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METHOD OF UPPER AND LOWER SOLUTIONS FOR
FRACTIONAL DIFFERENTIAL EQUATIONS

LEGANG LIN, XIPING LIU, HAIQIN FANG

Abstract. In this paper, we show the existence and uniqueness of solutions
for the boundary-value problems of fractional differential equations, using the
upper and lower solutions method and monotone iterative algorithm. An ex-
ample is also included to illustrate our results.

1. Introduction

In this article, we show the existence and uniqueness of solutions for the boundary
value problems of the fractional differential equation

Dδu(t)−Mu(t) = f(t, u(t)), t ∈ J, 0 < δ < 1,

u(0) = ru(T ),
(1.1)

where J = [0, T ], 0 < T < +∞, f ∈ C(J × R, R), M ≥ 0, 0 < r < 1
Eδ,1(MT δ)

.

En1,n2(z) =
∑∞

j=0
zj

Γ(jn1+n2)
, n1, n2 > 0 is the Mittag-Leffler function (see [1, 2]).

Dδ is the Caputo fractional derivative of order δ (see [1, 2]); that is,

Dδu(t) =
1

Γ(1− δ)

∫ t

0

(t− s)−δu′(s)ds.

The Riemann-Liouville fractional integral operator of order δ is defined by

Iδu(t) =
1

Γ(δ)

∫ t

0

(t− s)δ−1u(s)ds.

Fractional differential equations are thought of an important research branch
of fractional calculus, to which much attention has been paid. They arise in the
models of many phenomena in various fields of science and engineering as a valuable
tool. Indeed, we can find numerous applications in physics, chemistry, biology, etc.
(See [3, 4]). Hence, some meaningful results on this kind of problems have been
obtained, (see [5, 6, 7, 8, 9, 10, 11, 12, 13]).

2000 Mathematics Subject Classification. 34B15, 26A33.
Key words and phrases. Fractional differential equations; boundary-value problems;
upper and lower solutions; monotone iterative algorithm.
c©2012 Texas State University - San Marcos.
Submitted May 4, 2012. Published June 12, 2012.
Supported by grants 10ZZ93 from the Foundation of the Innovation Program of
Shanghai Municipal Education Commission, and 11171220 from the National Natural
Science Foundation of China.

1



2 L. LIN, X. LIU, H. FANG EJDE-2012/100

The theory of upper and lower solutions is known to be an effective method to
deal with the boundary-value problems of the ordinary differential equations and
functional differential equations, (see [14, 15, 16, 17, 18, 19, 20, 21, 22]). Li et al.
[15, 16] found a direct method which is quite simple and practical to prove the
existence and uniqueness of solutions of the second-order three-point boundary-
value problem and gave some examples to illustrate the effectiveness of the result.
In [18], using the upper and lower solutions method, the authors considered the
periodic boundary-value problems for functional differential equations. In [22], the
authors presented the existence of extreme solutions of the boundary-value problem
for a class of first-order functional equations with a nonlinear boundary condition

u′(t) = f(t, u(t), u(θ(t))),

g(u(0)) = ru(T ),

by the method of upper and lower solutions and monotone iterative techniques. One
interesting thing is that the method is also appropriate for fractional differential
equations, (see [24, 23]). In [23], Barrett proved the existence and uniqueness of
solutions for the following initial value problems

(Dδ
a+u)(t)−Mu(t) = f(t), (n− 1 < δ < n),

(Dδ−k
a+ u)(a+) = bk, bk ∈ C(k = 1, . . . , n).

Zhang and Su [24] used the method of upper and lower solutions to study the exis-
tence for a linear fractional differential equation with nonlinear boundary condition

Dδu(t)− du(t) = h(t), t ∈ J, 0 < δ < 1,

g(u(0)) = u(T ),
(1.2)

where d ≥ 0, h ∈ C1[0, T ] is a given function, Dδ is a regularized fractional de-
rivative (the Caputo derivative) of order 0 < δ < 1, and there exists a constant

dT δ

Γ(δ)−dT δ < r0 < 1 such that r0 < g′(s) < 1 for s ∈ R. They presented an existence
theorem for the boundary-value problem (1.2).

The boundary-value problem (1.1) which we study is different from the problem
(1.2). We study a nonlinear fractional differential equation, and 0 < r < 1

Eδ,1(MT δ)
.

Since Eδ,1(MT δ) =
∑∞

j=0
MT j

Γ(jδ+1) ≥
1

Γ(1) = 1, which implies r ≤ 1. In fact, in
the boundary-value problem (1.1), g(s) = 1

r s, and g′(s) = 1
r ≥ 1, the condition

0 < r0 < g′(s) < 1 in (1.2) is not satisfied. The purpose of this paper is to prove
the existence and uniqueness of solutions to the boundary-value problem (1.1) by
the method of upper and lower solutions and monotone iterative techniques. We
not only present the existence and the uniqueness theorem, but also present the
iterative sequence for solving the solution and its error estimate formula under the
condition of unique solution.

This article is organized as follows. In section 2, we introduce the basic prop-
erties, and some comparison principles are studied. In section 3, we consider the
existence and uniqueness of the solution of a linear problem associated with (1.1).
In section 4, we obtain the extreme solution of (1.1) and prove that there exists
a unique solution of (1.1) by using the method of upper and lower solutions and
monotone iterative technique. In section 5, we give an example to illustrate the
results which have been proved.
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2. Preliminaries and comparison principle

In this article, we use the following conditions:

(H0) 0 ≤ MT δ

Γ(δ+1) < 1, c(t) = 1− cos πt
2T , t ∈ J .

The followings fundamental properties for fractional differential equations, which
are necessary for our analysis.

Lemma 2.1 ([2, Example 4.9]). The linear initial value problem

Dδu(t)−Mu(t) = x(t), t ∈ J,

u(0) = u0,
(2.1)

where M is a constant, has a unique solution

u(t) = u0Eδ,1(Mtδ) +
∫ t

0

(t− s)δ−1Eδ,δ(M(t− s)δ)x(s)ds.

In particular, when M = 0, the initial problem (2.1) has the solution

u(t) = u0 +
1

Γ(δ)

∫ t

0

(t− s)δ−1x(s)ds.

Lemma 2.2 ([2, Lemma 2.22]). If u ∈ C(J) and 0 < α < 1, then IαDαu(t) =
u(t)− u(0).

To investigate the boundary-value problem (1.1), for x ∈ C(J), we consider the
boundary-value problem

Dδu(t)−Mu(t) = x(t), t ∈ J,

u(0) = ru(T ).
(2.2)

Definition 2.3. Let α ∈ C1(J). We say that α is a lower solution of the boundary-
value problem (2.2), if

Dδα(t)−Mα(t) ≤ x(t)− aα(t), t ∈ J,

where

aα(t) =

{
0, rα(T ) ≥ α(0),
1
r (Dδc(t)−Mc(t))(α(0)− rα(T )), rα(T ) < α(0).

(2.3)

Let β ∈ C1(J). We say that β is an upper solution of the boundary-value problem
(2.2), if

Dδβ(t)−Mβ(t) ≥ x(t) + bβ(t), t ∈ J,

where

bβ(t) =

{
0, rβ(T ) ≤ β(0),
1
r (Dδc(t)−Mc(t))(rβ(T )− β(0)), rβ(T ) > β(0),

(2.4)

where c(t) is defined in (H0).

The following comparison principle will play a very important role in our main
results.

Lemma 2.4. Let (H0) hold. Assume that u ∈ C1(J) and satisfies

Dδu(t)−Mu(t) ≤ 0,

u(0) ≤ 0.
(2.5)

Then u(t) ≤ 0 for t ∈ J .
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Proof. Suppose this is false, then there exist t1, t2 ∈ J such that u(t) ≤ 0 for
0 ≤ t ≤ t1 and u(t) > 0 for t1 < t ≤ t2. Let

u(t0) = max
t∈[t1,t2]

u(t) > 0. (2.6)

By (2.5) and Lemma 2.2, we can obtain

IδDδu(t)− IδMu(t) ≤ 0,

u(t)− u(0)− IδMu(t) ≤ 0,

u(t)− IδMu(t) ≤ 0.

So
u(t0)−MIδu(t0) ≤ 0.

Since

Iδu(t0) =
1

Γ(δ)

∫ t1

0

(t0 − s)δ−1u(s)ds +
1

Γ(δ)

∫ t0

t1

(t0 − s)δ−1u(s)ds

≤ 1
Γ(δ)

∫ t0

t1

(t0 − s)δ−1u(s)ds

≤ 1
Γ(δ)

∫ t0

t1

(t0 − s)δ−1u(t0)ds

≤ u(t0)
δΓ(δ)

(t0 − t1)δ

≤ u(t0)T δ

Γ(δ + 1)
,

we have

u(t0)−
Mu(t0)T δ

Γ(δ + 1)
≤ u(t0)−MIδu(t0) ≤ 0;

that is,

u(t0)(1−
MT δ

Γ(δ + 1)
) ≤ 0.

It follows from (H0), that 1− MT δ

Γ(δ+1) > 0, which contradicts u(t0) > 0. This proves
that u(t) ≤ 0 on J . The proof is complete. �

Lemma 2.5. Suppose (H0) holds, and u ∈ C1(J) satisfies

Dδu(t)−Mu(t) ≤ −aα(t), t ∈ J,

u(0) ≤ 0.
(2.7)

Then u(t) ≤ 0 for t ∈ J .

Proof. We consider the following two cases.
Case 1. rα(T ) ≥ α(0). We have aα(t) = 0 if rα(T ) ≥ α(0). By Lemma 2.4, we

can obtain u(t) ≤ 0 for t ∈ J .
Case 2. rα(T ) < α(0). When rα(T ) < α(0), aα(t) = 1

r (Dδc(t)−Mc(t))(α(0)−
rα(T )).
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Let v(t) = u(t) + 1
r c(t)(α(0) − rα(T )). Obviously, v(t) ≥ u(t). Since c(t) =

1 − cos πt
2T ≥ 0 for t ∈ J , we can get that v(t) ≥ u(t) for all t ∈ J . Follows from

(2.7) we have

Dδv(t)−Mv(t) = Dδu(t)−Mu(t) +
1
r
(Dδc(t)−Mc(t))(α(0)− rα(T ))

= Dδu(t)−Mu(t) + aα(t) ≤ 0,

and
v(0) = u(0) + c(0)(α(0)− rα(T )) = u(0) ≤ 0.

In view of Lemma 2.4, v(t) ≤ 0 for t ∈ J , which implies that u(t) ≤ 0. This
completes the proof. �

In a similar way, we can get the following lemma.

Lemma 2.6. Suppose that (H0) holds, u ∈ C1(J) and satisfies

Dδu(t)−Mu(t) ≤ −bβ(t), t ∈ J,

u(0) ≤ 0.
(2.8)

Then u(t) ≤ 0, for t ∈ J .

Lemma 2.7 ([1, Theorem 4.1]). Consider the two-parameter Mittag-Leffler func-
tion En1,n2 for some n1, n2 > 0. The power series defining En1,n2(z) is convergent
for all z ∈ R.

Lemma 2.8 ([15, Lemma 2.5]). Let E be a partially ordered Banach space, {xn} ⊂
E a monotone sequence and relatively compact set, then {xn} is convergent.

Lemma 2.9 ([15, Lemma 2.6]). Let E be a partially ordered Banach space, xn ≤
yn (n = 1, 2, 3 . . . )0, if xn → x∗, yn → y∗0 , we have x∗ ≤ y∗.

3. Existence and uniqueness of solutions for the Linear problems

In this section, we present the existence and uniqueness theorems of solutions of
the boundary-value problem (2.2) based on the method of the upper and the lower
solutions.

Lemma 3.1. Let (H0) hold. Assume that there exist upper and lower solutions
β, α ∈ C1(J) of the boundary-value problem (2.2) such that α(t) ≤ β(t) on J . Then
the boundary-value problem (2.2) has a unique solution u. Moreover, α ≤ u ≤ β
on J , respectively.

Proof. (1) We can prove that the boundary-value problem (2.2) has a unique solu-
tion. Let

p(t) =

{
rα(t), rα(T ) ≥ α(0),
rα(t) + c(t)(α(0)− rα(T )), rα(T ) < α(0),

and

q(t) =

{
rβ(t), rβ(T ) ≤ β(0),
rβ(t)− c(t)(rβ(T )− β(0)), rβ(T ) > β(0).

It is obvious that p(0) = rα(0) and q(0) = rβ(0).
If rα(T ) ≥ α(0), then

p(T ) = rα(T ) ≥ α(0) =
p(0)
r

.
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If rα(T ) < α(0), then

p(T ) = rα(T )− rα(T ) + α(0) = α(0) =
p(0)
r

.

Thus, rp(T ) ≥ p(0).
Analogously, we can get rq(T ) ≤ q(0). Therefore,

p(0) = rα(0), rp(T ) ≥ p(0), (3.1)

q(0) = rβ(0), rq(T ) ≤ q(0). (3.2)

If rα(T ) ≥ α(0), we obtain

Dδp(t)−Mp(t) = r(Dδα(t)−Mα(t)) ≤ rx(t), t ∈ J,

and if rα(T ) < α(0), for t ∈ J , we have

Dδp(t)−Mp(t) = r(Dδα(t)−Mα(t)) + (Dδc(t)−Mc(t))(α(0)− rα(T ))

≤ rx(t)− raα(t) + raα(t) = rx(t).

Hence, we obtain
Dδp(t)−Mp(t) ≤ rx(t), t ∈ J. (3.3)

Similarly, we can show that

Dδq(t)−Mq(t) ≥ rx(t), t ∈ J. (3.4)

Let y(t) = p(t)− q(t), t ∈ J . It follows that

Dδy(t)−My(t) ≤ 0,

y(0) = p(0)− q(0) ≤ 0.

From (3.1), (3.2), (3.3) and (3.4). By Lemma 2.4, we have

p(t) ≤ q(t) for t ∈ J. (3.5)

For each λ ∈ R, we consider the initial problem

Dδu(t)−Mu(t) = x(t),

u(0) = λ.
(3.6)

According to Lemma 2.1, the initial problem (3.6) has a unique solution

u(t, λ) = λEδ,1(Mtδ) +
∫ t

0

(t− s)δ−1Eδ,δ(M(t− s)δ)x(s)ds, t ∈ J. (3.7)

It is easy to see u(t, λ) is continuous on λ ∈ R.
Let z(t) = p(t) − ru(t, λ), where u(t, λ) is the solution of (3.6). If p(T ) ≤ λ ≤

q(T ), then

Dδz(t)−Mz(t) ≤ rx(t)− rx(t) = 0,

z(0) = p(0)− ru(0, λ) ≤ rp(T )− rλ ≤ 0.

From Lemma 2.4, we obtain that z(t) ≤ 0 for t ∈ J , so p(T ) ≤ ru(T, λ).
Using the same method, we can get ru(T, λ) ≤ q(T ). Hence,

p(T ) ≤ ru(T, λ) ≤ q(T ) for λ ∈ [p(T ), q(T )].

Let g(λ) = ru(T, λ) − λ for λ ∈ R, then g′(λ) = rEδ,1(MT δ) − 1 < 0, and g is
strictly decreasing. We see that the equation g(λ) = 0 has at most one solution on
R.
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Since g(q(T ))g(p(T )) = (ru(T, q(T ))−q(T ))(ru(T, p(T ))−p(T )) ≤ 0 and g(λ) is
continuous for λ ∈ R, we can show that the equation g(λ) = 0 has a unique solution
λ0 ∈ R and p(T ) ≤ λ0 ≤ q(T ) with ru(T, λ0) = λ0 = u(0). Hence,

u(t, λ0) = λ0Eδ,1(Mtδ) +
∫ t

0

(t− s)δ−1Eδ,δ(M(t− s)δ)x(s)ds, t ∈ J

is the unique solution of the boundary-value problem (2.2).
(2) We can prove that the solution u(t, λ0) satisfies α(t) ≤ u(t, λ0) ≤ β(t) for

t ∈ J . Let h(t) = α(t) − u(t, λ0). If rα(T ) ≥ α(0), we know aα(t) = 0. By (3.2),
we have

Dδh(t)−Mh(t) = Dδα(t)−Mα(t)− x(t) ≤ 0,

h(0) = α(0)− u(0, λ0) ≤ p(T )− λ0 ≤ 0.

In view of Lemma 2.4, we have h(t) = α(t)− u(t, λ0) ≤ 0 for t ∈ J .
If rα(T ) < α(0), then aα(t) = 1

r (Dδc(t)−Mc(t))(α(0)− rα(T )). By (3.2), it is
easy to see that

Dδh(t)−Mh(t) = Dδα(t)−Mα(t)− x(t) ≤ −aα(t),

h(0) = α(0)− u(0, λ0) ≤ p(T )− λ0 ≤ 0.

As a consequence of Lemma 2.5, we obtain that h(t) ≤ 0, for t ∈ J , this is u(t, λ0) ≥
α(t).

In a similar way, we can obtain that β(t) ≥ u(t, λ0) for t ∈ J . Therefore, the
unique solution u(t, λ0) of the boundary-value problem satisfies α(t) ≤ u(t, λ0) ≤
β(t) for t ∈ J . The proof is complete. �

4. Main results

Definition 4.1. Let β0, α0 ∈ C1(J). We say that β0, α0 are the upper solution
and the lower solution of the boundary-value problem (1.1), respectively, if

Dδα0(t)−Mα0(t) ≤ f(t, α0(t))− aα0(t), t ∈ J,

and
Dδβ0(t)−Mβ0(t) ≥ f(t, β0(t)) + bβ0(t), t ∈ J,

where aα0(t), bβ0(t) are defined in (2.3), (2.4), respectively.

Let E = C(J) with ‖x‖ = maxt∈J |x(t)| for x ∈ E. Then E is a Banach space.

Theorem 4.2. Suppose (H0) holds and there exist β0, α0 ∈ C1(J) such that β0, α0

are upper and lower solutions of the boundary-value problem (1.1) with α0(t) ≤ β0(t)
for t ∈ J , respectively, and f satisfies

(H1) f(t, x1) ≤ f(t, x2) for any x1, x2 ∈ R with x1 ≤ x2 and t ∈ J .
Then the boundary-value problem (1.1) has a minimal solution α∗ and a maximal
solution β∗ on [α0, β0] = {u ∈ C(J)| α0(t) ≤ u(t) ≤ β0(t), t ∈ (J)}. Moreover, the
monotone iterative sequences defined by

αn(t) =
rEδ,1(Mtδ)

1− rEδ,1(MT δ)

∫ T

0

(T − s)δ−1Eδ,δ(M(T − s)δ)f(s, αn−1(s))ds

+
∫ t

0

(t− s)δ−1Eδ,δ(M(t− s)δ)f(s, αn−1(s))ds,
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and

βn(t) =
rEδ,1(Mtδ)

1− rEδ,1(MT δ)

∫ T

0

(T − s)δ−1Eδ,δ(M(T − s)δ)f(s, βn−1(s))ds

+
∫ t

0

(t− s)δ−1Eδ,δ(M(t− s)δ)f(s, βn−1(s))ds,

converge uniformly on J to α∗ and β∗, respectively. Namely, for t ∈ J , {αn(t)},
{βn(t)} with

lim
n→∞

αn(t) = α∗(t), lim
n→∞

βn(t) = β∗(t).

Proof. We divide the proof into five parts.
(1) We denote D = [α0, β0]. For any ϕ ∈ D, we consider first the boundary-value

problem
Dδu(t)−Mu(t) = f(t, ϕ(t)),

u(0) = ru(T ).
(4.1)

Since β0(t), α0(t) are upper and lower solutions of the boundary-value problem
(1.1), by (H1), for t ∈ J , we have

Dδα0(t)−Mα0(t) ≤ f(t, α0(t))− aα0(t) ≤ f(t, ϕ(t))− aα0(t),

and
Dδβ0(t)−Mβ0(t) ≥ f(t, β0(t)) + bβ0(t) ≥ f(t, ϕ(t)) + bβ0(t).

Therefore, β0(t), α0(t) are also the upper and lower solutions of the boundary-value
problem (4.1). In view of Lemma 3.1, the boundary-value problem (4.1) has the
following unique solution u with u ∈ D.

u(t) = u(0)Eδ,1(Mtδ) +
∫ t

0

(t− s)δ−1Eδ,δ(M(t− s)δ)f(s, ϕ(s))ds, t ∈ J.

Because u(0) = ru(T ), we can easily obtain that

u(0) =
r

1− rEδ,1(MT δ)

∫ T

0

(T − s)δ−1Eδ,δ(M(T − s)δ)f(s, ϕ(s))ds.

We define an operator A: D → E by

Aϕ(t) =
rEδ,1(Mtδ)

1− rEδ,1(MT δ)

∫ T

0

(T − s)δ−1Eδ,δ(M(T − s)δ)f(s, ϕ(s))ds

+
∫ t

0

(t− s)δ−1Eδ,δ(M(t− s)δ)f(s, ϕ(s))ds.

By Lemma 3.1 we can show that α0(t) ≤ Aϕ(t) ≤ β0(t), for t ∈ J . Hence, we
obtain

Aα0 ≥ α0, Aβ0 ≤ β0. (4.2)
(2) We prove that A is completely continuous. Since D is bounded, there exists

a constant M0 > 0 such that ‖ϕ‖ ≤ M0 for ϕ ∈ D. Because f is continuous, there
exists a constant M1 > 0 such that maxs∈J |f(s, ϕ(s))| ≤ M1 for s ∈ J . We have
that

|Aϕ(t)| ≤ rEδ,1(MT δ)
1− rEδ,1(MT δ)

M1Eδ,δ(MT δ)
∫ T

0

(T − s)δ−1ds

+ M1Eδ,δ(MT δ)
∫ t

0

(t− s)δ−1ds
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≤ M1T
δEδ,δ(MT δ)

δ(1− rEδ,1(MT δ))
.

So A(D) is uniformly bounded.
Let F (t) = Eδ,1(Mtδ) for t ∈ J , G(t, s) = Eδ,δ(M(t − s)δ) for (t, s) ∈ Ω =

{(t, s)| t ∈ J, 0 ≤ s ≤ t}. As a consequence of Lemma 2.7, we have F and G are
uniformly continuous on J and Ω, respectively.

For any ε > 0, there exists δ1 > 0, for any t1, t2 ∈ J with t2 > t1, whenever
|t2 − t1| < δ1, we obtain

|F (t2)− F (t1)| <
εδ(1− rEδ,1(MT δ))
3rM1T δEδ,δ(MT δ)

,

moreover, if (t1, s), (t2, s) ∈ Ω, then

|G(t2, s)−G(t1, s)| <
εδ

6M1T δ
.

We take 0 < δ0 ≤ min{δ1, δ2, ( εδ
6M1Eδ,δ(MT δ)

)
1
δ }. Thus, as t1, t2 ∈ J with t2 > t1,

whenever |t2 − t1| < δ0 and ϕ ∈ D, we have

|Aϕ(t2)−Aϕ(t1)|

≤
∣∣∣r ∫ T

0
(T − s)δ−1Eδ,δ(M(T − s)δ)f(s, ϕ(s))ds

1− rEδ,1(MT δ)
·
(
F (t2)− F (t1)

)∣∣∣
+

∣∣∣ ∫ t2

t1

(t2 − s)δ−1Eδ,δ(M(t2 − s)δ)f(s, ϕ(s))ds
∣∣∣

+
∣∣∣ ∫ t1

0

(
(t2 − s)δ−1Eδ,δ(M(t2 − s)δ)− (t1 − s)δ−1Eδ,δ(M(t1 − s)δ)

)
f(s, ϕ(s))ds

∣∣∣
≤ ε

3
+

M1Eδ,δ(MT δ)
δ

· |t2 − t1|δ

+ M1

∫ t1

0

(t2 − s)δ−1|Eδ,δ(M(t2 − s)δ)− Eδ,δ(M(t1 − s)δ)|ds

+ M1

∫ t1

0

(
(t1 − s)δ−1 − (t2 − s)δ−1

)
Eδ,δ(M(t1 − s)δ)ds.

Since ∫ t1

0

(t2 − s)δ−1|Eδ,δ(M(t2 − s)δ)− Eδ,δ(M(t1 − s)δ)|ds

=
∫ t1

0

(t2 − s)δ−1|G(t2, s)−G(t1, s)|ds

≤T δ

δ
· εδ

6M1T δ
=

ε

6M1
,

and ∫ t1

0

(
(t1 − s)δ−1 − (t2 − s)δ−1

)
Eδ,δ(M(t1 − s)δ)ds

≤ Eδ,δ(MT δ)
∫ t1

0

(
(t1 − s)δ−1 − (t2 − s)δ−1

)
ds
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≤ Eδ,δ(MT δ)
δ

(
(t2 − t1)δ − (tδ2 − tδ1)

)
≤ Eδ,δ(MT δ)

δ
(t2 − t1)δ ≤ ε

6M1
.

Therefore, as t1, t2 ∈ J with t2 > t1, whenever |t2 − t1| < δ0 and ϕ ∈ D, we can
show that

|Aϕ(t2)−Aϕ(t1)| < ε.

We prove A is equi-continuous. By Arzela-Ascoli theorem, we know that A(D) is
relatively compact. We can easily show that A is continuous since f is continuous.
Hence, A is completely continuous.

(3) A is an increasing operator on J . For α0 ≤ ω1 ≤ ω2 ≤ β0, t ∈ J , let

B(s) = f(s, ω2(s))− f(s, ω1(s)), s ∈ J.

From (H1), we have B(s) ≥ 0 and

Aω2(t)−Aω1(t) =
rEδ,1(Mtδ)

1− rEδ,1(MT δ)

∫ T

0

(T − s)δ−1Eδ,δ(M(T − s)δ)B(s)ds

+
∫ t

0

(t− s)δ−1Eδ,δ(M(t− s)δ)B(s)ds ≥ 0.

Thus, A is an increasing operator.
(4) Let αn = Aαn−1, βn = Aβn−1, for n = 1, 2, . . . . By (4.2), we get monotone

iterative sequences

α1 ≤ α2 ≤ · · · ≤ αn ≤ · · · ≤ βn ≤ · · · ≤ β2 ≤ β1.

As {αn}, {βn} ⊂ A(D), we get that {αn} and {βn} are monotone sequences and
relatively compact set respectively. In view of Lemma 2.8, we can obtain that there
exist α∗, β∗ ∈ C(J) such that

lim
n→∞

αn(t) = α∗(t), lim
n→∞

βn(t) = β∗(t).

By the continuity of A, we have α∗ = Aα∗, β∗ = Aβ∗. So α∗, β∗ are the fixed
points of A.

It is clear that u is a solution of the boundary-value problem (1.1) if and only
if u is a fixed point of A. Hence, α∗(t), β∗(t) are solutions of the boundary-value
problem (1.1).

(5) We prove that α∗, β∗ are the minimal solution and the maximal solution of
the boundary-value problem (1.1), respectively.

Assume u ∈ [α0, β0] is a solution of the boundary-value problem (1.1). We can
easily obtain that Aα0(t) ≤ Au(t) ≤ Aβ0(t) by the fact that A is increasing in
[α0, β0]. That is α1(t) ≤ u(t) ≤ β1(t). Doing this repeatedly, we have αn(t) ≤
u(t) ≤ βn(t), for n = 1, 2, . . . . From Lemma 2.9, we obtain that α∗(t) ≤ u(t) ≤
β∗(t), as n →∞.

Therefore, α∗, β∗ are the minimal solution and the maximal solution of the
boundary-value problem (1.1), respectively. The proof is complete. �

Theorem 4.3. Suppose the conditions of Theorem 4.2 hold. There exists a constant
γ ∈

[
0,

δ(1−rEδ,1(MT δ))
T δEδ,δ(MT δ)

)
and f satisfies

(H2) f(t, x2)− f(t, x1) ≤ γ(x2 − x1) for any x1, x2 ∈ R and x1 ≤ x2.
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Then the boundary-value problem (1.1) has a unique solution u∗ on [α0, β0]. More-
over, for each u0 ∈ [α0, β0], the iterative sequence

un(t) =
rEδ,1(Mtδ)

1− rEδ,1(MT δ)

∫ T

0

(T − s)δ−1Eδ,δ(M(T − s)δ)f(s, un−1(s))ds

+
∫ t

0

(t− s)δ−1Eδ,δ(M(t− s)δ)f(s, un−1(s))ds, n = 1, 2, . . .

converges uniformly to u∗ on J . Its error estimate is

‖un − u∗‖ ≤ ρn‖β0 − α0‖, n = 1, 2, 3 . . . ,

where

ρ =
γT δEδ,δ(MT δ)

δ(1− rEδ,1(MT δ))
.

Proof. For α0 ≤ ω1 ≤ ω2 ≤ β0, t ∈ J , from (H2) we have

0 ≤ Aω2(t)−Aω1(t)

≤ rEδ,1(MT δ)
1− rEδ,1(MT δ)

∫ T

0

(T − s)δ−1Eδ,δ(M(T − s)δ)(f(s, ω2(s))− f(s, ω1(s)))ds

+
∫ t

0

(t− s)δ−1Eδ,δ(M(t− s)δ)(f(s, ω2(s))− f(s, ω1(s)))ds

≤
(T δEδ,1(MT δ)Eδ,δ(MT δ)

δ( 1
r − Eδ,1(MT δ))

+
T δ

δ
Eδ,δ(MT δ)

)
γ‖ω2(t)− ω1(t)‖

=
γT δEδ,δ(MT δ)

δ(1− rEδ,1(MT δ))
‖ω2(t)− ω1(t)‖.

Hence,

‖Aω2 −Aω1‖ ≤ ρ‖ω2 − ω1‖.

It is easy to obtain that

‖βn − αn‖ = ‖Aβn−1 −Aαn−1‖ ≤ ρ‖βn−1 − αn−1‖ ≤ · · · ≤ ρn‖β0 − α0‖.

From 0 ≤ γ <
δ(1−rEδ,1(MT δ))

T δEδ,δ(MT δ)
, we have 0 ≤ ρ < 1, and

‖βn − αn‖ → 0, n →∞.

It follows from Theorem 4.2, there exists a unique u∗ ∈ [α0, β0] such that αn →
u∗, βn → u∗, when n → ∞. As αn ≤ u∗ ≤ βn, by the monotonicity of A we have
Aαn ≤ u∗ ≤ Aβn. When n →∞, we have that u∗ = Au∗, u∗ is a fixed point of A.
Hence, u∗ is the unique solution of the boundary-value problem (1.1).

For each u0 ∈ [α0, β0], about the iterative sequence un = Aun−1, we have αn ≤
un ≤ βn, and

‖un − u∗‖ ≤ ‖βn − αn‖ ≤ ρn‖β0 − α0‖.

This completes the proof. �
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5. Example

Consider the boundary-value problem

D1/2u(t) =
1
2

+
cos t arctanu(t)

π(t + 6)2
, 0 ≤ t ≤ 1,

3u(0) = u(1).
(5.1)

Let f(t, x) = 1
2 + cos t arctan x

π(t+6)2 . Clearly, T = 1, δ = 1
2 , r = 1

3 , M = 0 and 0 ≤
f(t, x) ≤ 1. We take γ = 1

36
√

π
, then Eδ,δ(MT δ) = 1√

π
, Eδ,1(MT δ) = 1, and

ρ =
γT δEδ,δ(MT δ)

δ(1− rEδ,1(MT δ))
=

1
12

< 1.

Obviously, α0(t) = 0 is a lower solution of the boundary-value problem (5.1). Let
β0(t) = 5

8
√

π
(1 + 2

√
t), we have 1

3β0(1) = β0(0), then bβ0(t) = 0.

D1/2β0(t) =
5
8
≥ f(t, β0(t)). (5.2)

So β0 is an upper solution of the boundary-value problem (5.1).
It is easy to verify that the assumptions of Theorem 4.3 are satisfied. Hence,

the boundary-value problem (5.1) has a unique solution u∗(t) with 0 ≤ u∗(t) ≤
5

8
√

π
(1 + 2

√
t) on [0, 1].

For each 0 ≤ u0(t) ≤ 5
8
√

π
(1 + 2

√
t), let the iterative sequence un = Aun−1, we

have

un(t) =
1

2
√

π

∫ 1

0

(1− s)−
1
2 f(s, un−1(s))ds +

1√
π

∫ t

0

(t− s)−
1
2 f(s, un−1(s))ds

converges uniformly to u∗ on J . Its error estimate is

‖un − u∗‖ ≤ 15
8
√

π
·
( 1
12

)n
.

We take u0 = 0. If n = 2, its error is not more than 0.00734622; if n = 3, its error
is not more than 0.000612185; if n = 4, its error is not more than 0.0000510154.
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