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POSITIVITY AND NEGATIVITY OF SOLUTIONS TO n xn
WEIGHTED SYSTEMS INVOLVING THE LAPLACE OPERATOR
ON R¥

BENEDICTE ALZIARY, JACQUELINE FLECKINGER,
MARIE-HELENE LECUREUX, NA WEI

ABSTRACT. We consider the sign of the solutions of a n X n system defined
on the whole space RV, N > 3 and a weight function p with a positive part
decreasing fast enough,

—AU = Ap(z)MU + F,

where F is a vector of functions, M is a n X n matrix with constant coefficients,
not necessarily cooperative, and the weight function p is allowed to change sign.
We prove that the solutions of the n X n system exist and then we prove the
local fundamental positivity and local fundamental negativity of the solutions
when |Ao1 — Ap| is small enough, where o1 is the largest eigenvalue of the
constant matrix M and A, is the “principal” eigenvalue of

—Au = Mp(z)u, lim u(z) =0; wu(z)>0, =zcRY.

|z|]—o0

1. INTRODUCTION

Elliptic eigenvalue problems with indefinite weight arise naturally from lineariza-
tion of many semilinear elliptic equations. A lot of literature in applied mathe-
matics, engineering, physics, and biology treat such problems which occur in the
study of transport theory, crystal coloration, laser theory, reaction-diffusion equa-
tions, fluid dynamics, ete. (see [I0] and the references therein). Many researchers
studied the indefinite weighted eigenvalue problems under various hypotheses (see
[T, 2, @ 10, 19]). Owing to the importance of such problems, we investigate some
systems concerning the Laplace operator. Specially, we will obtain the sign of
solutions of some weighted systems in this paper.

The positivity of solutions is usually shown with the maximum principles, which
are also of great importance for the study of existence and uniqueness of solutions
to some linear and nonlinear equations. Moreover, P. Clément and L. Peletier [11]
proved an antimaximum principle for a linear equation —Awu = Au + f defined on
a smooth bounded domain Q C R with Dirichlet boundary condition 9. Let
A1 be the principal eigenvalue of the Laplace operator —A, which is endowed with
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homogeneous Dirichlet boundary condition. We recall here the maximum principle
as well as the antimaximum principle for a bounded domain.

Proposition 1.1 (Hopf Maximum principle). Assume f € LP(Q), p > N and
f>0, f#£0. Let u be a solution of the equation —Au = du+ f, u = 0 on the
boundary 0. Then for A < Ay,

ou
u(z) >0 on %(x)}dﬂ <0,

where % 1s the outward normal derivative on OS).

Proposition 1.2 (Antimaximum principle). Assume f € LP(Q),p > N and f > 0,
f#£0. u solves —Au = Mu+ f in Q, ulsgg = 0. Moreover, 9 is smooth enough.
Then there exists § > 0, depending on f, such that for Ay < A < A1 + 6,

ou

%(x)}aﬂ > 0.

u(z) <0 on

These results are classical. However, many problems in mechanic, physic or
biology lead to some more general problems as the following equation defined on
the whole space RY, N > 2:

Lu = Mp(z)u+ f, = eR".

Here L is an elliptic operator as e.g. the Laplacian or the p-Laplacian. The weight
p ensures the discreteness of the spectrum (e.g. pt = maz(p,0) tends to zero fast
enough). There are several results with regard to such kinds of problems, such as
the maximum principle [20], the anti-maximum principle ([I4] or [26]), the (local)
fundamental positivity or negativity of solutions [2I]. Fleckinger, Gossez and de
Thélin also proved in [I4] a local antimaximum principle for the p-Laplacian on
the whole space RY | which follows the approach introduced in [13]. Maximum and
antimaximum principles have been extended into notions of “fundamental positiv-
ity” and “fundamental negativity” by Alziary and Takac [6] or [7], who introduced
these definitions for the solutions of Schrodinger equation.

We say that a function wu satisfies the “fundamental positivity” if there exists a
constant ¢ > 0 such that v > cp, > 0 a.e. in RY and a function u satisfies the
“fundamental negativity” if there exists a constant ¢ > 0 such that v < —cyp, <
0 a.e. in RN, where ¢, denotes a positive principal eigenfunction associated to
the principal eigenvalue A,. We will explain it in detail in the next section. If
these results are obtained on balls, we have the definitions of “local fundamental
positivity” and ”local fundamental negativity” respectively.

There are also some results for systems in [3], 12}, 15} [16], 18, 20, 23], concerning
the existence of principal eigenvalue and maximum principle.

Alziary, Takédc [0] investigate equations involving Schrodinger operators

— Au+ q(z)u = I+ f(z) (1.1)
in L2(RY). They proved a pointwise lower bound for the solution of for a
function 0 < f # 0. Alziary, Fleckinger, and Taka¢ showed in [4] and [5] the
fundamental negativity of solutions to when A\ is slightly above the principal
eigenvalue. Alziary, Fleckinger,Lécureux [3] obtained the fundamental positivity
and fundamental negativity of a 2 x 2 systems of Schrodinger equations on RYM.
Then Lécureux [25] extended the results to the non cooperative n x n system

LU =XU +MU + F
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on RY, where £ is a diagonal matrix of Schrédinger operators of the form £ :=
—A + ¢, q is a potential growing fast enough and M is a constant matrix.

In this paper, we combine our methods with those of Lécureux [25] to study a
n x n weighted systems defined on the whole space RY, N > 3:

—AU = Mp(z)MU + F,

here A denotes the standard Laplace operator, A is a real spectral parameter;
U= (ui,ug,...,up)" and F = (f1, fo,..., fu)". The functions f; are measurable
and bounded. The function p is allowed to change sign; i.e., p is an indefinite weight
function. Moreover, p* = max(p, 0) tends to 0 fast enough as |z| — co. The matrix
M is a n x n matrix with real constant coefficients m;; and real eigenvalues o} # 0;
it is not necessarily cooperative, that is that the terms outside the diagonal may
have any sign. Recall that a matrix is said to be cooperative if the coefficients
outside the diagonal are positive. We derive our results from results for the case of
one equation and of the 2 x 2 system which have been studied in [21].

This paper is organized as follows: in Section 2, we recall or prove results for the
case of one equation. Then we give our main results for a positive weight in Section
3 and we prove them in Section 4; finally we extend our results to indefinite weight
in Section 5.

2. EQUATIONS WITH POSITIVE WEIGHT

We introduce some notations and hypotheses in this section; then we recall and
prove some results on local fundamental positivity and local fundamental negativity
which we will use later.

Notation and Hypotheses for a positive weight. For a positive and bounded
function 7, we denote L2(RY) or shortly L? the space

LARY) = {u: / ru’dz < oo} with norm lullL2@ny = (/ Tqux)
RN RN

1/2

Let us consider the equation

—Au=Xp(x)u+f, lim u(z)=0, zcRY, N>3 (2.1)

|z]—o0

where f € L>®(RY) N L2 /p and p(z) is a positive smooth function decreasing faster
than 1/|z|? as |z| — oo. More precisely we assume that p satisfies the hypothesis:

(H1) p(x) > 0, is smooth, bounded and there exists some constants K > 0 and
a > 1 such that p(x) < Kp,(z) where

pa(2) := (1 +|2?)~ . (2.2)
Remark 2.1. Tt follows from (H1) that p € LV/2(RY) but is not necessarily in L'.

The space D'? : We denote by D2 the closure of C§° with respect to the norm

1/2
]l prs = (/N (Vuldz)
R

It can be shown (see [24, Proposition 2.4]) that
D2 = {u e L¥2(RY) : Vu € (L2(RV)N},
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and that there exists K > 0 such that for all v € D12,
lull, 4=, < Kllullora.

We also use Hardy’s inequality and deduce that there exists two positive constants
~ and 7/ such that

/RN |Vul|*dx > ’Y/RN Palulldz >~ /RN plu|®dz, ¥ u € D2 (2.3)

Hence any u € D"? is in L?. Moreover the embedding D™* into L? is compact [14}
Lemma 2.3].

Remark 2.2. Note that by (2.3, D*? does not depend on p. Moreover note that
the constant function is not in D2,

For any p satisfying (H1), we seek weak solutions to (2.1)) in D2,
The principal eigenpair: Denote by (), ¢,) the “principal” eigenpair which
exists [9, [I0] and satisfies

—Ap, = App(x)pp, € RY: wp(x) >0, Vze RY, /RN p@i =1, (24)

with ¢, in L2. Here ), is the smallest eigenvalue of (EV); it is simple and it

is called the “principal eigenvalue”. The eigenfunction ¢, corresponding to A, is

called the “groundstate” or “principal eigenfunction”. We define the subspaces X
of LZ(RY) and Y of Lf/p(RN) as:

X :={uecLZ(R") :u/p, € L*(RN)}, (2.5)

Y= {ue L}, RY):u/(pp,) € L*(RY)}, (2.6)

respectively, which are Banach spaces with the norms |lul|x := esssupg~ (Jul/®))

and ||ully := esssupgn (Ju/(pp,)]), respectively.
The function u € D12 is a weak solution of Equation (2.1)) if

[ @wvn=a [ s+ [ pn vmen
RN RN RN

This solution is also classical by regularity properties.
Theorem 2.3 ([9, Sec. 4], [20, Lemma 4]). Assume (H1). There exists a positive

principal eigenvalue A, which is given by

0< A, = inf /|Vu\2. (2.7)

{ueD2, oy pu?=1}
The equality in (2.7)) holds if and only if u is proportional to ¢,,.

Remark 2.4. The existence of a principal eigenvalue and Equation (2.7) are still
valid, under some conditions, for a non negative weight and for an indefinite weight
(see e.g. [9,10]). We recall the proof later (Lemma [5.1)).
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2.1. Results for one equation with positive weight. First, we recall a maxi-
mum principle and a (local) antimaximum principle for the case of one equation.

Proposition 2.5 (Maximum Principle, [20]). We suppose that p satisfies Hypoth-
esis (H1), f € L, f >0, f £0. A necessary and sufficient condition for having a
(strong) maximum principle, (that is f bounded, f >0, f Z 0 implies any solution
u to is positive), is 0 < A < A,. Moreover, if 0 < X\ < \,, then there exists a
solution to and this solution is unique and positive.

Corollary 2.6. Assume that f € Y. For 0 < A < \,, u ezists and

P

0<u(z) < 171y op(z), Vo eRYN.
Ay — A

Proposition 2.7 (Local antimaximum principle, [26, Theorem 5.2] or [14, Theorem
3.3]). , Assume (H1) and f € L>°, f >0, f £0. Let R > 0 be given; there exists
d > 0 depending on R, f and p such that for A\, < A < X, + 0, then u < 0 on the
ball Bp = {x € RY /|z| < R}.

Now we improve maximum and antimaximum principle and also the results on
fundamental positivity and fundamental negativity shown in [2I]. For that purpose,
we assume that

(H2) f=phand h e L{s, N L2

loc

Theorem 2.8 (Local fundamental positivity and negativity). Assume that (H1)
and (H2) are satisfied; moreover assume that

/ fep>0. (2.8)
RN

Then, for any given R > 0, there exist positive numbers k', k", K' K" ,5,8" (de-
pending on R, p and f) such that on Bgr = {x € RY : |z| < R}:
o for X, =0 <A< A,
! k//

_ <u< —p,. 2.
0<)\p_/\80p7uf/\p_>\@p (2.9)

(Local fundamental positivity)
o for A, <A< A, + 0,
1 !/

<u< ——-— 0. 2.10
)\_)\p@p_U_ )\_)\pﬁap< ( )

(Local fundamental negativity)

Corollary 2.9 ([21]). Assume (H1), (H2) and (2.8)) are satisfied; then for any

given R >0, on Bg, %—wl—oo as A — A,.

This corollary plays an important role when studying systems of equations.

3. MAIN RESULTS FOR A SYSTEM WITH POSITIVE WEIGHT

We consider now a n X n system:
— AU =Mp(x)MU +F, zeRY, U—-0 as|z|— +oo, (3.1)
where p satisfies Hypothesis (H1). We assume the hypothesis
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(H3) M is a n x n non-degenerate matrix which has constant coefficients and has
only real eigenvalues. Moreover, the largest one which is denoted by oy is
positive and algebraically and geometrically simple.

Of course some of the other eigenvalues can be equal. Therefore we write them in
decreasing order o1 > g9 > -+ > 0y,

The eigenvalues of M = (m;;)1<i j<n, 01, 02, ..., O, are the roots of the asso-
ciated characteristic polynomial
pym (o) =det(ol, — M) =H(U—Uj), (3.2)

where I,, is the n X n identity matrix.
Remark 3.1. By (3.2), 0 > 01 = pu(o) > 0.

In fact, Matrix M can be expressed as M = PJP~! where P = (p;;) is the
change of basis matrix of M and J is the Jordan canonical form (upper triangular
matrix) associated with M. The diagonal entries of J are the ordered eigenvalues
of M and py(0) = py(o).

In the following, we denote by ) the eigenspace associated with o7 (dim @ = 1)
and by T the hyperplain spanned by the other column vectors of matrix P. By
Hypothesis (H3), RY = Q@ T. Now we define another hypothesis.

(H4) Assume that F = (f;) = (ph;) € Y, 1 < i <n, and h; € LS, N L2 for any
i=1,...,n.

Theorem 3.2. Assume that (H1), (H3), (H4) are satisfied. We also assume that
there exists an eigenvector © € Q associated with o1 such that F(z) = Fg(x) +
Fr(z) with

Fo(z) = fl(x)@ Z£0 and /ﬁwp > 0;

also Fg(x) € Q and Fr(x) € T. Then, for any R > 0, there exist two positive real
numbers & and &', depending on F, M, p, R such that:

(I) If A\, =8 < Ao1 < A,, System has a unique solution U = (u;). Moreover,
on Bg, for each integer i € [1,n], u; has the sign of p;1, the it item of the first
column vector of the matriz P = (p;;).

(II) If A\, < Ao1 < A, + &', System has a unique solution U = (u;).
Moreover, on Bg, for each integer i € [1,n], u; has the sign of —p;1, where p;; s
as above.

Remark 3.3. From (3.2)) , we can also derive (always for A > 0) that Aoy < A,
implies det(B) > 0, where
B := (NI, — AM) (3.3)

Cooperative system: We make comments on the case of a cooperative system;
that is, a system where the coefficients outside the diagonal of M are positive:
m;; > 0,7 #j.

Remark 3.4. For the case of a cooperative system and A = 1, Theorem [3.2]extends

earlier results in [20, Thm. 7).

Remark 3.5. Always for a cooperative system, the first column p;1, which consists
in the components of the first eigenvector, by Perron-Frobinius theorem ([8, p. 27],
[22]), is of one sign hence all components u; have the same sign for 1 < i < n.
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From [20], we derive the following result.

Corollary 3.6. Assume (H1), (H3) are satisfied and M is a cooperative matriz.
F=(f)elL>*n L%/p. The cooperative system satisfies the maximum principle if
and only if B := (\,I,, — AM) is a nonsingular M-matriz.

A nonsingular square matrix B = (b;;) is a M-matrix if b;; < 0 for ¢ # j, b;; >0

and if all principal minors extracted from B are positive (see [8] [15]).

Remark 3.7. For a cooperative system, the condition 0 < Aoy < A, is equivalent
to Condition (3.3]); that is,

(a) bjj = —Amy;; <0 for i # j by m;; > 0 (M is cooperative).

(b) Ay —Ao1,..., A, — Aoy, are eigenvalues of B. They are real and positive

S0<AoL <Ay & Ao, < < Aog < Aap < A,

4. PROOFS FOR A POSITIVE WEIGHT

Proof of Corollary[2.6 1t follows simply from the maximum principle. Consider
the two equations
—A(cgp) = Aopleep),
—Au = Apu + f,
where c is a constant. By substraction
—A(epp —u) = Aplep, —u) + (A — A)plepp) — f;
Choosing ¢ = || f|ly /(A — A) we have (A, — X)p(cp,) — f > 0, #Z 0 and we derive

the result by the classical maximum principle. a

Proof of Theorem[2.8 This is the same proof as in [2I], but our hypothesis here
are more general. We study Equation (2.1)):

—Au=Mp(z)u+ f, lim wu(z)=0 zecRY, N>3,

|z —
when (H1) and (H2) are satisfied as well as [2.8): [ f¢, > 0.

We decompose u. Set u = u*p, + ut where fuLpapp = 0. Also u* = [ pup,.
Analogously set f = ph and decompose h: h = h*p, + h*. Equation (2.1)) becomes
(A — Npu*p, — Aut = Mpu + h*pp, + pht.

Multiply by ¢, and integrate. We obtain (A, — A)u*™ = h*. Hence

*

VDY

u gap—i-uJ‘.

Also u™ is solution to

— Aut = Mput + pht. (4.1)
Since [ [Vul|?> > X2 [ p(ut)?, A2 being the second eigenvalue of our problem, we
compute:

a0 [ o< [ ottt < [ o2 [ pwetr] "

Hence
1

142 2 2
| @t < (o) [ st
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When A < A, < A2, Ao — A > Ay — A,. Hence there exists K > 0, depending on A,
such that

/ p(@)()? < K (g — Ap) %
RN

this upper bound is independent of A\. When A, < A < Ay, we choose Ay — A >
1(A2 = A,). Again there exists K’ > 0 such that

[ o < K 0w =)

and again the upper bound is independent of A.

Now choose R > 0. In both cases, u being bounded in L% (R™), is also bounded
on L2(Bg) and then in L?(Bg). Therefore, since A < Xz the right-hand side term
in : Aput + pht is also bounded in L?(Bg).

By a classical bootstrap method we derive (e.g. as in [I7]) that u' is bounded in
L(Bg) and finally in Bgr with respect to the sup-norm. On Bg, the groundstate
¢, is bounded below.

For A\, — 6 < A < A, < Ag, it is possible to choose A, — A > 0 small enough so
that

* * h*
1 < K/ _ K// )
e S WA Wy Ly
Hence we obtain
* * h* *
_ 1 < K// = (1 K//
W L W L vy L St by S0
and
h* N h* h* *
_ >0 o K" =(1—- K"
RV Ly L N, —ATf ( )Ap—Awm

then (2.9) is obtained.

For A, < )\ < Mg, it is possible to choose A — A, > 0 small enough so that
lut| < K ! < K'0- 5 %p- Then (2.10) can be obtained similarly to the
discussion above (]

Proof of Theorem[3.4 We study —AU = A\p(z)MU + F when M is a n X n matrix
and p a non negative weight. The case of a 2 X 2 system is studied in [2T].
We set L L
U=PU<«U=P'U F=PF&F=P'F
here U and F are column vectors with components u; and ﬁ-, respectively, 1 < i < n.
P has constant coefficients. System (3.1)) can be written as
— AU = M\p(2)JU + F, (4.2)

where J is a Jordan canonical form which has p Jordan blocks J; (1 <j <p <n).
Every Jordan block is a square k; X k; matrix of the form:

ag; 1 0

0o .1

T4

By Hypothesis (H3), the first block is 1 x 1: J; = (071).
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We will adapt the method in [25]. By Hypothesis (H3), we obtain the first
equation B
— Ay = /\p(x)olﬂl + fl, (43)
where [ fip, >0, and f; € Y.
(I) If Aoy < A, IE A, =6 < Ao1 < Ay, by Theorem and , we get the local
fundamental positivity for uy:
kl " k//
0< o, = /\O_l)wp <u; < O, )\01)%’
on the ball B = {z € RY : |z| < R}. As indicated in Corollary implies
Ui/pp — +00 as Aop — A,
Then we consider the Jordan blocks J; with 2 <14 < n. J; is a k; X k; matrix.
Fori=1, k; = 1; for i > 2, we denote s; = Z;;ll k;. All this gives equations from
line s; + 1 to line s; + k; — 1, we obtain k; — 1 equations:

— AT = Mp(x)oitly + (@)U + fj,  ifsi+1<j<si+k—1  (45)

(4.4)

The last equation in this block is

— Aﬂj = )\p(x)aﬂj + fj, for j=s;+k; = Sit1 (’L > 2). (46)
From Ao; < Aoy < A, and Corollary we know that the solution to (4.6); that
is, us,,, exists and

ER Y
e Ml
)\p — )\G‘i

Take e.g. Aoy > )‘—2”, hence let Apnin = 2’\7”1 Then we obtain

| < ||f3i+1HY Hf3¢+1||Y
e = o1 —0y) r= Amin(01 — 07) r
So we know that u,,,, € X and |[us,,,||x < cs,.,, Where ¢, depends only on
F, M.

In line j = s;41 — 1, we have

_Aaj = Ap(m‘)gi%:lj + Ap(x)ﬂ3i+1 + f] (Z > 2)
from (4.5). Using Corollary we obtain the existence of u; and
[Ao(@)ts, i + filly  _ Allp@)tsilly + 115y
N, — Ao r= Aoy —o4) 8

ACs, ; »
< cz+l+m]¢pg( CH~1

>\(01—0i) 01— 05 )\min(Ul—Ji

;] <

m;

))‘Pp

where ||p(2)us,,, |y < ¢, 15 | £illy < mj. Sofor j = s;11 — 1, we have %; € X and
lla;]|x < c¢j, where ¢; depends only on F, M, p. Similar discussion from line s;41
to line s; + 1, we obtain that, for each integer j with s; +1 < j < 5,41, [[uj]|x < ¢;
in each Jordan’s block J;, where the real number c; depends only on F, M, p.

In conclusion, we have that for 2 < j < n,

[u;] < ¢jep, (4.7)
where ¢; depends only on I, M, p. For j =1,
Uj > cpp, (4.8)

where ¢ depends on F, M, \; moreover u1/p, — 400 as Ao1 — A,.
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Now we go back to the functions u;. For any given R > 0, U = PU = (u;)
implies that for each u;, 1 < i < n, we have

n
w; = pilin + Y pijily. (4.9)
j=2

So w1 /¢, — +00 as Aa1 — A,; by (4.7), Z?:z piju; is bounded by a constant times
¢,. Therefore, on any ball Bg, for any i € {1,2,...,n}, there exists § = inf; §; > 0
such that for A\, — 6 < Aoy < A, u; has the sign of p;; .
(IT) If Aoy > A, and Aoy — A, is small enough, then there exists 6’ > 0 such that
Ao, < A, < Aoy < A, + ¢’ In this case, we also have Equations (4.3, (4.5) and
9.

By Theorem and (4.3)), we can get the local fundamental negativity: On any
ball Bg, there exists §; > 0 such that if A, < Aoy <A, +01 <A, + ¢’, then

K/I K/
e < < ————p, <0,
Nor 2, PP SIS TR e

and 41/, — —oo as Ao1 — A,. In the equations —Au; = Ap(x)oru; + ﬁ, we
have Aoy, < A,, so we can use the local fundamental positivity results and by .,
Zj 5 Pijt; is bounded by a constant times ¢,. In u;, = p;iu; + Zj o Dijlj, we
have 2]22 pi;u; bounded by a constant times ¢, and 41 /¢, — —00 as Ao1 — A,.
So, on any Bp, there exists ¢’ > 0 such that for A, < Aoy < A, + ', we obtain that
u; has the sign of —p;;. O

5. THE CASE OF AN INDEFINITE WEIGHT

We suppose now that p changes sign and we set p™(x) = maz{p(z),0} and
p=pt — p~. We assume the hypothesis
(HI’) — p is smooth, bounded and positive somewhere; that is, Q, = {z €
RN /p(z) > 0} is with positive Lebesgue measure.
— pt satisfies (H1) with some o > 1.

We seek for solutions in the space Dll)’? ={ueD"?st. [pnp u? < oo}
The principal eigenpair We denote by (A, > 0, ¢, > 0) the associated principal
eigenpair. From the hypothesis on p, we know that a non-positive eigenvalue may
exist. Since A\, = (—A)(—p), we only consider the case of positive A > 0; also (2.7)
adapted to this case is stated as:

Lemma 5.1. Assume (H1’). Then

0< A, = ,inf /|Vu|2. (5.1)

{ueD2: fon pu?=1}
The equality holds if and only if u is proportional to ¢,.

Now define the hypothesis
(H2’) There exist a > 1, € > 0 with f = (pT 4 epq)h such that h e LS N L2 .

loc
Results for a weight changing sign: We state our results first for one equation,
then for an n x n system. It is easy to prove that Proposition and Corollary
are still valid for this indefinite weight.

Theorem 5.2. Assume (H1'), (H2') and 2.8): [~ f@, > 0. Then, for any R > 0,
there exists § > 0 (depending on R, [ and p) such that
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o for X < A,, and A\, — X\ < 0, there exist positive constants k' and k",
depending on h and R, such that on Bg = {x € RY : |z| < R},
/ k,//
<u< ——p,. 5.2
PV S W (5:2)
(”Local Fundamental Positivity”)

o for X\, < X< A\, + 9, there are positive constants K', K", depending on f,
¢, and R such that on the ball By = {x € RN : |z] < R}:

K// K/
- Su<———p
A=), " A=, "

0<

<0. (5.3)

(7 Local fundamental negativity”)
We consider finally System and use the same notation as above, and fol-
lowing hypothesis.
(H'4) We assume that F' = (f;) = (ph;) € Y with h; € L{S, N L2 for any
t=1,...,n.
Theorem 5.3. Assume that (H1’), (H4’), (H3) are satisfied. We also assume that
there exists an eigenvector © € Q associated with 1 such that F(z) = f1(z)© +
Fr(x) with fj?lgpp > 0 where Fg(x) € Q, Fr(x) € T. Then, for any R > 0, there
exist two positive real numbers 6 and &', depending on F, M, R, p such that
(I) If A\, =8 < Aoy < A,, System has a unique solution U = (u;). Moreover,
on any Bg, for each integer i € [1,n], we have u; € X and u; has the sign of p;1,
the it item of the first column vector of the matriz P = (p;;).
(II) If A, < Ao1 < A, + &', System has a unique solution U = (u;).
Moreover, on any Bg, for each integer i € [1,n], we have u; € X and u; has the
sign of —p;1, where p;1 is given as above.

Proof of Lemma|5.1]. First, we recall for completeness the proof of the existence
of a positive principal eigenvalue, denoted as in Section 1, A\, associated with a
principal eigenfunction ¢,. We follow e.g. [16]. The equation

—Au = Mp(z)u on RN
can be rewritten as
—~Au+ A~ (x)u =T (z)u onRY &

—Au+ M, (x)u = Apl (z)u  on RN,
where pT := p* + ep,. This shift is introduced since p* is not necessarily positive
but only > 0. We study now, for p > 0,

— Au+ ppg, (x)u = Mot (x)u  on RY. (5.4)
For the rest of this article, we set L,u := —Au+ up (x)u.

Since p! decreases fast enough, we have an analogous to Theorem [2.3} there
exists a principal eigenpair (A*(p),%,) such that

Ly, = A*(u)pi(x)% on RN’

() = in / (IVul? + oy ()i?)d.

[ueD'?: x ptu=1)
«

Note that, by (2.3)), D;;;Q =D,-.
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A*(p) varies continuously and monotonically with respect to p; it increases.
Moreover A*(0) is the principal eigenvalue satisfying

—Au=Mpf(z)u onRY

where the weight is positive. Hence we know that A\*(0) exists and is positive. Also,
by properties of monotonicity of eigenvalues w.r.t. the domain (for Dirichlet bound-
ary conditions) , since Qt € RN, \*(1) is always less than 7, the positive principal
eigenvalue of L,u = 7ptu defined on 4 with Dirichlet boundary conditions. This
curve cuts the bisectrix at 7°, the positive principal eigenvalue of —Au = 7%t u
on Q. Hence , the (continuous) curve (1, A\*(p)) intersects the bisectrix at A° such
that, for some u:

—Au+ Np, (x)u = Lyou = \pf (z)u < —Au=\p(z)u on RY.
AY is the (unique) positive principal eigenvalue A, of
—Au = Mp(z)u, z € RV,
and A, defined by and u = ky,. It does not depend on a. ([l

Remark 5.4. (A*(p) — Ap)(1— Ap) > 0 for p varying around A,.
Proof of Theorem[5.3. Consider the equation
—Au = Ap(z)u + f,

rewritten as

—Au+ Apg (x)u = Mg (z)u + f.
This equation with positive weight can be treated as (2.1]) except that the Laplacian
—A is replaced by L* := —A + A,p, . Obviously, its principal eigenpair is (X, ¢,):
L*¢, = \pt(x)p,. We denote by oo the second eigenvalue of this problem. As
previously (proof of Theorem7 we decompose u = u*go,,—!—ul where [ p;fuﬂop =
0. Also h = h*p, + h*. We derive analogous inequalities

*

_ 1
T, et

u

and

et

09 —

JCRE
For A < A, 00 = A > 09 — A,
For A > X,, choose X close enough to A, so that oo — A > i(og - ).
We derive as for positive weight that |uy | is locally bounded and, for |A — )|,

small enough we derive the results for one equation as for a positive weight. We
conclude as in the proof of Theorems and O

Proof of Theorem[5.3. For a positive weight, we set
U=PUsU=P'U, F=PF&F=P'F
System can be written as
— AU = Mp(z)JU + F, (5.5)
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where J is a Jordan canonical form which has p Jordan blocks J; (1 <j <p <n).
We are also lead to Equations (4.3)), (4.5) and (4.6 in @, with indefinite weight
that we can study using Theorem Going back to U = PU, we have (4.9):

U; = Pty + Zpijﬂj, 1<i<n.
j=2
Finally on a ball Br, we have
(I) If A\, — 8 < Ao1 < A, and A\, — Aoy small enough, we have 4y /¢, — +00 as
Aoy — A, and Z?=2 piju; is bounded by a constant times ¢,.
(IT) If A, < Aoy < A, + 6" and Aoy — A, small enough, we have u;/p, — —oco as
Ao — X, and Y7, pijii; is bounded by a constant times . a
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