω1 ∩ Ω2 = Σ.

We assume that the boundaries ∂Ωi of Ωi (i = 1, 2) is formed by open straight line
segments Γi,j , j = 1, · · · , Ni, with Ni ∈ N?, enumerated clockwise such that

Σ = Γ1,1 = Γ2,1, Γ := ∂Ω = ∪i=1,2 ∪Ni
j=2 Γi,j .

We denote by Pj , j = 1, . . . , N1 + N2 − 2 the vertices of Ω where

Pj = Γ1,j ∩ Γ1,j+1, j = 1, . . . , N1 − 1

Pj = Γ2,j−N1+1 ∩ Γ2,j−N1+2, j = N1, . . . , N1 + N2 − 2.

At each point Pj , (j 6= 1, j 6= N1) we denote the measure of the angle Pj (measured
from inside Ω) by ωj . When j = 1 or j = N1, the angle at Pj measured from inside
Ωi is denoted by ωij , i = 1, 2. See Figure 1 for an illustration.

For the transmission problem (1.2), the corresponding variational problem is∫
Ω

α(∇u∇v + λuv) dx =
∫

Ω

αfv dx ∀v ∈ H1
0 (Ω), (2.1)

where α(x) is piecewise constant; i.e., α(x) = αi > 0 for x ∈ Ωi, i = 1, 2.
For the rest of this article, Lp(Ω) will be equipped with the norm

‖u‖0,p =
( ∫

Ω

α|u(x)|p dx
)1/p

.

First we recall the results concerning existence, uniqueness and regularity of the
variational solution u of (2.1).
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Figure 1. The domain Ω

Proposition 2.1. For each f ∈ Lp(Ω), there exists a unique solution u ∈ H1
0 (Ω)

of (2.1), for all λ ∈ C : <λ ≥ 0.

For a proof of the above proposition, see [3, Lemma 3.1].
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Let ηj be a cut-off function ηj ≡ ηj(r) ∈ D(R+) which is equal to 1 in a neigh-
borhood of the vertex Pj , with compact support in an open set, which is disjoint
to the other vertices of Ω, then the singularities of problem (1.2) take the form

S(jm) = ηjr
λjm sin

(
λjmθ

)
, λjm =

mπ

wj
, when j 6= 1, j 6= N1,

and
S(jm) = ηjr

λjmϕjm(θ), when j = 1, j = N1,

where λjm is a nonnegative real number and λ2
jm, ϕjm are respectively the eigen-

values and eigenfunctions of the Sturm-Liouville problem:

Find ϕ ∈ H1
0 (]− ω, ω′[) such that

−(α(θ)ϕ′(θ))′ = λα(θ)ϕ(θ),

where ω = ω12, ω′ = ω11, α(θ) = α1 for θ > 0 and α(θ) = α2 for θ < 0 if j = 1,
while ω = ωN11, ω′ = ω2N1 , α(θ) = α1 for θ < 0 and α(θ) = α2 for θ > 0 if j = N1.

The singular behavior of the solution of (2.1) is given by the following proposition
(see [8, Theorem 2.27]).

Proposition 2.2. If λjm 6= 2
p′ for 1 ≤ j ≤ N1 + N2 − 2 and for all m ∈ N∗, then

for each f ∈ Lp(Ω), there exist unique real numbers cjm and a unique variational
solution u ∈ H1

0 (Ω) of (1.2) which admits the decomposition

u = uR +
∑

λjm∈]0, 2
p′ [, 1 6=λjm, 1≤j≤N1+N2−2

cjmS(jm), (2.2)

where uR ∈ W2,p(Ω) is the regular part of u and the constants cjm are the coeffi-
cients of the singular part.

3. Lp estimates in an infinite sector G

Let G be a plane sector consisting of two plane sectors G1, G2 with respective
opening ω1 and ω2, separated by an interface Σ.

G1 = {(r cos θ, r sin θ); −ω1 < θ < 0, r > 0},
G2 = {(r cos θ, r sin θ); 0 < θ < ω2, r > 0},

Σ = {(r, 0); r > 0}.

We consider the transmission problem (1.2) in the infinite sector G,

−∆ui + λui = fi in Gi, (3.1)

ui = 0 on ∂Gi \ Σ, (3.2)

u1 = u2 on Σ, (3.3)
2∑

i=1

αi
∂ui

∂νi
= 0 on Σ. (3.4)

To obtain growth (with respect to λ) on ‖(−∆+λ)−1‖ in a given norm, we state
the result on a finite sector denoted by GF := G∩B(0, r′), r′ > 0. We shall obtain
the same result for an infinite sector by taking limits, with respect to a sequence of
cut-off functions.
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Proposition 3.1. If λm 6= 2/p′ for all m ∈ N∗, then for each f ∈ Lp(GF ), there
exists a unique variational solution u ∈ H1

0 (GF ) of (3.1)–(3.4) (with GF instead of
G) which admits the decomposition

u = uR +
∑

λm∈]0, 2
p′ [, λm 6=1

cmS(m), (3.5)

where uR ∈ W2,p(GF ) is the regular part of u, cm are constants and S(m) are
defined as in Section 2, the subscript j has been omitted since G contain only one
vertex; furthermore u satisfies the estimates

‖u‖0,p,GF
≤ 1
<λ

‖f‖0,p,GF
, <λ > 0, (3.6)

‖u‖0,p,GF
≤ p

2|=λ|
‖f‖0,p,GF

, =λ 6= 0. (3.7)

Consequently there exists a constant c(p) > 0 such that

‖u‖0,p,GF
≤ c(p)

|λ|
‖f‖0,p,GF

, <λ ≥ 0, λ 6= 0, (3.8)

and for the regular part we have

‖uR‖W2,p(GF ) ≤ C‖(−∆ + λ)uR‖0,p,GF
. (3.9)

Proof. The decomposition of u into a regular part and a singular one is a direct
consequence of Proposition 2.2. For (3.6), (3.7) and (3.8), see [3].

As in [3], we obtain (3.9) by applying [8, Theorem 2.27] and Peetre’s lemma.
Indeed:

‖uR‖W2,p(GF ) ≤ C{‖∆uR‖0,p,GF
+ ‖uR‖0,p,GF

}
≤ C{‖(−∆ + λ)uR‖0,p,GF

+ (1 + |λ|)‖uR‖0,p,GF
}.

(3.10)

Now it suffice to apply to uR the estimate (3.8) to get (3.9). �

As mentioned above, to obtain growth (with respect to λ) on ‖(−∆ + λ)−1‖ in
a given norm, we shall need a priori estimates when λ = 1 in that norm. Following
up with dilations will give the required result.

Let us denote by S the set of singular functions; i.e.,

S := {S(m);λm ∈]0,
2
p′

[ with λm 6= 1}.

Define DAp
(G) := span(W2,p(G);S).

3.1. Lp estimates for λ = 1.

Proposition 3.2. Let us assume that λm 6= 2/p′ for all m ∈ N∗. Let u ∈ DAp(G)
and let 0 ≤ s ≤ 2, then there exists C such that

‖u‖Ws,p(G) ≤ C‖(Ap + 1)u‖0,p,G if s <
2
p

+ λm, for all m (3.11)

and

‖u‖span(Ws,p(G);S) ≤ C‖(Ap + 1)u‖0,p,G if s ≥ 2
p

+ λm, for some m. (3.12)
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Proof. Let u ∈ W2,p(G) be a solution of (3.1)-(3.4) for λ = 1. Define the cut-off
function η ∈ C2(R),

η(x) =

{
1 for 0 ≤ x ≤ 1;
0 for x ≥ 2,

and 0 ≤ η(x) ≤ 1 for 1 ≤ x ≤ 2.
Consider a sequence of such cut-off functions {ηn(r)}; ηn(r) = η(r/n) where we

choose (r, θ) as polar coordinates with origin at the vertex of the sector. For each
n, let Gn be a finite sector which contains supp(ηnu), Gn

i := Gn ∩ Gi (i = 1, 2).
Then ηnu ∈ W2,p(Gn), and ηnu is a solution of

(−∆ + 1)(ηnui) = Fi,

where
Fi = ηn(−∆ + 1)ui −∆ηnui − 2∇ηn∇ui ∈ Lp(Gn

i ).
It follows from (3.9) that

‖ηnu‖W2,p(Gn) ≤ C‖(Ap + 1)(ηnu)‖0,p,Gn .

This implies

‖ηnu‖W2,p(Gn) =
( ∑
|β|≤2, 1≤i≤2

∥∥∂β(ηnui)
∥∥p

0,Gn
i

)1/p

≤ C
{
‖(Ap + 1)u‖0,p,Gn +

1
n2
‖u‖0,p,Gn +

1
n
‖∇u‖0,p,Gn

}
.

(3.13)

We consider for example the term
∥∥ ∂2

∂x2 (ηnui)
∥∥p

0,Gn
i

in (3.13)∥∥ ∂2

∂x2
(ηnui)

∥∥p

0,Gn
i

=
∫

Gi

χn|fn
i |p r dr dθ,

where

fn
i (r, θ) = ηn

∂2ui

∂x2
+

2
n

η′
( r

n

)
cos θ

∂ui

∂x
+

( 1
n

sin2 θ

r
η′

( r

n

)
+

1
n2

cos2 θ η′′
( r

n

))
ui,

and

χn(r, θ) =

{
1 if (r, θ) ∈ Gn

i ,

0 otherwise.

It is clear that

lim
n

fn
i (r, θ) =

∂2ui

∂x2
,

and

|fn
i |p ≤ c

(∣∣∣∂2ui

∂x2

∣∣∣ +
∣∣∣∂ui

∂x

∣∣∣ + |ui|
)p

∈ L1(Gi),

consequently, the dominated convergence theorem implies

lim
n

∥∥ ∂2

∂x2
(ηnui)

∥∥p

0,Gn
i

=
∥∥∂2ui

∂x2

∥∥p

0,Gi
.

Therefore, applying the same technique to the other terms in (3.13), we obtain

‖u‖W2,p(G) ≤ C‖(Ap + 1)u‖0,p,G, (3.14)

hence the inequality (3.11) for s = 2.
To state (3.12) for s = 2, we apply Proposition 6.9 from the Appendix with E =

W2,p(G), H = Lp(G), F = S and A = −∆ + 1 subject to homogeneous Dirichlet
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boundary conditions and transmission conditions. Inequality (3.12) follows from
(3.14), we obtain

‖u‖span(W2,p(G);S) ≤ C‖(Ap + 1)u‖0,p,G. (3.15)

Since DAp
(G) = span(W2,p(G);S), then u ∈ DAp

(G) can be written as

u = uR +
∑

λm∈]0, 2
p′ [, λm 6=1

cmS(m).

Therefore, if s < 2
p + λm, for all m, S(m) ∈ Ws,p(G) and we have

‖u‖Ws,p(G) ≤ ‖uR‖Ws,p(G) +
∑

λm∈]0, 2
p′ [, λm 6=1

|cm| ‖S(m)‖Ws,p(G),

≤ C
{
‖uR‖W2,p(G) +

∑
λm∈]0, 2

p′ [, λm 6=1

|cm|
}
,

by Sobolev imbedding theorem. By the equivalence of norms on the space of finite
dimension, the right-hand side is ‖u‖span(W2,p(G);S). Hence inequality (3.11) follows
from (3.15).

If s ≥ 2
p + λm for some m, we have

‖u‖span(Ws,p(G);S) = ‖uR‖Ws,p(G) +
∑

λm∈]0, 2
p′ [, λm 6=1

|cm|.

Inequality (3.12) follows from Sobolev imbedding theorem and inequality (3.15). �

Now, using the results of Proposition 3.2 we shall state estimate on the resolvent
of problem (3.1)-(3.4), this is the principle idea of the method of dilation which
relies on applying the transformation x 7→ tx. Taking advantage from the invariance
of the infinite sector under dilation, problem (3.1)-(3.4) is transformed to similar
problem with λ = 1.

3.2. Estimates in dependence on λ. In this section, we assume that λ > 0.

Proposition 3.3. Let us assume that λm 6= 2
p′ for all m and let u ∈ DAp

(G) be
a solution of (3.1) − (3.4). Then if DAp(G) ⊂ Ws,p(G), there exists a constant C
such that

‖u‖0,p,G+λ−s/2‖u‖Ws,p(G) ≤
C

λ
‖(Ap+λ)u‖0,p,G, for 0 ≤ s < 1, (λ > 0), (3.16)

and

‖u‖0,p,G + λ−1/2‖u‖1,p,G + λ−s/2‖u‖Ws,p(G) ≤
C

λ
‖(Ap + λ)u‖0,p,G, (3.17)

for 1 ≤ s ≤ 2, (λ > 0). (DAp(G) ⊂ Ws,p(G) holds if s < λm + 2
p for all m).

Proof. Since the sectors Gi are invariant under positive dilations: (x, y) 7→ (tx, ty),
t > 0, the solution u ∈ DAp(G) of problem (3.1)-(3.4) satisfies

− ∂2

∂(tx)2
ui(tx, ty)− ∂2

∂(ty)2
ui(tx, ty) + λui(tx, ty) = fi(tx, ty) in Gi,

ui(tx, ty) = 0 on ∂Gi \ Σ,

u1(tx, ty) = u2(tx, ty) on Σ,
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2∑
i=1

αi
∂ui

∂νi
(tx, ty) = 0 on Σ.

Let t = 1/
√

λ, using the notation ut
i(x, y) = ui(tx, ty), f t

i (x, y) = fi(tx, ty), the
above problem is equivalent to

−∆ut
i + ut

i = t2f t
i in Gi,

ut
i = 0 on ∂Gi \ Σ,

ut
1 = ut

2 on Σ,

2∑
i=1

αi
∂ut

i

∂νt
i

= 0 on Σ,

(3.18)

where νt
i is the normal vector with respect to the variables (tx, ty). By Proposition

3.2, ut satisfies
‖ut‖Ws,p(G) ≤ C‖t2f t‖0,p,G.

Using Proposition 6.10, we obtain

t−2/p
(
(1− ts)‖u‖0,p,G + ts‖u‖Ws,p(G)

)
≤ t2t−2/p‖f‖0,p,G, for 0 ≤ s < 1

and

t−2/p
(
(1− t)‖u‖0,p,G + t(1− t−1+s)‖u‖1,p,G + ts‖u‖Ws,p(G)

)
≤ t2t−2/p‖f‖0,p,G,

for 1 ≤ s ≤ 2. This yields the required estimates for small t. �

Proposition 3.4. Let 0 < s < 2 and let u ∈ DAp(G) be a solution of (3.1)− (3.4).
Then if DAp(G) ⊂ span(Ws,p(G);S), there exists a constant C such that

‖u‖span(Ws,p;S)(G) ≤
C

λ1− s
2
‖(Ap + λ)u‖0,p,G, λ > 0. (3.19)

Proof. We follow step by step the proof of [2, Theorem 3.10]. As in the proof of
Proposition 3.3, problem (3.1)-(3.4) is transformed under the method of dilations to
problem (3.18). In a neighborhood of the origin, the unique solutions of problems
(3.1)-(3.4) and (3.18) may be written successively as

u(x, y) = uR(x, y) +
∑

λm∈]0, 2
p′ [, λm 6=1

γmη(r)rλmϕm(θ) (3.20)

and
ut(x, y) = vR(x, y) +

∑
λm∈]0, 2

p′ [, λm 6=1

kmη(r)rλmϕm(θ),

where uR and vR are the regular parts, γm and km are the coefficients of the singular
parts. Thanks to (3.12), we have

‖vR‖Ws,p(G) ≤ C‖t2f t‖0,p = Ct2/p′‖f‖0,p,G, (3.21)

|km| ≤ ct2/p′‖f‖0,p,G. (3.22)

By the definition of ut, we can write

u(x, y) = ut(
x

t
,
y

t
) = vR(

x

t
,
y

t
) +

∑
λm∈]0, 2

p′ [, λm 6=1

kmη(
r

t
)

1
tλm

rλmϕm(θ). (3.23)
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Therefore, comparing (3.20) with (3.23) we obtain

uR(x, y) = vR(
x

t
,
y

t
) +

∑
λm∈]0, 2

p′ [, λm 6=1

rλmϕm(θ)
(
kmη(

r

t
)t−λm − γmη(r)

)
.

Since uR and vR have W2,p(G) regularity, the term in brackets must vanishes in a
neighborhood of the origin. Then γm = kmt−λm , and we have

uR(x, y) = vR(
x

t
,
y

t
) +

∑
λm∈]0, 2

p′ [, λm 6=1

rλmϕm(θ)γm

(
η(

r

t
)− η(r)

)
.

Consequently (3.22) leads to

|γm| ≤ Ct
2
p′−λm‖f‖0,p,G. (3.24)

We shall now find a bound in ‖uR‖Ws,p(G)

‖uR‖Ws,p(G) ≤ ‖vR(
.

t
,
.

t
)‖Ws,p(G)

+
∑

λm∈]0, 2
p′ [, λm 6=1

‖γmrλmϕm(θ)[η(
r

t
)− η(r)]‖Ws,p(G).

(3.25)

Using (6.3) in Proposition 6.10 from the Appendix and (3.21), the first term in the
right hand side in (3.25) is bounded by

ts−
2
p ‖vR(

.

t
,
.

t
)‖Ws,p(G) ≤ ‖vR‖Ws,p(G) ≤ Ct2−

2
p ‖f‖0,p,G.

The explicit form of the second term in (3.25) and the properties of the cut-off
function η allows us to majorise it (see [2]):

‖γmrλmtm(θ)(η(
r

t
)− η(r))‖Ws,p(G) ≤ Ct2−s‖f‖0,p,G.

Summing up, we have the estimate

‖uR‖Ws,p(G) ≤ ct2−s‖f‖0,p,G.

Owing to (3.20) and using (3.24), we obtain

‖u‖span(Ws,p(G);S) ≤ C
(
λ−1+ s

2 +
∑

λm∈]0, 2
p′ [, λm 6=1

λ
λm
2 + 1

p−1
)
‖f‖0,p,G.

As s ≥ λm + 2
p implies s

2 − 1 ≥ λm

2 + 1
p − 1, we obtain the desired estimate for large

λ as required. �

Remark 3.5. Estimates (3.16), (3.17), (3.19) can be obtained with respect to |λ|
instead of λ for <λ ≥ 0 and λ 6= 0. For this, we just replace in subsection 3.1
(Ap + 1)u by (Ap + λ)u, |λ| = 1, and in the proof of Proposition 3.3, t = 1/

√
λ by

t = 1/
√
|λ|.
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4. Resolvent estimate in dependence on λ in polygonal Ω

We consider in Ω (a polygon defined as in Section 2) the transmission prob-
lem (1.2). The results exposed in Section 2 ensures the existence of the resolvent
(Ap + λ)−1, where Ap is defined in the introduction, we recall that DAp

(Ω) =
span(W2,p(Ω);S), where S stands the set of singular functions

S := {S(jm);λjm ∈]0,
2
p′

[ with λjm 6= 1}.

We shall now deduce the growth with respect to λ of ‖(Ap +λ)−1f‖Ws,p(Ω) (λ > 0)
and ‖(Ap + λ)−1f‖span(Ws,p(Ω);S).

Theorem 4.1. (i) If s < λjm + 2
p for all j and m, then the unique solution

u ∈ DAp(Ω) of (1.2) belongs to Ws,p(Ω) and satisfies

‖u‖Ws,p(Ω) ≤
c

λ1− s
2
‖f‖0,p,Ω.

(ii) If s > λjm + 2
p for some (j, m), then the unique solution u ∈ DAp

(Ω) of
(1.2) belongs to span(Ws,p(Ω);S) and satisfies

‖u‖span(Ws,p(Ω);S) ≤
c

λ1− s
2
‖f‖0,p,Ω.

Proof. Let us cover Ω by a partition of unity ϕi, i = 1, 2, . . . , N1 + N2 − 2. That
is, Ω ⊂ ∪n

i=1θi and ϕi ∈ D(θi);
∑N1+N2−2

i=1 ϕi = 1. We denote by ϕ̃iu the extension
of ϕiu by zero outside of supp(ϕiu). There are two typical cases to consider:

• if i = 1 or i = N1, ϕ̃iu is solution of the transmission problem (3.1)-(3.4)
in an infinite sector G. Therefore it satisfies the estimates in Proposition
3.3 and Proposition 3.4.

• if i 6= 1 and i 6= N1, ϕ̃iu is solution of a Dirichlet problem for the Laplace
operator in an infinite sector, consequently it also satisfies the estimates
in Proposition 3.3 and Proposition 3.4 with W s,p instead of Ws,p (see [2,
Proposition 3.8 and Theorem 3.10]).

We continue exactly as in the proof of [2, Theorems 4.1 and 4.3]. �

5. Characterization of DAp(θ; p)

Theorem 5.1. Suppose that λjm 6= 2
p′ , for all j and m, and set

µ := min
m∈N∗, 1≤j≤N1+N2−2

{λjm;λjm ∈]0,
2
p′

[, λjm 6= 1},

then

(i) (DAp
(Ω), Lp(Ω))β,p ⊂ (W2,p(Ω), Lp(Ω))β,p, for 1− µ

2 −
1
p < β < 1,

(ii) (DAp(Ω), Lp(Ω))β,p ⊂ span
(
(W2,p(Ω), Lp(Ω))β,p;S

)
, for 0 < β < 1− µ

2−
1
p ,

(iii) span
(
(W2,p(Ω), Lp(Ω))θ,p;S

)
⊂ (DAp(Ω), Lp(Ω))θ,p, for 0 < θ < 1.

Consequently

DAp
(θ; p) =

{
(W2,p(Ω), Lp(Ω))1−θ,p, if 0 < θ < µ

2 + 1
p ,

span
(
(W2,p(Ω), Lp(Ω))1−θ,p;S

)
, if µ

2 + 1
p < θ < 1.
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Proof. (i) Let s < µ + 2
p , then s < λjm + 2

p , for all j and m, thus from Theorem
4.1, DAp(Ω) ⊂ Ws,p(Ω) and

‖(Ap + λ)−1‖Lp(Ω)→Ws,p(Ω) ≤
c

λ1− s
2
.

Now, applying Corollary 6.6 with E = Lp(Ω), F = Ws,p(Ω) and α = 1 − s
2 we

obtain

(DAp
(Ω), Lp(Ω))(1−θ)(1− s

2 )+θ,p ⊂ (Ws,p(Ω), Lp(Ω))θ,p, 0 < θ < 1,

therefore, by simple substitution

(DAp(Ω), Lp(Ω))β,p ⊂ (Ws,p(Ω), Lp(Ω)) 2
s (β−1+ s

2 ),p

⊂
(
Π2

i=1W
s,p(Ωi),Π2

i=1L
p(Ωi)

)
2
s (β−1+ s

2 ),p
,

consequently, thanks to Proposition 6.8, we obtain

(DAp(Ω), Lp(Ω))β,p ⊂ Π2
i=1

(
W s,p(Ωi), Lp(Ωi)

)
2
s (β−1+ s

2 ),p

= Π2
i=1

((
W 2,p(Ωi), Lp(Ωi)

)
1− s

2 ,p
, Lp(Ωi)

)
2
s (β−1+ s

2 ),p

= Π2
i=1

(
W 2,p(Ωi), Lp(Ωi)

)
β,p

,

the last step is by reiteration (see Corollary 6.4). A second application of Proposi-
tion 6.8 leads to

(DAp
(Ω), Lp(Ω))β,p ⊂ (Π2

i=1W
2,p(Ωi), Lp(Ω))β,p.

Finally, 0 < s < µ + 2
p implies that 1− µ

2 −
1
p < β < 1, hence (i) is proved.

(ii) Let s > µ + 2
p , we have from Theorem 4.1,

DAp(Ω) ⊂ span(Ws,p(Ω);S),

‖(Ap + λ)−1‖Lp(Ω)→span(Ws,p(Ω);S) ≤
c

λ1− s
2
.

Here, we apply Corollary 6.7 like in the first case but with F = span(Ws,p(Ω);S),
we obtain(

DAp(Ω), Lp(Ω)
)
θ(1− s

2 ),p
⊂

(
span(W2,p;S), span(Ws,p;S)

)
θ,p

= span
((
W2,p(Ω),Ws,p(Ω)

)
θ,p

;S
)

⊂ span
((

Π2
i=1W

2,p(Ωi), Lp(Ω)
)
θ(1− s

2 ),p
;S

)
.

(iii) Clearly S ⊂
(
DAp(Ω), Lp(Ω)

)
θ,p

for all 0 < θ < 1. Further, W2,p(Ω) ⊂
DAp(Ω). Hence (

W2,p(Ω), Lp(Ω)
)
θ,p

⊂
(
DAp(Ω), Lp(Ω)

)
θ,p

.

Therefore,

span
(
(W2,p(Ω), Lp(Ω))θ,p;S

)
⊂

(
DAp(Ω), Lp(Ω)

)
θ,p

.

�
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6. Appendix

6.1. The real interpolation spaces. We recall here some basic material on the
theory of real interpolation spaces and refer to [7].

Definition 6.1. Let A0 and A1 be two Banach spaces such that A0 ⊂ A1 with
continuous injection. The space (A0, A1)θ,p is the subspace of A1 consisting of
x ∈ A1 such that there exists two functions u0 and u1 satisfying

x = u0(t) + u1(t), t > 0,

t−θu0 ∈ Lp
∗(A0), t1−θu1 ∈ Lp

∗(A1),
(6.1)

where Lp
∗(A0) and Lp

∗(A1) are function spaces defined on (0,+∞) taking values in
A0 and A1 respectively with the pth power integrable in the measure dt

t , 1 ≤ p ≤ ∞
and 0 < θ < 1. The norm of the space (A0, A1)θ,p is

‖x‖(A0,A1)θ,p
= inf

{( ∫ ∞

0

‖t−θu0(t)‖p
A0

dt

t

)1/p

+
( ∫ ∞

0

‖t1−θu1(t)‖p
A1

dt

t

)1/p}
,

the infimum is taken over all functions satisfying (6.1).

In the particular case, when A0 is the domain DA of a closed linear operator A
in E ≡ A1, equipped with the graph norm, we have another characterization which
is very useful for identifying the spaces in concrete examples. Let ρ(A) ⊃ R+ and
there exist CA such that

‖(A + λ)−1‖E→E ≤ CA

λ
, λ > 0,

then DA(θ; p) is the subspace of E consisting of x such that

tθA(A + t)−1x ∈ Lp
∗(E).

The equivalence result is DA(θ; p) ≡ (DA, E)1−θ,p.

Definition 6.2. A subspace X of A0 + A1 belongs to class Kθ(A0, A1) if there
exists a constant C such that

‖a‖X ≤ C‖a‖1−θ
A0

‖a‖θ
A1

for every a ∈ A0 ∩ A1 assuming 0 ≤ θ ≤ 1. Equivalently, (A0, A1)θ,1 ⊂ X. Thus
(A0, A1)θ,p is of class Kθ(A0, A1).

We have the following reiteration theorem.

Theorem 6.3. Let Xi ∈ Kθi
(A0, A1), i = 0, 1, then

(A0, A1)(1−θ)θ0+θθ1 ⊂ (X0, X1)θ,p, 0 < θ < 1.

Corollary 6.4. For 0 < θ0, θ1 < 1, 1 ≤ p, q ≤ ∞, we have

((X, Y )θ0,q, Y )θ,p = (X, Y )(1−θ)θ0+θ,p,

(X, (X, Y )θ1,q)θ,p = (X, Y )θ1θ,p.

The following result is due to Grisvard.

Theorem 6.5. Let A be a closed operator with domain DA in a Banach space E.
Assume F is a Banach space such that DA ⊂ F ⊂ E, with continuous injections
(for the graph norm on DA). Further, assume (A + t)−1 exists for every t ≥ 0 and
there exists α ∈ (0, 1) such that

‖(A + t)−1‖E→F = O(t−α),
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then F ∈ Kα(DA, E).

Corollary 6.6. Under the assumption of Theorem 6.5,

(DA, E)(1−θ)α+θ,p ⊂ (F,E)θ,p.

The above corollary follows from Theorem 6.3 with A0 = DA, A1 = E, X0 = F ,
X1 = E, θ0 = α, θ1 = 1 and recall that trivially, E ∈ K1(DA, E).

Corollary 6.7. Under the assumptions of Theorem 6.5

(DA, E)αθ,p ⊂ (DA, F )θ,p.

The above corollary follows from Theorem 6.3 with A0 = DA, A1 = E, X0 = DA,
X1 = F , θ0 = 0, θ1 = α and recall that trivially, DA ∈ K0(DA, E).

Proposition 6.8 ([4]). Let A,B, C, D be Banach spaces such that C is continuously
embedded into A; D is continuously embedded into B, then

(A×B,C ×D)θ,p = (A,C)θ,p × (B,D)θ,p.

Proof. By using a.e. the equivalence theorem (see [9, p. 37]) and taking into
account

(a + b)p ≤ 2p−1(ap + bp), a, b ≥ 0, p ≥ 1.

�

6.2. Some basic tools.

Proposition 6.9. Let E,H be Banach spaces, D = E ⊕ F with dim F < ∞.
Assume that a continuous injective mapping A from D to H satisfies

‖u‖E ≤ c‖Au‖H (6.2)

for all u ∈ E and some constant c. Then

‖u‖D ≤ c′‖Au‖H

for all u ∈ D and some constant c′.

Proposition 6.10. Let G be an infinite sector with vertex at the origin. Let v be a
function in W s,p(G) with 0 ≤ s ≤ 2. Since G is invariant under the transformation
(x, y) 7→ (tx, ty), t > 0, (x, y) ∈ G, the function vt(x, y) = v(tx, ty) is well defined
and vt ∈ W s,p(G) with

‖vt‖s,p,G =

{
t−2/p

(
(1− ts)‖v‖0,p,G + ts‖v‖s,p,G

)
if 0 ≤ s ≤ 1,

t−2/p
(
(1− t)‖v‖0,p,G + (t− ts)‖v‖1,p,G + ts‖v‖s,p,G

)
if 1 ≤ s ≤ 2.

Consequently,

‖vt‖s,p,G ≥ ts−
2
p ‖v‖s,p,G, (6.3)

holds for small t.
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Proof. Let x = (x, y), x′ = (x′, y′).

‖vt‖s,p,G =



t−2/p
(
‖v‖0,p,G + ts

( ∫ ∫
G×G

|v(x)−v(x′)|p
|x−x′|2+sp dx dx′

)1/p)
if 0 < s < 1,

t−2/p
(
‖v‖0,p,G + t|v|1,p,G

)
if s = 1,

t−
2
p +s

(
t−s‖v‖0,p,G + t1−s|v|1,p,G

+
( ∫ ∫

G×G

| ∂v
∂x (x)− ∂v

∂x (x′)|p

|x−x′|2+σp dx dx′
)1/p

+
( ∫ ∫

G×G

| ∂v
∂y (x)− ∂v

∂y (x′)|p

|x−x′|2+σp dx dx′
)1/p)

,

if 1 < s < 2, with s = 1 + σ, 0 < σ < 1,

t−2/p
(
‖v‖0,p,G + t|v|1,p,G + t2|v|2,p,G

)
if s = 2,

=


t−2/p

(
‖v‖0,p,G + ts(‖v‖s,p,G − ‖v‖0,p,G)

)
if 0 < s ≤ 1,

t−2/p
(
‖v‖0,p,G + t(‖v‖1,p,G − ‖v‖0,p,G) + ts(‖v‖s,p,G − ‖v‖1,p,G)

)
if 1 < s ≤ 2, with s = 1 + σ, 0 < σ ≤ 1.

�
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Algeria

E-mail address: aibeche@univ-setif.dz

Wided Chikouche
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