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POSITIVITY AND NEGATIVITY OF SOLUTIONS TO n× n

WEIGHTED SYSTEMS INVOLVING THE LAPLACE OPERATOR
ON RN

BÉNÉDICTE ALZIARY, JACQUELINE FLECKINGER,

MARIE-HÉLÈNE LECUREUX, NA WEI

Abstract. We consider the sign of the solutions of a n × n system defined
on the whole space RN , N ≥ 3 and a weight function ρ with a positive part
decreasing fast enough,

−∆U = λρ(x)MU + F,

where F is a vector of functions, M is a n×n matrix with constant coefficients,
not necessarily cooperative, and the weight function ρ is allowed to change sign.
We prove that the solutions of the n × n system exist and then we prove the
local fundamental positivity and local fundamental negativity of the solutions
when |λσ1 − λρ| is small enough, where σ1 is the largest eigenvalue of the
constant matrix M and λρ is the “principal” eigenvalue of

−∆u = λρ(x)u, lim
|x|→∞

u(x) = 0; u(x) > 0, x ∈ RN .

1. Introduction

Elliptic eigenvalue problems with indefinite weight arise naturally from lineariza-
tion of many semilinear elliptic equations. A lot of literature in applied mathe-
matics, engineering, physics, and biology treat such problems which occur in the
study of transport theory, crystal coloration, laser theory, reaction-diffusion equa-
tions, fluid dynamics, etc. (see [10] and the references therein). Many researchers
studied the indefinite weighted eigenvalue problems under various hypotheses (see
[1, 2, 9, 10, 19]). Owing to the importance of such problems, we investigate some
systems concerning the Laplace operator. Specially, we will obtain the sign of
solutions of some weighted systems in this paper.

The positivity of solutions is usually shown with the maximum principles, which
are also of great importance for the study of existence and uniqueness of solutions
to some linear and nonlinear equations. Moreover, P. Clément and L. Peletier [11]
proved an antimaximum principle for a linear equation −∆u = λu + f defined on
a smooth bounded domain Ω ⊂ RN with Dirichlet boundary condition ∂Ω. Let
λ1 be the principal eigenvalue of the Laplace operator −∆, which is endowed with
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homogeneous Dirichlet boundary condition. We recall here the maximum principle
as well as the antimaximum principle for a bounded domain.

Proposition 1.1 (Hopf Maximum principle). Assume f ∈ Lp(Ω), p > N and
f ≥ 0, f 6≡ 0. Let u be a solution of the equation −∆u = λu + f , u = 0 on the
boundary ∂Ω. Then for λ < λ1,

u(x) > 0 on Ω;
∂u

∂n
(x)

∣∣
∂Ω

< 0,

where ∂u
∂n is the outward normal derivative on ∂Ω.

Proposition 1.2 (Antimaximum principle). Assume f ∈ Lp(Ω), p > N and f ≥ 0,
f 6≡ 0. u solves −∆u = λu + f in Ω, u|∂Ω = 0. Moreover, ∂Ω is smooth enough.
Then there exists δ > 0, depending on f , such that for λ1 < λ < λ1 + δ,

u(x) < 0 on Ω;
∂u

∂n
(x)

∣∣
∂Ω

> 0.

These results are classical. However, many problems in mechanic, physic or
biology lead to some more general problems as the following equation defined on
the whole space RN , N > 2:

Lu = λρ(x)u+ f, x ∈ RN .

Here L is an elliptic operator as e.g. the Laplacian or the p-Laplacian. The weight
ρ ensures the discreteness of the spectrum (e.g. ρ+ = max(ρ, 0) tends to zero fast
enough). There are several results with regard to such kinds of problems, such as
the maximum principle [20], the anti-maximum principle ([14] or [26]), the (local)
fundamental positivity or negativity of solutions [21]. Fleckinger, Gossez and de
Thélin also proved in [14] a local antimaximum principle for the p-Laplacian on
the whole space RN , which follows the approach introduced in [13]. Maximum and
antimaximum principles have been extended into notions of “fundamental positiv-
ity” and “fundamental negativity” by Alziary and Takáč [6] or [7], who introduced
these definitions for the solutions of Schrödinger equation.

We say that a function u satisfies the “fundamental positivity” if there exists a
constant c > 0 such that u ≥ cϕρ > 0 a.e. in RN and a function u satisfies the
“fundamental negativity” if there exists a constant c > 0 such that u ≤ −cϕρ <
0 a.e. in RN , where ϕρ denotes a positive principal eigenfunction associated to
the principal eigenvalue λρ. We will explain it in detail in the next section. If
these results are obtained on balls, we have the definitions of “local fundamental
positivity” and ”local fundamental negativity” respectively.

There are also some results for systems in [3, 12, 15, 16, 18, 20, 23], concerning
the existence of principal eigenvalue and maximum principle.

Alziary, Takáč [6] investigate equations involving Schrödinger operators

−∆u+ q(x)u = λu+ f(x) (1.1)

in L2(RN ). They proved a pointwise lower bound for the solution of (1.1) for a
function 0 ≤ f 6≡ 0. Alziary, Fleckinger, and Takáč showed in [4] and [5] the
fundamental negativity of solutions to (1.1) when λ is slightly above the principal
eigenvalue. Alziary, Fleckinger,Lécureux [3] obtained the fundamental positivity
and fundamental negativity of a 2 × 2 systems of Schrödinger equations on RN .
Then Lécureux [25] extended the results to the non cooperative n× n system

LU = λU +MU + F
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on RN , where L is a diagonal matrix of Schrödinger operators of the form L :=
−∆ + q, q is a potential growing fast enough and M is a constant matrix.

In this paper, we combine our methods with those of Lécureux [25] to study a
n× n weighted systems defined on the whole space RN , N ≥ 3:

−∆U = λρ(x)MU + F ;

here ∆ denotes the standard Laplace operator, λ is a real spectral parameter;
U = (u1, u2, . . . , un)> and F = (f1, f2, . . . , fn)>. The functions fi are measurable
and bounded. The function ρ is allowed to change sign; i.e., ρ is an indefinite weight
function. Moreover, ρ+ = max(ρ, 0) tends to 0 fast enough as |x| → ∞. The matrix
M is a n×n matrix with real constant coefficients mij and real eigenvalues σk 6= 0;
it is not necessarily cooperative, that is that the terms outside the diagonal may
have any sign. Recall that a matrix is said to be cooperative if the coefficients
outside the diagonal are positive. We derive our results from results for the case of
one equation and of the 2× 2 system which have been studied in [21].

This paper is organized as follows: in Section 2, we recall or prove results for the
case of one equation. Then we give our main results for a positive weight in Section
3 and we prove them in Section 4; finally we extend our results to indefinite weight
in Section 5.

2. Equations with positive weight

We introduce some notations and hypotheses in this section; then we recall and
prove some results on local fundamental positivity and local fundamental negativity
which we will use later.

Notation and Hypotheses for a positive weight. For a positive and bounded
function r, we denote L2

r(RN ) or shortly L2
r the space

L2
r(RN ) =

{
u :

∫
RN

ru2dx <∞
}

with norm ‖u‖L2
r(RN ) =

( ∫
RN

ru2dx
)1/2

.

Let us consider the equation

−∆u = λρ(x)u+ f, lim
|x|→∞

u(x) = 0, x ∈ RN , N ≥ 3, (2.1)

where f ∈ L∞(RN )∩L2
1/ρ and ρ(x) is a positive smooth function decreasing faster

than 1/|x|2 as |x| → ∞. More precisely we assume that ρ satisfies the hypothesis:
(H1) ρ(x) > 0, is smooth, bounded and there exists some constants K > 0 and

α > 1 such that ρ(x) ≤ Kpα(x) where

pα(x) := (1 + |x|2)−α. (2.2)

Remark 2.1. It follows from (H1) that ρ ∈ LN/2(RN ) but is not necessarily in L1.

The space D1,2 : We denote by D1,2 the closure of C∞0 with respect to the norm

‖u‖D1,2 =
( ∫

RN

|∇u|2dx
)1/2

.

It can be shown (see [24, Proposition 2.4]) that

D1,2 = {u ∈ L
2N

N−2 (RN ) : ∇u ∈ (L2(RN ))N},
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and that there exists K > 0 such that for all u ∈ D1,2,

‖u‖
L

2N
N−2

≤ K‖u‖D1,2 .

We also use Hardy’s inequality and deduce that there exists two positive constants
γ and γ′ such that∫

RN

|∇u|2dx ≥ γ

∫
RN

pα|u|2dx ≥ γ′
∫

RN

ρ|u|2dx, ∀ u ∈ D1,2. (2.3)

Hence any u ∈ D1,2 is in L2
ρ. Moreover the embedding D1,2 into L2

ρ is compact [14,
Lemma 2.3].

Remark 2.2. Note that by (2.3), D1,2 does not depend on ρ. Moreover note that
the constant function is not in D1,2.

For any ρ satisfying (H1), we seek weak solutions to (2.1) in D1,2.
The principal eigenpair: Denote by (λρ, ϕρ) the “principal” eigenpair which
exists [9, 10] and satisfies

−∆ϕρ = λρρ(x)ϕρ, x ∈ RN ; ϕρ(x) > 0, ∀x ∈ RN ;
∫

RN

ρϕ2
ρ = 1, (2.4)

with ϕρ in L2
ρ. Here λρ is the smallest eigenvalue of (EV ); it is simple and it

is called the “principal eigenvalue”. The eigenfunction ϕρ corresponding to λρ is
called the “groundstate” or “principal eigenfunction”. We define the subspaces X
of L2

ρ(RN ) and Y of L2
1/ρ(R

N ) as:

X := {u ∈ L2
ρ(RN ) : u/ϕρ ∈ L∞(RN )}, (2.5)

Y := {u ∈ L2
1/ρ(R

N ) : u/(ρϕρ) ∈ L∞(RN )}, (2.6)

respectively, which are Banach spaces with the norms ‖u‖X := ess supRN (|u|/ϕρ)
and ‖u‖Y := ess supRN (|u/(ρϕρ)|), respectively.

The function u ∈ D1,2 is a weak solution of Equation (2.1) if∫
RN

(∇u · ∇η) = λ

∫
RN

ρ(x)uη +
∫

RN

fη, ∀η ∈ D1,2.

This solution is also classical by regularity properties.

Theorem 2.3 ([9, Sec. 4], [20, Lemma 4]). Assume (H1). There exists a positive
principal eigenvalue λρ which is given by

0 < λρ = inf
{u∈D1,2,

R
RN ρu2=1}

∫
|∇u|2. (2.7)

The equality in (2.7) holds if and only if u is proportional to ϕρ.

Remark 2.4. The existence of a principal eigenvalue and Equation (2.7) are still
valid, under some conditions, for a non negative weight and for an indefinite weight
(see e.g. [9, 10]). We recall the proof later (Lemma 5.1).
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2.1. Results for one equation with positive weight. First, we recall a maxi-
mum principle and a (local) antimaximum principle for the case of one equation.

Proposition 2.5 (Maximum Principle, [20]). We suppose that ρ satisfies Hypoth-
esis (H1), f ∈ L∞, f ≥ 0, f 6≡ 0. A necessary and sufficient condition for having a
(strong) maximum principle, (that is f bounded, f ≥ 0, f 6≡ 0 implies any solution
u to (2.1) is positive), is 0 < λ < λρ. Moreover, if 0 < λ < λρ, then there exists a
solution to (2.1) and this solution is unique and positive.

Corollary 2.6. Assume that f ∈ Y . For 0 < λ < λρ, u exists and

0 ≤ u(x) ≤ ‖f‖Y

λρ − λ
ϕρ(x), ∀x ∈ RN .

.

Proposition 2.7 (Local antimaximum principle, [26, Theorem 5.2] or [14, Theorem
3.3]). , Assume (H1) and f ∈ L∞, f ≥ 0, f 6≡ 0. Let R > 0 be given; there exists
δ > 0 depending on R, f and ρ such that for λρ < λ < λρ + δ, then u < 0 on the
ball BR = {x ∈ RN/|x| < R}.

Now we improve maximum and antimaximum principle and also the results on
fundamental positivity and fundamental negativity shown in [21]. For that purpose,
we assume that

(H2) f = ρh and h ∈ L∞loc ∩ L2
ρ.

Theorem 2.8 (Local fundamental positivity and negativity). Assume that (H1)
and (H2) are satisfied; moreover assume that∫

RN

fϕρ > 0. (2.8)

Then, for any given R > 0, there exist positive numbers k′, k′′,K ′,K ′′, δ, δ′ (de-
pending on R, ρ and f) such that on BR = {x ∈ RN : |x| < R}:

• for λρ − δ < λ < λρ,

0 <
k′

λρ − λ
ϕρ ≤ u ≤ k′′

λρ − λ
ϕρ. (2.9)

(Local fundamental positivity)
• for λρ < λ < λρ + δ′,

− K ′′

λ− λρ
ϕρ ≤ u ≤ − K ′

λ− λρ
ϕρ < 0. (2.10)

(Local fundamental negativity)

Corollary 2.9 ([21]). Assume (H1), (H2) and (2.8) are satisfied; then for any
given R > 0, on BR, |u|

ϕρ
→ +∞ as λ→ λρ.

This corollary plays an important role when studying systems of equations.

3. Main results for a system with positive weight

We consider now a n× n system:

−∆U = λρ(x)MU + F, x ∈ RN , U → 0 as |x| → +∞, (3.1)

where ρ satisfies Hypothesis (H1). We assume the hypothesis
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(H3) M is a n×n non-degenerate matrix which has constant coefficients and has
only real eigenvalues. Moreover, the largest one which is denoted by σ1 is
positive and algebraically and geometrically simple.

Of course some of the other eigenvalues can be equal. Therefore we write them in
decreasing order σ1 > σ2 ≥ · · · ≥ σn.

The eigenvalues of M = (mij)1≤i,j≤n, σ1, σ2, . . . , σn are the roots of the asso-
ciated characteristic polynomial

pM (σ) = det(σIn −M) =
∏

(σ − σj), (3.2)

where In is the n× n identity matrix.

Remark 3.1. By (3.2), σ > σ1 ⇒ pM (σ) > 0.

In fact, Matrix M can be expressed as M = PJP−1, where P = (pij) is the
change of basis matrix of M and J is the Jordan canonical form (upper triangular
matrix) associated with M . The diagonal entries of J are the ordered eigenvalues
of M and pM (σ) = pJ(σ).

In the following, we denote by Q the eigenspace associated with σ1 (dimQ = 1)
and by T the hyperplain spanned by the other column vectors of matrix P . By
Hypothesis (H3), RN = Q

⊕
T . Now we define another hypothesis.

(H4) Assume that F = (fi) = (ρhi) ∈ Y , 1 ≤ i ≤ n, and hi ∈ L∞loc ∩ L2
ρ for any

i = 1, . . . , n.

Theorem 3.2. Assume that (H1), (H3), (H4) are satisfied. We also assume that
there exists an eigenvector Θ ∈ Q associated with σ1 such that F (x) = FQ(x) +
FT (x) with

FQ(x) = f̃1(x)Θ 6≡ 0 and
∫
f̃1ϕρ > 0;

also FQ(x) ∈ Q and FT (x) ∈ T . Then, for any R > 0, there exist two positive real
numbers δ and δ′, depending on F,M, ρ,R such that:

(I) If λρ−δ < λσ1 < λρ, System (3.1) has a unique solution U = (ui). Moreover,
on BR, for each integer i ∈ [1, n], ui has the sign of pi1, the ith item of the first
column vector of the matrix P = (pij).

(II) If λρ < λσ1 < λρ + δ′, System (3.1) has a unique solution U = (ui).
Moreover, on BR, for each integer i ∈ [1, n], ui has the sign of −pi1, where pi1 is
as above.

Remark 3.3. From (3.2) , we can also derive (always for λ > 0) that λσ1 < λρ

implies det(B) > 0, where
B := (λρIn − λM) (3.3)

Cooperative system: We make comments on the case of a cooperative system;
that is, a system where the coefficients outside the diagonal of M are positive:
mij > 0, i 6= j.

Remark 3.4. For the case of a cooperative system and λ = 1, Theorem 3.2 extends
earlier results in [20, Thm. 7].

Remark 3.5. Always for a cooperative system, the first column pi1, which consists
in the components of the first eigenvector, by Perron-Frobinius theorem ([8, p. 27],
[22]), is of one sign hence all components ui have the same sign for 1 ≤ i ≤ n.
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From [20], we derive the following result.

Corollary 3.6. Assume (H1), (H3) are satisfied and M is a cooperative matrix.
F = (fi) ∈ L∞ ∩ L2

1/ρ. The cooperative system satisfies the maximum principle if
and only if B := (λρIn − λM) is a nonsingular M-matrix.

A nonsingular square matrix B = (bij) is a M-matrix if bij ≤ 0 for i 6= j, bii > 0
and if all principal minors extracted from B are positive (see [8, 15]).

Remark 3.7. For a cooperative system, the condition 0 < λσ1 < λρ is equivalent
to Condition (3.3); that is,

(a) bij = −λmij ≤ 0 for i 6= j by mij ≥ 0 (M is cooperative).
(b) λρ − λσ1, . . . , λρ − λσn are eigenvalues of B. They are real and positive

⇔ 0 < λσ1 < λρ ⇔ λσn ≤ · · · ≤ λσ2 < λσ1 < λρ.

4. Proofs for a positive weight

Proof of Corollary 2.6. It follows simply from the maximum principle. Consider
the two equations

−∆(cϕρ) = λρρ(cϕρ),
−∆u = λρu+ f,

where c is a constant. By substraction

−∆(cϕρ − u) = λρ(cϕρ − u) + (λρ − λ)ρ(cϕρ)− f ;

Choosing c = ‖f‖Y /(λρ − λ) we have (λρ − λ)ρ(cϕρ) − f ≥ 0, 6≡ 0 and we derive
the result by the classical maximum principle. �

Proof of Theorem 2.8. This is the same proof as in [21], but our hypothesis here
are more general. We study Equation (2.1):

−∆u = λρ(x)u+ f, lim
|x|→∞

u(x) = 0, x ∈ RN , N ≥ 3,

when (H1) and (H2) are satisfied as well as (2.8):
∫
fϕρ > 0.

We decompose u. Set u = u∗ϕρ + u⊥ where
∫
u⊥ρϕρ = 0. Also u∗ =

∫
ρuϕρ.

Analogously set f = ρh and decompose h: h = h∗ϕρ +h⊥. Equation (2.1) becomes

(λρ − λ)ρu∗ϕρ −∆u⊥ = λρu⊥ + h∗ρϕρ + ρh⊥.

Multiply by ϕρ and integrate. We obtain (λρ − λ)u∗ = h∗. Hence

u =
h∗

λρ − λ
ϕρ + u⊥.

Also u⊥ is solution to
−∆u⊥ = λρu⊥ + ρh⊥. (4.1)

Since
∫
|∇u⊥|2 ≥ λ2

∫
ρ(u⊥)2, λ2 being the second eigenvalue of our problem, we

compute:

(λ2 − λ)
∫

RN

ρ(x)(u⊥)2 ≤
∫

RN

ρ(x)h⊥u⊥ ≤
[ ∫

RN

ρ(x)(h⊥)2
∫

RN

ρ(x)(u⊥)2
]1/2

.

Hence ∫
RN

ρ(x)(u⊥)2 ≤
( 1
λ2 − λ

)2
∫

RN

ρ(x)(h⊥)2.
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When λ < λρ < λ2, λ2 − λ > λ2 − λρ. Hence there exists K > 0, depending on h,
such that ∫

RN

ρ(x)(u⊥)2 ≤ K(λ2 − λρ)−2;

this upper bound is independent of λ. When λρ < λ < λ2, we choose λ2 − λ >
1
4 (λ2 − λρ). Again there exists K ′ > 0 such that∫

RN

ρ(x)(u⊥)2 ≤ K ′(λ2 − λρ)−2;

and again the upper bound is independent of λ.
Now choose R > 0. In both cases, u⊥ being bounded in L2

ρ(RN ), is also bounded
on L2

ρ(BR) and then in L2(BR). Therefore, since λ < λ2 the right-hand side term
in (4.1): λρu⊥ + ρh⊥ is also bounded in L2(BR).
By a classical bootstrap method we derive (e.g. as in [17]) that u⊥ is bounded in
Lq(BR) and finally in BR with respect to the sup-norm. On BR, the groundstate
ϕρ is bounded below.

For λρ − δ < λ < λρ < λ2, it is possible to choose λρ − λ > 0 small enough so
that

|u⊥| ≤ K ′ h∗

λ2 − λρ
ϕρ = K ′′ h∗

λρ − λ
ϕρ <

h∗

λρ − λ
ϕρ.

Hence we obtain

u =
h∗

λρ − λ
ϕρ + u⊥ ≤ h∗

λρ − λ
ϕρ +K ′′ h∗

λρ − λ
ϕρ = (1 +K ′′)

h∗

λρ − λ
ϕρ,

and

u =
h∗

λρ − λ
ϕρ + u⊥ ≥ h∗

λρ − λ
ϕρ −K ′′ h∗

λρ − λ
ϕρ = (1−K ′′)

h∗

λρ − λ
ϕρ,

then (2.9) is obtained.
For λρ < λ < λ2, it is possible to choose λ − λρ > 0 small enough so that

|u⊥| ≤ K ′ h∗

λ2−λρ
ϕρ ≤ K ′′ h∗

λ−λρ
ϕρ. Then (2.10) can be obtained similarly to the

discussion above. �

Proof of Theorem 3.2. We study −∆U = λρ(x)MU +F when M is a n×n matrix
and ρ a non negative weight. The case of a 2× 2 system is studied in [21].

We set
U = PŨ ⇔ Ũ = P−1U, F = PF̃ ⇔ F̃ = P−1F,

here Ũ and F̃ are column vectors with components ũi and f̃i, respectively, 1 ≤ i ≤ n.
P has constant coefficients. System (3.1) can be written as

−∆Ũ = λρ(x)JŨ + F̃ , (4.2)

where J is a Jordan canonical form which has p Jordan blocks Ji (1 ≤ j ≤ p ≤ n).
Every Jordan block is a square ki × ki matrix of the form:

Ji =


σi 1 0

. . . . . .

0
. . . 1

σi

 .

By Hypothesis (H3), the first block is 1× 1: J1 = (σ1).
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We will adapt the method in [25]. By Hypothesis (H3), we obtain the first
equation

−∆ũ1 = λρ(x)σ1ũ1 + f̃1, (4.3)
where

∫
f̃1ϕρ > 0, and f̃1 ∈ Y .

(I) If λσ1 < λρ. If λρ − δ < λσ1 < λρ, by Theorem 2.8, and (4.3), we get the local
fundamental positivity for ũ1:

0 <
k′

(λρ − λσ1)
ϕρ ≤ ũ1 ≤

k′′

(λρ − λσ1)
ϕρ, (4.4)

on the ball BR = {x ∈ RN : |x| < R}. As indicated in Corollary 2.9, (4.4) implies
ũ1/ϕρ → +∞ as λσ1 → λρ.

Then we consider the Jordan blocks Ji with 2 ≤ i ≤ n. Ji is a ki × ki matrix.
For i = 1, k1 = 1; for i ≥ 2, we denote si =

∑i−1
j=1 kj . All this gives equations from

line si + 1 to line si + ki − 1, we obtain ki − 1 equations:

−∆ũj = λρ(x)σiũj + λρ(x)ũj+1 + f̃j , if si + 1 ≤ j < si + ki − 1. (4.5)

The last equation in this block is

−∆ũj = λρ(x)σiũj + f̃j , for j = si + ki = si+1 (i ≥ 2). (4.6)

From λσi < λσ1 < λρ and Corollary 2.6, we know that the solution to (4.6); that
is, ũsi+1 exists and

|ũsi+1 | ≤
‖f̃si+1‖Y

λρ − λσi
ϕρ.

Take e.g. λσ1 >
λρ

2 , hence let λmin = λρ

2σ1
. Then we obtain

|ũsi+1 | ≤
‖f̃si+1‖Y

λ(σ1 − σi)
ϕρ ≤

‖f̃si+1‖Y

λmin(σ1 − σi)
ϕρ.

So we know that ũsi+1 ∈ X and ‖ũsi+1‖X ≤ csi+1 , where csi+1 depends only on
F,M .

In line j = si+1 − 1, we have

−∆ũj = λρ(x)σiũj + λρ(x)ũsi+1 + f̃j (i ≥ 2)

from (4.5). Using Corollary 2.6, we obtain the existence of ũj and

|ũj | ≤
‖λρ(x)ũsi+1 + f̃j‖Y

λρ − λσi
ϕρ ≤

λ‖ρ(x)ũsi+1‖Y + ‖f̃j‖Y

λ(σ1 − σi)
ϕρ

≤
λcsi+1 +mj

λ(σ1 − σi)
ϕρ ≤ (

csi+1

σ1 − σi
+

mj

λmin(σ1 − σi)
)ϕρ

where ‖ρ(x)ũsi+1‖Y ≤ csi+1 , ‖f̃j‖Y ≤ mj . So for j = si+1− 1, we have ũj ∈ X and
‖ũj‖X ≤ cj , where cj depends only on F, M, ρ. Similar discussion from line si+1

to line si + 1, we obtain that, for each integer j with si + 1 ≤ j ≤ si+1, ‖ũj‖X ≤ cj
in each Jordan’s block Ji, where the real number cj depends only on F,M, ρ.

In conclusion, we have that for 2 ≤ j ≤ n,

|ũj | ≤ cjϕρ, (4.7)

where cj depends only on F,M, ρ. For j = 1,

ũj ≥ cϕρ, (4.8)

where c depends on F,M, λ; moreover ũ1/ϕρ → +∞ as λσ1 → λρ.
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Now we go back to the functions ui. For any given R > 0, U = PŨ = (ui)
implies that for each ui, 1 ≤ i ≤ n, we have

ui = pi1ũ1 +
n∑

j=2

pij ũj . (4.9)

So ũ1/ϕρ → +∞ as λσ1 → λρ; by (4.7),
∑n

j=2 pij ũj is bounded by a constant times
ϕρ. Therefore, on any ball BR, for any i ∈ {1, 2, . . . , n}, there exists δ = infi δi > 0
such that for λρ − δ < λσ1 < λρ, uj has the sign of pij .
(II) If λσ1 > λρ and λσ1 − λρ is small enough, then there exists δ′ > 0 such that
λσk < λρ < λσ1 < λρ + δ′. In this case, we also have Equations (4.3), (4.5) and
(4.6).

By Theorem 2.8 and (4.3), we can get the local fundamental negativity: On any
ball BR, there exists δ1 > 0 such that if λρ < λσ1 < λρ + δ1 < λρ + δ′, then

− K ′′

λσ1 − λρ
ϕρ ≤ ũ1 ≤ − K ′

λσ1 − λρ
ϕρ < 0,

and ũ1/ϕρ → −∞ as λσ1 → λρ. In the equations −∆ũi = λρ(x)σkũi + f̃i, we
have λσk < λρ, so we can use the local fundamental positivity results and by (4.7),∑n

j=2 pij ũj is bounded by a constant times ϕρ. In ui = pi1ũ1 +
∑n

j=2 pij ũj , we
have

∑n
j=2 pij ũj bounded by a constant times ϕρ and ũ1/ϕρ → −∞ as λσ1 → λρ.

So, on any BR, there exists δ′ > 0 such that for λρ < λσ1 < λρ + δ′, we obtain that
ui has the sign of −pi1. �

5. The case of an indefinite weight

We suppose now that ρ changes sign and we set ρ+(x) = max{ρ(x), 0} and
ρ = ρ+ − ρ−. We assume the hypothesis

(H1’) – ρ is smooth, bounded and positive somewhere; that is, Ω+ := {x ∈
RN/ρ(x) > 0} is with positive Lebesgue measure.

– ρ+ satisfies (H1) with some α > 1.
We seek for solutions in the space D1,2

ρ− := {u ∈ D1,2 s.t.
∫

RN ρ−u2 <∞}.
The principal eigenpair We denote by (λρ > 0, ϕρ > 0) the associated principal
eigenpair. From the hypothesis on ρ, we know that a non-positive eigenvalue may
exist. Since λρ = (−λ)(−ρ), we only consider the case of positive λ > 0; also (2.7)
adapted to this case is stated as:

Lemma 5.1. Assume (H1’). Then

0 < λρ = inf
{u∈D1,2

ρ−
:
R

RN ρu2=1}

∫
|∇u|2. (5.1)

The equality holds if and only if u is proportional to ϕρ.

Now define the hypothesis
(H2’) There exist α > 1, ε > 0 with f = (ρ+ + εpα)h such that h ∈ L∞loc ∩ L2

pα
.

Results for a weight changing sign: We state our results first for one equation,
then for an n × n system. It is easy to prove that Proposition 2.7 and Corollary
2.6 are still valid for this indefinite weight.

Theorem 5.2. Assume (H1’), (H2’) and (2.8):
∫

RN fϕρ > 0. Then, for any R > 0,
there exists δ > 0 (depending on R, f and ρ) such that
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• for λ < λρ, and λρ − λ < δ, there exist positive constants k′ and k′′,
depending on h and R, such that on BR = {x ∈ RN : |x| < R},

0 <
k′

λρ − λ
ϕρ ≤ u ≤ k′′

λρ − λ
ϕρ. (5.2)

(”Local Fundamental Positivity”)
• for λρ < λ < λρ + δ, there are positive constants K ′, K ′′, depending on f ,
ϕρ and R such that on the ball BR = {x ∈ RN : |x| < R}:

− K ′′

λ− λρ
ϕρ ≤ u ≤ − K ′

λ− λρ
ϕρ < 0. (5.3)

(”Local fundamental negativity”)

We consider finally System (3.1) and use the same notation as above, and fol-
lowing hypothesis.

(H’4) We assume that F = (fi) = (ρhi) ∈ Y with hi ∈ L∞loc ∩ L2
pα

for any
i = 1, . . . , n.

Theorem 5.3. Assume that (H1’), (H4’), (H3) are satisfied. We also assume that
there exists an eigenvector Θ ∈ Q associated with σ1 such that F (x) = f̃1(x)Θ +
FT (x) with

∫
f̃1ϕρ > 0 where FQ(x) ∈ Q, FT (x) ∈ T . Then, for any R > 0, there

exist two positive real numbers δ and δ′, depending on F,M,R, ρ such that
(I) If λρ−δ < λσ1 < λρ, System (3.1) has a unique solution U = (ui). Moreover,

on any BR, for each integer i ∈ [1, n], we have ui ∈ X and ui has the sign of pi1,
the ith item of the first column vector of the matrix P = (pij).

(II) If λρ < λσ1 < λρ + δ′, System (3.1) has a unique solution U = (ui).
Moreover, on any BR, for each integer i ∈ [1, n], we have ui ∈ X and ui has the
sign of −pi1, where pi1 is given as above.

Proof of Lemma 5.1. First, we recall for completeness the proof of the existence
of a positive principal eigenvalue, denoted as in Section 1, λρ associated with a
principal eigenfunction ϕρ. We follow e.g. [16]. The equation

−∆u = λρ(x)u on RN

can be rewritten as

−∆u+ λρ−(x)u = λρ+(x)u on RN ⇔
−∆u+ λρ−α (x)u = λρ+

α (x)u on RN ,

where ρ±α := ρ± + εpα. This shift is introduced since ρ+ is not necessarily positive
but only ≥ 0. We study now, for µ > 0,

−∆u+ µρ−α (x)u = λρ+
α (x)u on RN . (5.4)

For the rest of this article, we set Lµu := −∆u+ µρ−α (x)u.
Since ρ+

α decreases fast enough, we have an analogous to Theorem 2.3: there
exists a principal eigenpair (λ∗(µ), ψµ) such that

Lµψµ = λ∗(µ)ρ+
α (x)ψµ on RN ,

λ∗(µ) = inf
{u∈D1,2

ρ
−
α

:
R

RN ρ+
α u2=1}

∫
(|∇u|2 + µρ−α (x)u2)dx.

Note that, by (2.3), D1,2

ρ−α
= Dρ− .
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λ∗(µ) varies continuously and monotonically with respect to µ; it increases.
Moreover λ∗(0) is the principal eigenvalue satisfying

−∆u = λρ+
α (x)u on RN

where the weight is positive. Hence we know that λ∗(0) exists and is positive. Also,
by properties of monotonicity of eigenvalues w.r.t. the domain (for Dirichlet bound-
ary conditions) , since Ω+ ⊂ RN , λ∗(µ) is always less than τ∗µ the positive principal
eigenvalue of Lµu = τρ+

αu defined on Ω+ with Dirichlet boundary conditions. This
curve cuts the bisectrix at τ0, the positive principal eigenvalue of −∆u = τ0ρ+u
on Ω+. Hence , the (continuous) curve (µ, λ∗(µ)) intersects the bisectrix at λ0 such
that, for some u:

−∆u+ λ0ρ−α (x)u = Lλ0u = λ0ρ+
α (x)u ⇔ −∆u = λ0ρ(x)u on RN .

λ0 is the (unique) positive principal eigenvalue λρ of

−∆u = λρ(x)u, x ∈ RN ,

and λρ defined by (5.1) and u = kϕρ. It does not depend on α. �

Remark 5.4. (λ∗(µ)− λρ)(µ− λρ) > 0 for µ varying around λρ.

Proof of Theorem 5.2. Consider the equation

−∆u = λρ(x)u+ f,

rewritten as
−∆u+ λρ−α (x)u = λρ+

α (x)u+ f.

This equation with positive weight can be treated as (2.1) except that the Laplacian
−∆ is replaced by L∗ := −∆ + λρρ

−
α . Obviously, its principal eigenpair is (λρ, ϕρ):

L∗ϕρ = λρρ
+
α (x)ϕρ. We denote by σ2 the second eigenvalue of this problem. As

previously (proof of Theorem 2.8), we decompose u = u∗ϕρ+u⊥ where
∫
ρ+

αu
⊥ϕρ =

0. Also h = h∗ϕρ + h⊥. We derive analogous inequalities

u =
h∗

λρ − λ
ϕρ + u⊥

and ∫
ρ+

α (u⊥)2 ≤ (
1

σ2 − λ
)2

∫
ρ+

α (h⊥)2.

For λ < λρ, σ2 − λ > σ2 − λρ.
For λ > λρ, choose λ close enough to λρ so that σ2 − λ > 1

4 (σ2 − λρ).
We derive as for positive weight that |u⊥λ | is locally bounded and, for |λ − λρ|,

small enough we derive the results for one equation as for a positive weight. We
conclude as in the proof of Theorems 2.8 and 3.2. �

Proof of Theorem 5.3. For a positive weight, we set

U = PŨ ⇔ Ũ = P−1U, F = PF̃ ⇔ F̃ = P−1F.

System (3.1) can be written as

−∆Ũ = λρ(x)JŨ + F̃ , (5.5)
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where J is a Jordan canonical form which has p Jordan blocks Ji (1 ≤ j ≤ p ≤ n).
We are also lead to Equations (4.3), (4.5) and (4.6) in ũj with indefinite weight
that we can study using Theorem 5.2. Going back to U = PŨ , we have (4.9):

ui = pi1ũ1 +
n∑

j=2

pij ũj , 1 ≤ i ≤ n.

Finally on a ball BR, we have
(I) If λρ − δ < λσ1 < λρ and λρ − λσ1 small enough, we have ũ1/ϕρ → +∞ as
λσ1 → λρ and

∑n
j=2 pij ũj is bounded by a constant times ϕρ.

(II) If λρ < λσ1 < λρ + δ′ and λσ1 − λρ small enough, we have ũ1/ϕρ → −∞ as
λσ1 → λρ and

∑n
j=2 pij ũj is bounded by a constant times ϕρ. �
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