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EXISTENCE FOR A GLOBAL PRESSURE FORMULATION OF
WATER-GAS FLOW IN POROUS MEDIA

BRAHIM AMAZIANE, MLADEN JURAK, ANJA VRBAŠKI

Abstract. We consider a model of water-gas flow in porous media with an
incompressible water phase and a compressible gas phase. Such models appear
in gas migration through engineered and geological barriers for a deep reposi-
tory for radioactive waste. The main feature of this model is the introduction
of a new global pressure and it is fully equivalent to the original equations.
The system is written in a fractional flow formulation as a degenerate para-
bolic system with the global pressure and the saturation potential as the main
unknowns. The major difficulties related to this model are in the nonlinear
degenerate structure of the equations, as well as in the coupling in the system.
Under some realistic assumptions on the data, including unbounded capillary
pressure function and non-homogeneous boundary conditions, we prove the
existence of weak solutions of the system. Furthermore, it is shown that the
weak solution has certain desired properties, such as positivity of the satura-
tion. The result is proved with the help of an appropriate regularization and
a time discretization of the coupled system. We use suitable test functions to
obtain a priori estimates and a compactness result in order to pass to the limit
in nonlinear terms.

1. Introduction

Two-phase flow in porous media is important to many practical problems, in-
cluding those in petroleum reservoir engineering, unsaturated zone hydrology, and
soil sciences. Most recently, modeling multiphase flow received an increasing at-
tention in connection with the disposal of radioactive waste and sequestration of
CO2.

This paper focuses on the modeling and analysis of immiscible compressible two-
phase flow through porous media, in the framework of the geological disposal of
radioactive waste. As a matter of fact, one of the solutions envisaged for managing
waste produced by nuclear industry is to dispose of it in deep geological formations
chosen for their ability to prevent and attenuate possible releases of radionuclides
in the geosphere. In the frame of designing nuclear waste geological repositories
appears a problem of possible two-phase flow of water and gas, mainly hydrogen.
For more details, see for instance [36, 37]. Multiple recent studies have established
that in such installations important amounts of gases are expected to be produced in
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particular due to the corrosion of metallic components used in the repository design,
see e.g. [19, 38] and the references therein. The French Agency for the Management
of Radioactive Waste (Andra) [9] is currently investigating the feasibility of a deep
geological disposal of radioactive waste in an argillaceous formation. A question
related to the long-term performance of the repository concerns the impact of the
hydrogen gas generated in the wastes on the pressure and saturation fields in the
repository and the host rock.

As reported in [4], the mathematical analysis of two-phase flow in porous me-
dia has been a problem of interest for many years and many methods have been
developed. There is an extensive literature on this subject. We will not at-
tempt a literature review here, but merely mention a few references. Here we
restrict ourselves to two-phase flow in porous media. We refer for instance to
[1, 10, 11, 12, 15, 16, 20, 21, 23, 32, 33, 42, 43] for more information on the analysis,
especially on the existence of solutions, of immiscible incompressible two-phase flow
in porous media, and to [6, 7, 8, 18, 22] for miscible compressible flow in porous
media.

However, the situation is quite different for immiscible compressible two-phase
flow in porous media, where, only recently few results have been obtained. In the
case of immiscible two-phase flows with one (or more) compressible fluids without
any exchange between the phases, some approximate models were studied in [24, 25,
26, 27]. Namely, in [24] certain terms related to the compressibility are neglected,
and in [25, 26, 27] the mass densities are assumed to depend not on the physical
pressure, but on the global pressure. As shown in [3] the models based on the
mass density approximation can be suitable in oil reservoir simulations but are
inadequate in many underground gas and water flows where the difference between
the phase pressures and the global pressure can be significant. In the articles
[28, 29, 30, 31], a more general immiscible compressible two-phase flow model in
porous media is considered for homogeneous fields. In these contributions, the
models are based on phase formulations, i.e. the main unknowns are the phase
pressures and the saturation of one phase, and the feature of the global pressure
as introduced in [10, 15] for incompressible immiscible flows is used to establish a
priori estimates. The obtained results are established under the assumption that
the capillary pressure is bounded and no discontinuity of the porosity and the
permeability is permitted, which is too restrictive for some realistic problems, such
as gas migration through engineered and geological barriers for a deep repository
for radioactive waste.

In the case of immiscible two-phase flows with one (or more) compressible fluids
with exchange between the phases, i.e. a multicomponent model, existence of weak
solutions to these equations under some assumptions on the compressibility of the
fluids has been recently established in [13, 34, 35, 40, 41].

For modeling such flow problems, there are two main approaches known as the
phase and the global pressure formulations. The phase formulation is based on
individual balance equations for each of the fluids. For such formulation, in regions
without the wetting fluid, the wetting pressure is physically not well-defined. So
the pressures are not mathematically well defined globally. Also, as a consequence
of the degeneracy of the relative permeability functions is that no uniform bounds
for the pressure gradients in L2-spaces are available. To overcome these difficulties,
the global pressure formulation of the original flow equations was introduced for
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incompressible two-phase flows in [10, 15], and generalized recently to compressible
two-phase flows in [2, 3, 44] and for three-phase flows in [14].

In this paper, we focus our attention on the study of immiscible, compressible
two-phase flow in porous media under isothermal condition without mass transfer
between the phases taking into account gravity, capillary effects, and heterogeneity.
The system consists of incompressible wetting phase and compressible non-wetting
phase, such as water and hydrogen in the context of gas migration through engi-
neered and geological barriers for a deep repository of nuclear waste. The system
is written in a fractional flow formulation with the saturation of one of the phases
and the global pressure as independent variables. This new formulation, recently
derived in [2, 3] without any simplifying assumptions, is fully equivalent to the
original phase equations formulation and is more suitable for mathematical and
numerical analysis, for more details see [4, 5]. The fractional flow approach treats
the two-phase flow problem as a total fluid flow of a single mixed fluid, and then
describes the individual phases as fractions of the total flow. This approach leads
to a less strong coupling between the two coupled equations: the global pressure
equation and the saturation equation. The mathematical structure is well defined:
the system consists of two nonlinear degenerate parabolic equations. The major
difficulties related to this model are in the nonlinear degenerate structure of the
equations, as well as in the coupling in the system. This formulation leads to a cou-
pled system consisting of a nonlinear parabolic equation for the global pressure and
a nonlinear degenerate parabolic diffusion-convection equation for the saturation,
subject to appropriate boundary and initial conditions. Our aim is to establish ex-
istence of weak solutions for this system of equations under realistic assumptions.
Let us mention that the case of two compressible fluids was treated in [4]. In con-
trast to this case, the incompressibility of one phase leads to additional difficulties
in the proof of the existence result for the system under consideration. Namely, the
assumption (A.6) on mass densities in [4] is not valid for the model under consid-
eration. Although we follow the strategy used in [4], that is we first regularize our
model and then using the discretization in time, apply the fixed point arguments,
still the presence of incompressible phase brings additional difficulties in obtaining
a priori estimates and passage to the limit, and makes the proof essentially more
involved. Our approach also relies on the compactness result proved in our previous
work [4]. Thus we extend the results of [4] in the case of water-gas flow in porous
media with an incompressible water phase and a compressible gas phase.

The rest of the paper is organized as follows. In Section 2 we introduce the
notations and formulate the mathematical and physical model under consideration.
Then we state the assumptions on the data and present the main result of the
paper on the existence of a weak solution of the problem. This result is proved in
three steps. In Section 3 we regularize the system, introducing a small regularization
parameter η > 0 and state the existence result for a weak solution of the regularized
problem. Section 4 provides a construction of the approximate solutions to the
regularized system by replacing the time derivatives with finite differences with a
small time step h > 0 and the existence result for the corresponding system, as
well as a maximum principle for the saturation. In Section 5 we establish uniform
estimates with respect to h and η using suitable test functions. This allows us to
pass to the limit when h → 0 which gives the existence of a weak solution for the
regularized problem; this is performed in Section 6. Finally, in Section 7 we pass



4 B. AMAZIANE, M. JURAK, A. VRBAŠKI EJDE-2012/102

to the limit as η → 0 using an adapted compactness result, as in [39, 31, 4], and
prove the existence of the solutions of the problem defined in Section 2.

2. Problem formulation and the main result

The model of water-gas flow to be presented herein is formulated in terms of the
non-wetting (gas) phase saturation and the global pressure and it is developed in
[2, 3]. The saturations of the wetting and the non-wetting phases are denoted by Sw

and S := Sg = 1−Sw, respectively, and λj = λj(S) stands for the relative mobility
of the j-phase, j ∈ {w, g}. The pressures and the mass densities of the wetting and
the non-wetting phases are denoted by Pw, Pg and ρw, ρg, respectively. The wetting
phase (water) is assumed incompressible (ρw = const.) and the non-wetting phase
(gas) is compressible, ρg = ρg(Pg).

The fully equivalent global pressure formulation of immiscible, compressible two-
phase flow introduced in [2, 3] is defined in terms of the global pressure P and the
saturation potential θ defined by

θ = β(S) =
∫ S

0

√
λw(s)λg(s)P ′c(s)ds, (2.1)

where Pc(S) = Pg − Pw is the capillary pressure function. The global pressure
P is a pressure-like variable which allows to express the phase pressures Pw, Pg

as functions of (gas) saturation and the global pressure: Pw = Pw(S, P ), Pg =
Pg(S, P ). The non-wetting phase mass density will be expressed, therefore, as a
function of S and P , ρg = ρg(Pg(S, P )) =: ρg(S, P ). The phase pressures are then
given by (see [2]):

Pg(S, P ) = P + Pc(0) +
∫ S

0

fw(s, P )P ′c(s)ds, (2.2)

Pw(S, P ) = Pg(S, P )− Pc(S), (2.3)

where the fractional flow functions are defined by

fw(S, P ) = ρwλw(S)/λ(S, P ), fg(S, P ) = ρg(S, P )λg(S)/λ(S, P ).

Also, we use the total mobility λ(S, P ), defined by

λ(S, P ) = ρwλw(S) + ρg(S, P )λg(S).

The water-gas flow equations given in a fully equivalent global pressure formu-
lation are described by the following equations (see [2]):

− ρwΦ
∂S

∂t
− div(Λw(S, P )K∇P ) + div(A(S, P )K∇θ)

+ ρ2
w div(λw(S)Kg) = Fw,

(2.4)

Φ
∂

∂t
(ρg(S, P )S)− div(Λg(S, P )K∇P )− div(A(S, P )K∇θ)

+ div(λg(S)ρg(S, P )2Kg) = Fg,
(2.5)

where Φ(x) is the porosity, K(x) is the absolute permeability tensor of the porous
medium, Fw, Fg are known source terms and the gravity vector is denoted by g.
The coefficient A(S, P ) is given by

A(S, P ) = ρwρg(S, P )

√
λw(S)λg(S)
λ(S, P )

(2.6)
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and the mobility functions Λw,Λg are given by

Λw(S, P ) = ρwλw(S)ω(S, P ), Λg(S, P ) = ρg(S, P )λg(S)ω(S, P ),

where the function ω(S, P ) is defined by (see [2, 3])

ω(S, P ) =
∂Pw(S, P )

∂P
=
∂Pg(S, P )

∂P
.

Let a porous domain Ω ⊂ Rd, d = 1, 2, 3, be a bounded, connected, Lipschitz
domain. The domain boundary is considered to be decomposed as ∂Ω = ΓD ∪ ΓN .
The time interval of interest is ]0, T [ and Q = Ω×]0, T [, ΓT

i = Γi×]0, T [, i ∈ {D,N}.
We impose the boundary conditions for this system as follows:

θ = θD, P = PD on ΓT
D, (2.7)

Qw · n = Gw, Qn · n = Gg on ΓT
N . (2.8)

Here PD, θD, Gw and Gg are given functions, n is the outward unit normal to ∂Ω
and

Qw = ρwqw = −Λw(S, P )K∇P +A(S, P )K∇θ + ρ2
wλw(S)Kg,

Qg = ρg(Pg)qg = −Λg(S, P )K∇P −A(S, P )K∇θ + ρg(S, P )2λg(S)Kg

are the phase mass fluxes with qj being the volumetric velocity of the j-phase,
j ∈ {w, g}. The Dirichlet boundary data PD, θD are assumed to be extended to
the whole domain Q; to express their regularity we introduce the space

W = {ϕ ∈ L2(0, T ;H1(Ω)) : ϕ ∈ L∞(0, T ;L1(Ω)), ∂tϕ ∈ L1(Q)}

with the norm

|||ϕ||| = ‖ϕ‖L2(0,T ;H1(Ω)) + ‖ϕ‖L∞(0,T ;L1(Ω)) + ‖∂tϕ‖L1(Q).

We define also SD = S(θD), where S = β−1, and PwD = Pw(SD, PD), PgD =
Pg(SD, PD).

The initial conditions are

θ(x, 0) = θ0(x), P (x, 0) = p0(x) in Ω. (2.9)

We are going to prove the existence of weak solutions of the coupled system
(2.4), (2.5) with the boundary and initial conditions (2.7), (2.8) and (2.9) under
the following assumptions:

(A1) The porosity Φ belongs to L∞(Ω), and there exist constants, 0 < φm ≤
φM < +∞, such that 0 < φm ≤ Φ(x) ≤ φM a.e. in Ω.

(A2) The permeability tensor K belongs to (L∞(Ω))d×d, and there exist con-
stants 0 < km ≤ kM < +∞, such that for almost all x ∈ Ω and all ξ ∈ Rd

it holds:
km|ξ|2 ≤ K(x)ξ · ξ ≤ kM |ξ|2.

(A3) Relative mobilities satisfy λw, λg ∈ C([0, 1]; R+), λw(Sw = 0) = 0 and
λg(Sg = 0) = 0; λj is an increasing function of Sj . Moreover, there exist
constants λM ≥ λm > 0 such that for all S ∈ [0, 1]

0 < λm ≤ λw(S) + λg(S) ≤ λM .
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(A4) There exist constants pc,min > 0 and M > 0 such that the capillary pressure
function S 7→ Pc(S), Pc ∈ C([0, 1[; R+) ∩ C1(]0, 1[; R+), for all S ∈]0, 1[
satisfy

P ′c(S) ≥ pc,min > 0, (2.10)∫ 1

0

Pc(s) ds+
√
λg(S)λw(S)P ′c(S) ≤M. (2.11)

Moreover, there exist S# ∈]0, 1[ and γ > 0 such that for all S ∈]0, S#]

S2−γP ′c(S) ≤M, (2.12)

Pc(S)− Pc(0) ≤MSP ′c(S). (2.13)

(A5) There exist 0 < τ < 1 and C > 0 such that for all S1, S2 ∈ [0, 1]

C
∣∣∣ ∫ S2

S1

√
λg(s)λw(s) ds

∣∣∣τ ≥ |S1 − S2|.

(A6) ρw > 0, ρg is a C1(R) increasing function, and there exist ρm, ρM > 0 such
that for all p ∈ R it holds

ρm ≤ ρg(p) ≤ ρM , 0 < ρ′g(p) ≤ ρM .

(A7) Fw, Fg ∈ L2(Q); Fw ≥ 0 a.e. in Q.
(A8) The boundary and initial data satisfy:

PD, Pc(SD) ∈W, 0 ≤ SD ≤ 1 a.e. in Q;

Gw, Gg ∈ L2(ΓN ), Gw ≤ 0;

p0, θ0 ∈ L2(Ω), 0 ≤ θ0 ≤ β(1) a.e. in Ω.

Remark 2.1. Assumptions (A1)-(A3) are standard. Assumptions (A4) and (A5)
are used to prove the Hölder continuity of the functions S = β−1 and (S, P ) 7→
ρg(S, P )S in the proofs of Lemma 7.2 and Lemma 7.3. We note that, as a conse-
quence of incompressibility of the wetting phase, the restrictions on the capillary
pressure Pc in (A4) are given only at S = 0, which is less strict compared to the
corresponding assumptions in [4], where both phases are compressible.

The requirements on the sign of the boundary data in (A7) and (A8) are neces-
sary only if the capillary pressure curve is unbounded at S = Sg = 1. In that case
the restrictions Fw ≥ 0 and Gw ≤ 0 do not allow extraction of the wetting phase
from the domain, since otherwise we can not control the growth of the wetting
phase pressure to −∞.

From the assumptions PD, Pc(SD) ∈ W in (A8) it easily follows that the func-
tions PwD = Pw(SD, PD) and PgD = Pg(SD, PD) are also in the spaceW . These are
the conditions on boundary data that allow us to obtain uniform a priori estimates
in Section 5. Note also that, due to (2.10) in (A4), we have also SD ∈W .

Remark 2.2. It can be seen [2] that ω is a smooth function for which there is a
constant C such that

e−CS ≤ ω(S, P ) ≤ 1 in [0, 1]× R. (2.14)

It also follows from (2.10) and (A5) that S = β−1 is Hölder continuous with expo-
nent τ . More precisely,

pτ
c,min

C
|S2 − S1| ≤ |β(S2)− β(S1)|τ . (2.15)
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In order to deal with the Dirichlet boundary condition, we introduce the space

V = {u ∈ H1(Ω), u|ΓD
= 0}.

The existence result for weak solutions of the system (2.4)-(2.5) with the boundary
and initial conditions (2.7)-(2.9) is given by the following theorem.

Theorem 2.3. Let (A1)–(A8) hold. Denote S = S(θ). Then there exists (P, θ)
such that

P ∈ L2(0, T ;V ) + PD, θ ∈ L2(0, T ;V ) + θD, 0 ≤ θ ≤ β(1) a.e. in Q,

∂t(ΦS) ∈ L2(0, T ;V ′), ∂t(Φρg(S, P )S) ∈ L2(0, T ;V ′);

for all ϕ,ψ ∈ L2(0, T ;V ),

− ρw

∫ T

0

〈∂t(ΦS), ϕ〉 dt+
∫

Q

[Λw(S, P )K∇P · ∇ϕ−A(S, P )K∇θ · ∇ϕ] dx dt

−
∫

Q

λw(S)ρ2
wKg · ∇ϕdx dt

=
∫

Q

Fwϕdx dt−
∫

ΓT
N

Gwϕdσ dt,

(2.16)∫ T

0

〈∂t(Φρg(S, P )S), ψ〉 dt+
∫

Q

[Λg(S, P )K∇P · ∇ψ +A(S, P )K∇θ · ∇ψ] dx dt

−
∫

Q

λg(S)ρg(S, P )2Kg · ∇ψ dx dt

=
∫

Q

Fgψ dx dt−
∫

ΓT
N

Ggψ dσ dt.

(2.17)

Furthermore, for all ψ ∈ V the functions

t 7→
∫

Ω

ΦSψ dx, t 7→
∫

Ω

Φρg(Pg(S, P ))Sψ dx

are continuous in [0, T ] and the initial conditions are satisfied in the following sense:( ∫
Ω

ΦSψ dx
)
(0) =

∫
Ω

Φs0ψ dx,( ∫
Ω

Φρg(Pg(S, P ))Sψ dx
)
(0) =

∫
Ω

Φρg(Pg(s0, p0))s0ψ dx,

where s0 = S(θ0).

The main difficulty in proving Theorem 2.3 is the degeneracy of the equations
caused by vanishing of the coefficient A(S, P ) at S = 0 and S = 1. Therefore, we
will introduce a regularized problem with a strictly positive A(S, P ) by adding a
small positive constant η to it. At the same time we will regularize the unbounded
capillary pressure function and prove Theorem 2.3 by passing to the limit as η → 0
in the regularized problem. The other difficulty in proving Theorem 2.3 is vanishing
of the time derivative term in equation (2.17) for S = 0. This will be treated in
Section 7 with appropriate compactness theorem.
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3. Regularized problem

The regularized problem that we construct in this section is based on the global
pressure P and the non-wetting phase saturation S as primary variables. A priori
estimates, uniform with respect to the regularization parameter η, will be developed
in Section 5 by using the phase pressures Pw(S, P ) and Pg(S, P ) as the test func-
tions in the variational equations of the problem. This use of the phase pressures
introduces a new problem since, under hypothesis (A4) on the capillary pressure,
the wetting and the non-wetting phase pressure partial derivatives with respect to
S can be unbounded at S = 1 and S = 0 and thus for P, S ∈ L2(0, T ;H1(Ω)),
Pw(S, P ) and Pg(S, P ) are not valid test functions. Therefore, following [4], we
will correct the capillary pressure function by introducing a regularized capillary
pressure derivative, a regularized capillary pressure and regularized phase pressures
as follows:

Rη(P ′c(S)) =


2(1− S

η )Pc(η)−Pc(0)
η + (2S

η − 1)P ′c(η) for S ≤ η

P ′c(S) for η ≤ S ≤ 1− η

P ′c(1− η) for 1− η ≤ S ≤ 1
, (3.1)

P η
c (S) = Pc(0) +

∫ S

0

Rη(P ′c(s)) ds, (3.2)

P η
g (S, P ) = P + Pc(0) +

∫ S

0

fw(s, P )Rη(P ′c(s)) ds, (3.3)

P η
w(S, P ) = P −

∫ S

0

fg(s, P )Rη(P ′c(s)) ds. (3.4)

It is clear that P η
g (S, P ) − P η

w(S, P ) = P η
c (S). Some properties of a regularized

capillary pressure are listed below, for details see [4].
For any η > 0, P η

c (S) is a bounded, monotone, C1([0, 1]) function, and P η
c (S) =

Pc(S) for S ∈ [η, 1− η]. For sufficiently small η it holds

d

dS
P η

c (S) ≥ pc,min/2 > 0. (3.5)

Also, |Rη(P ′c(S))| ≤ pη
c,max < +∞ for some constant pη

c,max and there is a constant
M ≥ 1 such that

Rη(P ′c(S)) ≤MP ′c(S), for S ∈]0, 1[. (3.6)

Note that in the case S ≥ η, (3.6) is easy to check and M = 1. For S < η we need
to use (2.13) in (A4) which is assumed only to obtain (3.6).

The derivatives of the regularized phase pressures are equal as in the non-
regularized case and can be written as

∂P η
g

∂P
=
∂P η

w

∂P
= ωη(S, P ).

It is easily seen that

∇P η
g = ωη(S, P )∇P + fw(S, P )Rη(P ′c(S))∇S, (3.7)

∇P η
w = ωη(S, P )∇P − fg(S, P )Rη(P ′c(S))∇S, (3.8)

so that P η
g , P

η
w ∈ L2(0, T ;H1(Ω)) for P, S ∈ L2(0, T ;H1(Ω)), as intended.
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We are going to consider the regularized version of the system (2.4), (2.5) in
which we will replace ρg(S, P ) by

ρη
g(S, P ) := ρg(P η

g (S, P )) (3.9)

and the function A(S, P ) by Aη(S, P ), for η > 0, defined by

Aη(S, P ) =
ρwρg(S, P )
λ(S, P )

λw(S)λg(S)Rη(P ′c(S)) + η > 0. (3.10)

Now we define the regularized system as

− ρwΦ
∂Sη

∂t
− div(Λη

w(Sη, P η)K∇P η) + div(Aη(Sη, P η)K∇Sη)

+ ρ2
w div(λw(Sη)Kg) = Fw,

(3.11)

Φ
∂

∂t
(ρη

g(Sη, P η)Sη)− div(Λη
g(Sη, P η)K∇P η)− div(Aη(Sη, P η)K∇Sη)

+ div(λg(Sη)ρη
g(Sη, P η)2Kg) = Fg,

(3.12)

where we define

Λη
w(S, P ) = ρwλw(S)ωη(S, P ), Λη

g(S, P ) = ρg(S, P )λg(S)ωη(S, P ) (3.13)

and introduce the regularized total mobility

Λη(S, P ) = Λη
w(S, P ) + Λη

g(S, P ), (3.14)

and the regularized function β:

βη(S) =
∫ S

0

√
λw(s)λg(s)Rη(P ′c(s)) ds. (3.15)

We will denote Sη = (βη)−1.
Now we quote some uniform estimates and limits for regularized coefficients,

proved in [4], Lemma 1.

Lemma 3.1. Assume (A4) and (A6). Then there exists a constant C > 0, inde-
pendent of η, such that

|P η
g (S, P )| ≤ C(|P |+ 1), (3.16)

P η
w(S, P ) ≤ P, (3.17)

|λw(S)P η
w(S, P )| ≤ C(|P |+ 1), (3.18)

e−CS ≤ ωη(S, P ) ≤ 1, (3.19)

and the following sequences converge uniformly in [0, 1]× R as η → 0:

P η
g (S, P ) → Pg(S, P ), (3.20)

ωη(S, P ) → ω(S, P ), (3.21)

Λη
j (S, P ) → Λj(S, P ), j ∈ {w, g}, (3.22)

βη(S) → β(S) uniformly in [0, 1]. (3.23)

Remark 3.2. From the assumption on the boundary data PD, Pc(SD) ∈ W in
(A8) it is easy to show, as mentioned in Remark 2.1, that PwD, PgD, β(SD) ∈
W . We define also P η

wD = P η
w(SD, PD) and P η

gD = P η
g (SD, PD). Now using the
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estimate (3.6) we can also show that the norms |||P η
wD|||, |||P

η
gD||| and |||βη(SD)|||

are uniformly bounded with respect to the parameter η. For example,

∇P η
wD = ωη(SD, PD)∇PD − fg(SD, PD)Rη(P ′c(SD))∇SD,

which, by (3.6) and (3.19), gives the estimate

|∇P η
wD| ≤ |∇PD|+MP ′c(SD)|∇SD|,

leading to

‖∇P η
wD‖L2(0,T ;H1(Ω)) ≤ C(1 + ‖∇PD‖L2(0,T ;H1(Ω)) + ‖Pc(SD)‖L2(0,T ;H1(Ω))).

Also, due to uniform convergence (3.23) we have

βη(SD) ⇀ θD weakly in L2(0, T ;H1(Ω)) as η → 0. (3.24)

The variational formulation of the regularized problem and the existence of its
weak solution is presented in the following theorem.

Theorem 3.3. Assume (A1)–(A4), (A6)–(A8) hold and p0, s0 ∈ H1(Ω). For all
η > 0 sufficiently small there exists (P η, Sη) satisfying

P η ∈ L2(0, T ;V ) + PD, S
η ∈ L2(0, T ;V ) + SD, 0 ≤ Sη ≤ 1 a.e. in Q,

∂t(ΦSη), ∂t(Φρη
g(Sη, P η)Sη) ∈ L2(0, T ;V ′);

for all ϕ,ψ ∈ L2(0, T ;V ),

− ρw

∫ T

0

〈∂t(ΦSη), ϕ〉 dt

+
∫

Q

[Λη
w(Sη, P η)K∇P η · ∇ϕ−Aη(Sη, P η)K∇Sη · ∇ϕ] dx dt

−
∫

Q

λw(Sη)ρ2
wKg · ∇ϕdx dt

=
∫

Q

Fwϕdx dt−
∫

ΓT
N

Gwϕdσ dt,

(3.25)

∫ T

0

〈∂t(Φρη
g(Sη, P η)Sη), ψ〉 dt

+
∫

Q

[Λη
g(Sη, P η)K∇P η · ∇ψ +Aη(Sη, P η)K∇Sη · ∇ψ] dx dt

−
∫

Q

λg(Sη)ρη
g(Sη, P η)2Kg · ∇ψ dx dt

=
∫

Q

Fgψ dx dt−
∫

ΓT
N

Ggψ dσ dt.

(3.26)

Furthermore, Sη, ρη
g(Sη, P η)Sη ∈ C([0, T ];L2(Ω)) and

Sη(·, 0) = s0, ρ
η
g(Sη, P η)Sη(·, 0) = ρη

g(s0, p0)s0 a.e. in Ω. (3.27)

Theorem 3.3 will be proved by discretization of the time derivatives, with a small
parameter h > 0, and by passing to the limit as h→ 0.



EJDE-2012/102 EXISTENCE FOR A GLOBAL PRESSURE FORMULATION 11

4. Time discretization

In this Section we deal with the regularized problem (3.25)-(3.27) for a fixed
η > 0 and for simplicity we skip the dependence of the saturation and the global
pressure on the small parameter η in writing.

In order to discretize the regularized system (3.25)-(3.26) we approximate the
time derivative by a backward difference. Namely, for each positive integer N we
divide [0, T ] into N subintervals, each of length h = T/N . We denote tn = nh and
Jn =]tn−1, tn] for 1 ≤ n ≤ N , and for any h > 0 we denote the time difference
operator by

∂hv(t) =
v(t+ h)− v(t)

h
.

For any Hilbert space H, let

lh(H) = {v ∈ L∞(0, T ;H) : v is constant in time on each subinterval Jn ⊂ [0, T ]}.

For any vh ∈ lh(H) we denote vn = (vh)n = vh|Jn and assign to vh a piecewise
linear in time function

ṽh =
N∑

n=1

( tn − t

h
vn−1 +

t− tn−1

h
vn

)
χJn(t), ṽh(0) = vh(0) = v0 (4.1)

which satisfies

∂tṽ
h(t) = ∂−hvh(t), for t 6= nh, n = 0, 1, . . . , N. (4.2)

Finally, for any function f ∈ L1(0, T ;H) we define fh ∈ lh(H) by

fh(t) =
1
h

∫
Jn

f(τ)dτ, t ∈ Jn.

The discrete problem is defined as follows: find Ph ∈ lh(V ) + Ph
D and Sh ∈

lh(V ) + Sh
D such that for all ϕ ∈ lh(V ),

− ρw

∫
Q

Φ∂−hShϕdx dt

+
∫

Q

[Λη
w(Sh, Ph)K∇Ph · ∇ϕ−Aη(Sh, Ph)K∇Sh · ∇ϕ] dx dt

−
∫

Q

λw(Sh)ρ2
wKg · ∇ϕdx dt

=
∫

Q

Fh
wϕdx dt−

∫
ΓT

N

Gh
wϕdσ dt,

(4.3)

and for all ψ ∈ lh(V ),∫
Q

Φ∂−h(ρη
g(Sh, Ph)Sh)ψ dx dt

+
∫

Q

[Λη
g(Sh, Ph)K∇Ph · ∇ψ +Aη(Sh, Ph)K∇Sh · ∇ψ] dx dt

−
∫

Q

λg(Sh)ρη
g(Sh, Ph)2Kg · ∇ψ dx dt

=
∫

Q

Fh
g ψ dx dt−

∫
ΓT

N

Gh
gψ dσ dt,

(4.4)
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and Sh = s0, Ph = p0 for t ≤ 0.
The existence for the discrete system (4.3), (4.4), (3.27) is given by the following

Proposition.

Proposition 4.1. Assume (A1)–(A8). Then there exists a solution Ph ∈ lh(V ) +
Ph

D, S
h ∈ lh(V ) + Sh

D of (4.3), (4.4); moreover, 0 ≤ Sh ≤ 1 a.e. in Q.

The proof of Proposition 4.1 is analogous to that of [4, Proposition 1] and there-
fore we omit it.

5. Uniform estimates

To the limit as h → 0 in (4.3), (4.4) we need a priori estimates uniform with
respect to h. We will establish in this section the estimates that are uniform in h
and also in η.

Proposition 5.1. Let the assumptions of Proposition 4.1 hold. Let (Ph)h and
(Sh)h be the sequences of solutions to (4.3)-(4.4) and rk

g = ρg(P η
g (Sk, P k))Sk. Then

the following bounds hold, uniform with respect to h:

‖Ph‖L2(0,T ;H1(Ω)) + ‖Sh‖L2(0,T ;H1(Ω)) + ‖βη(Sh)‖L2(0,T ;H1(Ω)) ≤ C, (5.1)

‖S̃h‖L2(0,T ;H1(Ω)) + ‖rh
g ‖L2(0,T ;H1(Ω)) + ‖r̃h

g ‖L2(0,T ;H1(Ω)) ≤ C, (5.2)

‖∂t(ΦS̃h)‖L2(0,T ;V ′) + ‖∂t(Φr̃h
g )‖L2(0,T ;V ′) ≤ C. (5.3)

Proof. First, we quote some identities that are going to be used throughout the
proof. From the relations (3.7), (3.8) and the definitions of the functions Aη and
βη we can obtain the following representations of the regularized wetting and non-
wetting phase fluxes (without gravity term)

Λη
w(S, P )K∇P −Aη(S, P )K∇S = ρwλw(S)K∇P η

w − ηK∇S, (5.4)

Λη
g(S, P )K∇P +Aη(S, P )K∇S = ρg(S, P )λg(S)K∇P η

g + ηK∇S, (5.5)

as well as the equality

ρwλw(S)K∇P η
w · ∇P η

w + ρg(S, P )λg(S)K∇P η
g · ∇P η

g

= Λη(S, P )ωη(S, P )K∇P · ∇P +
ρwρg(S, P )
λ(S, P )

K∇βη(S) · ∇βη(S)
. (5.6)

In this section, for simplicity, we assume that Pc(0) = 0. From now on, C,C1, . . .
denote generic constants that do not depend on h or η.

We consider the discrete problem taken at a time level k, that is, the variational
equations,

ρw

h

∫
Ω

Φ(Sk−1 − Sk)ϕdx

+
∫

Ω

[Λη
w(Sk, P k)K∇P k · ∇ϕ−Aη(Sk, P k)K∇Sk · ∇ϕ] dx

−
∫

Ω

λw(Sk)ρ2
wKg · ∇ϕdx

=
∫

Ω

F k
wϕdx−

∫
ΓN

Gk
wϕdx

(5.7)
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for all ϕ ∈ V , and
1
h

∫
Ω

Φ(ρη
g(Sk, P k)Sk − ρη

g(Sk−1, P k−1)Sk−1)ψ dx

+
∫

Ω

[Λη
g(Sk, P k)K∇P k · ∇ψ +Aη(Sk, P k)K∇Sk · ∇ψ] dx

−
∫

Ω

λg(Sk)ρη
g(Sk, P k)2Kg · ∇ψ dx

=
∫

Ω

F k
g ψ dx−

∫
ΓN

Gk
gψ dx

(5.8)

for all ψ ∈ V .
Similarly as in [24, 31, 29] we use the following test functions in (5.7), (5.8):

ϕ = ϕ(P η,k
w ) =

1
ρw

(P η,k
w − P η,k

wD) and ψ = ψ(P η,k
g ) =

∫ P η,k
g

P η,k
gD

dp

ρg(p)
,

respectively, where P η,k
j = P η

j (Sk, P k) and P η,k
jD = P η

jD(Sk
D, P

k
D), j ∈ {w, g}. Tak-

ing into account (5.4) and (5.5), the sum of the equations (5.7) and (5.8) with the
chosen test functions reads

1
h

∫
Ω

Φ
[
(Sk−1 − Sk)P η,k

w + (ρg(P η,k
g )Sk − ρg(P η,k−1

g )Sk−1)
∫ P η,k

g

0

dp

ρg(p)
]
dx

+
1
ρw

∫
Ω

[λw(Sk)ρwK∇P η,k
w − ηK∇Sk] · ∇P η,k

w dx

+
∫

Ω

1

ρg(P
η,k
g )

[λg(Sk)ρg(Sk, P k)K∇P η,k
g + ηK∇Sk] · ∇P η,k

g dx

=
1
h

∫
Ω

Φ
[
(Sk−1 − Sk)P η,k

wD + (ρg(P η,k
g )Sk − ρg(P η,k−1

g )Sk−1)
∫ P η,k

gD

0

dp

ρg(p)
]
dx

+
1
ρw

∫
Ω

[λw(Sk)ρwK∇P η,k
w − ηK∇Sk] · ∇P η,k

wD dx

+
∫

Ω

1

ρg(P
η,k
gD )

[λg(Sk)ρg(Sk, P k)K∇P η,k
g + ηK∇Sk] · ∇P η,k

gD dx (5.9)

+
∫

Ω

[λw(Sk)ρwKg · ∇P η,k
w + λg(Sk)ρg(P η,k

g )Kg · ∇P η,k
g ] dx

−
∫

Ω

[λw(Sk)ρwKg · ∇P η,k
wD + λg(Sk)

ρ2
g(P

η,k
g )

ρg(P
η,k
gD )

Kg · ∇P η,k
gD ] dx

+
∫

Ω

[
1
ρw
F k

w(P η,k
w − P η,k

wD) + F k
g

∫ P η,k
g

P η,k
gD

dp

ρg(p)
] dx

−
∫

ΓN

[
1
ρw
Gk

w(P η,k
w − P η,k

wD) +Gk
g

∫ P η,k
g

P η,k
gD

dp

ρg(p)
] dx.

Let us denote the integral terms in the expression (5.9) by Z1, Z2, . . . , Z10, respec-
tively. Denote the discrete time derivative terms as

Z1 =
1
h

∫
Ω

ΦXk
1 dx, Z4 =

1
h

∫
Ω

ΦXk
4 dx.
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We have as in [29, 4], using the monotonicity of the non-wetting phase mass density
and the monotonicity of the capillary pressure,

Xk
1 = P η,k

w (Sk−1 − Sk) + ρg(P η,k
g )Sk

∫ P η,k
g

0

dp

ρg(p)

− ρg(P η,k−1
g )Sk−1

∫ P η,k−1
g

0

dp

ρg(p)
+ ρg(P η,k−1

g )Sk−1

∫ P η,k−1
g

P η,k
g

dp

ρg(p)

≥ Hη(Sk, P k)−Hη(Sk−1, P k−1),

(5.10)

where

Hη(S, P ) =
(
ρg(P η

g )
∫ P η

g

0

dp

ρg(p)
− P η

g

)
S +

∫ S

0

P η
c (z)dz.

The monotonicity of ρg implies

Hη(S, P ) ≥ 0. (5.11)

The second discrete time derivative term can be transformed as follows:
N∑

k=1

Xk
4 =

N∑
k=1

[
(Sk−1 − Sk)P η,k

wD + (ρg(P η,k
g )Sk − ρg(P η,k−1

g )Sk−1)
∫ P η,k

gD

0

dp

ρg(p)
]

= s0P
η,0
wD − SNP η,N

wD +
N∑

k=1

Sk−1(P η,k
wD − P η,k−1

wD )

− ρg(P η
g (s0, p0))s0

∫ P η,0
gD

0

dp

ρg(p)
+ ρg(P η

g (SN , PN ))SN

∫ P η,N
gD

0

dp

ρg(p)

−
N∑

k=1

ρg(P η,k−1
g )Sk−1

∫ P η,k
gD

P η,k−1
gD

dp

ρg(p)
,

and by using (A1) and (A6)

|
N∑

k=1

∫
Ω

ΦXk
4 dx| ≤

2φMρM

ρm

(
sup

t

∫
Ω

|P η
wD|dx+ sup

t

∫
Ω

|P η
gD|dx

+
∫

Q

(|∂−hP η,h
wD|+ |∂−hP η,h

gD |) dx dt
)

≤ C
(
‖P η

wD‖L∞(0,T ;L1(Ω)) + ‖P η
gD‖L∞(0,T ;L1(Ω))

+ ‖∂tP
η
wD‖L1(Q) + ‖∂tP

η
gD‖L1(Q)

)
.

(5.12)

By applying equality (5.6), relations (3.7) and (3.8), using (A2), (A3), (A6) and
the bounds (3.5), (3.19) it follows that we can find a constant C1 and a constant
η0, such that for all 0 < η ≤ η0,

Z2 + Z3 ≥ C1

∫
Ω

(|∇P k|2 + |∇βη(Sk)|2 + η|∇Sk|2) dx.

Using the relations (3.7), (3.8), the definition of βη given by (3.15), and (A2),
(A3) and (A6) we obtain

|Z5 + Z6| ≤ C2

∫
Ω

(|∇P k|2 + |∇βη(Sk)|2 + η|∇Sk|2) dx
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+ C3

∫
Ω

(|∇P η,k
wD|

2 + |∇P η,k
gD |2) dx,

where C2 > 0 can be chosen arbitrary small.
Similarly, using the same arguments it can be seen that for any C4 > 0,

|Z7 + Z8| ≤ C4

∫
Ω

(|∇P k|2 + |∇βη(Sk)|2) dx+ C5

∫
Ω

(1 + |∇P η,k
wD|

2 + |∇P η,k
gD |2) dx.

To estimate Z9, we use the uniform bounds (3.16) and (3.17), (A6) and Fw ≥ 0
in (A7) to obtain for arbitrary C6 > 0

|Z9| ≤ C6

∫
Ω

|P k|2 dx+ C7

∫
Ω

(1 + |F k
w|2 + |F k

g |2 + |P η,k
wD|

2 + |P η,k
gD |2) dx.

Finally, in a same manner, (3.16), (3.17), (A6) and Gw ≤ 0 in (A8) imply

|Z10| ≤ C8‖P k‖2H1(Ω) + C9(1 + ‖P η,k
wD‖

2
H1(Ω) + ‖P η,k

gD ‖2H1(Ω)

+ ‖Gk
w‖2L2(ΓN ) + ‖Gk

g‖2L2(ΓN )),

for any C8 > 0.
Collecting the estimates for Zj , j = 1, . . . , 10 we get for arbitrary small C2 > 0,

C3 > 0,
1
h

∫
Ω

Φ(Hη(Sk, P k)−Hη(Sk−1, P k−1)) dx

+ C1

∫
Ω

(|∇P k|2 + |∇βη(Sk)|2 + η|∇Sk|2) dx

≤ 1
h

∫
Ω

ΦXk
4 dx+ C2(

∫
Ω

|∇P k|2 dx+
∫

Ω

|∇βη(Sk)|2 dx+ η

∫
Ω

|∇Sk|2 dx)

+ C3

∫
Ω

|P k|2 dx+ C4(1 + ‖P η,k
wD‖

2
L2(0,T ;H1(Ω)) + ‖P η,k

gD ‖2L2(0,T ;H1(Ω))

+ ‖F k
w‖2L2(Ω) + ‖F k

g ‖2L2(Ω) + ‖Gk
w‖2L2(ΓN ) + ‖Gk

g‖2L2(ΓN )).

We multiply this inequality by h, sum it for k = 1, . . . , N , take into account
(5.12) and use Poincaré inequality for P to find∫

Ω

ΦHη(Sh, Ph)(T ) dx+ C1

∫
Q

(|∇Ph|2 + |∇βη(Sh)|2 + η|∇Sh|2) dx dt

≤ C2(1 + ‖Fw‖2L2(Q) + ‖Fg‖2L2(Q) + ‖PD‖2L2(0,T ;H1(Ω)) + |||P η
wD|||

2

+ |||P η
gD|||

2 + ‖Gw‖2L2(ΓT
N ) + ‖Gg‖2L2(ΓT

N )) +
∫

Ω

ΦHη(s0, p0) dx.

(5.13)

The last term in (5.13) is uniformly bounded with respect to η which can be easily
seen from the estimate (3.16). The other terms on the right-hand side of (5.13)
are bounded, uniformly in η, due to (A7), (A8), as seen in Remark 3.2. To ob-
tain (5.1), we employ the Poincaré inequality and the fact that PD, SD, β

η(SD) ∈
L2(0, T ;H1(Ω)) (see Remark 3.2).

To prove (5.2), we first note that the functions Sh, S̃h, rh
g and r̃h

g are uniformly
bounded in L∞(Q). Next, using (3.7) and (3.8) we easily obtain

|∇rh
g | ≤ Cη(|∇Ph|+ |∇Sh|), |∇S̃h| ≤ C|∇Sh|, |∇r̃h

g | ≤ Cη(|∇Ph|+ |∇Sh|).
These estimates with the uniform bound (5.1) yield the estimate (5.2). The esti-
mates on the time derivatives of ΦS̃h and Φr̃h

g are obtained in a standard way from



16 B. AMAZIANE, M. JURAK, A. VRBAŠKI EJDE-2012/102

the variational equations (4.3) and (4.4), using the estimate (5.1), the bounded-
ness of the coefficients independently of h and η and the density of ∪h>0lh(V ) in
L2(0, T ;V ). The proof of Proposition 5.1 is completed. �

6. Proof of Theorem 3.3

At this point we present an auxiliary result that is used when passing to the
limit in this subsection and in Subsection 7.

Lemma 6.1. Let η > 0 be fixed and let (Sε), (P ε) be sequences satisfying as ε→ 0:
(i) Sε → S a.e. in Q; 0 ≤ Sε ≤ 1 a.e. in Q;
(ii) P ε ⇀ P in L2(Q);
(iii) ρg(P η

g (Sε, P ε))Sε → rg a.e. in Q.
Then rg = ρg(P η

g (S, P ))S. The same is true if P η
g (S, P ) is replaced by Pg(S, P ).

Proof. Let us denote Q+ = {(x, t) ∈ Q : S(x, t) > 0} and Q0 = {(x, t) ∈ Q :
S(x, t) = 0}. Consider the case S > 0. From i) and iii) we conclude that, as ε→ 0,

ρg(P η
g (Sε, P ε)) → rg

S
a.e. in Q+,

P η
g (Sε, P ε) → (ρg)−1(

rg
S

) a.e. in Q+,

due to the smoothness and monotonicity of ρg. Using the boundedness of (λwP
′
c)(S)

in neighborhood of S = 1 (which follows from (A4)) and (A3), (A6), for any S1, S2

we obtain

|P η
g (S1, P )− P η

g (S2, P )| ≤ C(|P η
c (S1)− P η

c (S2)|+ |S1 − S2|)
and therefore,

P η
g (S, P ε) → (ρg)−1(

rg
S

) a.e. in Q+.

Since P 7→ P η
g (S, P ) is invertible (see (3.19)), we have P ε → X a.e. in Q+, for

some X. From (ii) we have X = P so rg = ρg(P η
g (S, P ))S a.e. in Q+. In the case

S = 0, the boundedness of ρg and i) imply

ρg(P η
g (Sε, P ε))Sε → rg = 0 = ρg(P η

g (S, P ))S a.e. in Q0.

The same argument holds if P η
g is replaced by Pg. �

Next we obtain the convergence results holding as h→ 0.

Proposition 6.2. If the assumptions of Theorem 3.3 are satisfied then the following
convergence results hold true as h→ 0, up to a subsequence:

‖Sh − S̃h‖L2(Q) + ‖rh
g − r̃h

g ‖L2(Q) → 0, (6.1)

Sh → S ∈ L2(0, T ;V ) + SD weakly in L2(0, T ;H1(Ω)), strongly in L2(Q), (6.2)

rh
g → rg = ρg(P η

g (S, P ))S strongly in L2(Q), (6.3)

βη(Sh) ⇀ βη(S) ∈ L2(0, T ;V ) + βη(SD) weakly in L2(0, T ;H1(Ω)) and a.e. in Q,
(6.4)

Ph ⇀ P ∈ L2(0, T ;V ) + PD weakly in L2(0, T ;H1(Ω)). (6.5)

Moreover, 0 ≤ S ≤ 1 a.e. in Q and

∂t(ΦS̃h) ⇀ ∂t(ΦS) weakly in L2(0, T ;V ′), (6.6)
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∂t(Φr̃h
g ) ⇀ ∂t(Φrg) weakly in L2(0, T ;V ′). (6.7)

Proof. The proof of (6.1) is the same as the proof of an analogous claim in [4,
Proposition 4]. The non-homogenous boundary conditions are eliminated by using
a cut-off function ζ as in Proposition 4 in [4].

The weak convergence for the sequences Ph, Sh and βη(Sh) in L2(0, T ;H1(Ω))
follow from Proposition 5.1. Since Ph

D ⇀ PD in L2(0, T ;H1(Ω)), we can conclude
P ∈ L2(0, T ;V ) + PD. The analogous conclusion holds for the sequences Sh and
βη(Sh).

Next, Proposition 5.1 allows us to apply the modification of a classical compact-
ness result (see [4, Lemma 7]) to a sequence S̃h to obtain the relative compactness
of S̃h in L2(Q). Combining (6.1) and the weak convergence of Sh to S completes
the proof of (6.2). The fact that 0 ≤ Sh ≤ 1 a.e. in Q implies that 0 ≤ S ≤ 1 a.e.
in Q.

The limit of βη(Sh) is identified using a.e. convergence of Sh.
Using the same arguments as for S̃h, we obtain that r̃h

g → rg strongly in L2(Q)
and also rh

g → rg strongly in L2(Q). Lemma 6.1 gives that rg = ρg(P η
g (S, P ))S.

The existence of the weak limits (6.6) and (6.7) is a consequence of the estimate
(5.3) and the limits are identified in a standard way. This completes the proof of
Proposition 6.2. �

Our final step in establishing the existence of weak solutions of the regularized
system (3.11)-(3.12) is to pass to the limit as h → 0 in the discrete system (4.3)-
(4.4). Since we have established the pointwise convergence of the global pressure
only on the set where the limit of saturation is strictly positive, we can pass to the
limit as h → 0 in the nonlinear functions of S and P only if they have a special
form which is given in the following lemma, whose proof is elementary.

Lemma 6.3. Let F ∈ C([0, 1]× R) and let there exist functions F1, F2 ∈ C([0, 1])
such that F1(S) ≤ F (S, P ) ≤ F2(S) and F1(0) = F2(0). Then for any two sequences
(Sε), (P ε), such that

(i) Sε → S a.e. in Q;
(ii) P ε → P a.e. in Q+,

we have

F (Sε, P ε) → F (S, P ) a.e. in Q. (6.8)

Remark 6.4. It is easy to verify that Lemma 6.3 can be applied to all coefficients
in (4.3)-(4.4) and that we have the following limits a.e. in Q as h→ 0:

Λη
w(Sh, Ph) → Λη

w(S, P ), Aη(Sh, Ph) → Aη(S, P ), fw(Sh, Ph) → fw(S, P ),

Λη
g(Sh, Ph) → Λη

g(S, P ), λg(Sh)ρη
g(Sh, Ph)2 → λg(S)ρη

g(S, P )2,

ρη
g(Sh, Ph)fg(Sh, Ph) → ρη

g(S, P )fg(S, P ).

Now we employ the convergence results in Proposition 6.2 and Remark 6.4 to pass
to the limit as h → 0 in the discrete system (4.3)-(4.4) and obtain (3.25)-(3.26).
Next, we conclude in a standard way that ρg(P η

g (S, P ))S, S ∈ C([0, T ];L2(Ω))
and that the initial conditions are satisfied (see [4]). This completes the proof of
Theorem 3.3.



18 B. AMAZIANE, M. JURAK, A. VRBAŠKI EJDE-2012/102

7. Proof of Theorem 2.3

In this section we prove the existence of weak solutions for the degenerate prob-
lem. From now on we express again the dependence of the solution of the regularized
problem on parameter η. Our final step is passing to the limit as η → 0 in the reg-
ularized problem (3.25), (3.26). In order to be able to apply Theorem 3.3, we will
replace the initial conditions s0 and p0 with the regularized initial conditions sη

0

and pη
0 from H1(Ω) such that sη

0 → s0 and pη
0 → p0 in L2(Ω) and a.e. in Ω when η

tends to zero.

Proposition 7.1. For sufficiently small η, let (P η, Sη)η be the sequence of solutions
given by Theorem 3.3. Denote P η

g = P η
g (Sη, P η). The following bounds are valid,

uniform with respect to η:

‖P η‖L2(0,T ;H1(Ω)) ≤ C, (7.1)

‖βη(Sη)‖L2(0,T ;H1(Ω)) ≤ C, (7.2)

‖√η∇Sη‖L2(Q)d ≤ C, (7.3)

‖∂t(ΦSη)‖L2(0,T ;V ′) + ‖∂t(Φρg(P η
g )Sη)‖L2(0,T ;V ′) ≤ C. (7.4)

Proof. We pass to the limit as h → 0 in the estimate (5.13) which is uniform in
η, and then make use of the weak lower semicontinuity of the seminorms f 7→∫

Q
|∇f |2 dxdt to obtain∫

Q

(|∇P η|2 + |∇βη(Sη)|2) dx dt+ η

∫
Q

|∇Sη|2 dx dt

≤ C(1 + ‖Fw‖2L2(Q) + ‖Fg‖2L2(Q) + ‖PD‖2L2(0,T ;H1(Ω)) + |||P η
wD|||

2 + |||P η
gD|||

2

+ ‖Gw‖2L2(ΓT
N ) + ‖Gg‖2L2(ΓT

N )).

Using Remark 3.2 and the Poincaré inequality, (7.1), (7.2) and (7.3) follow imme-
diately. The uniform estimates for the time derivatives of the functions (ΦSη)η

and (Φρg(P η
g )Sη)η follow from the estimates (7.1)-(7.3) by setting arbitrary ϕ ∈

L2(0, T ;V ) in the weak formulation (3.25)-(3.26). This completes the proof of
Proposition 7.1. �

The compactness results for the families (Sη)η and (ρg(P η
g (Sη, P η))Sη)η will

follow from the two following Lemmas, which can be considered as special cases of
[4, Lemma 5] (see also [29, Lemma 4.3]) and therefore we will not give the proofs.

Lemma 7.2. For any c > 0 and for any η0 > 0, the set

Ac,η0 =
{
S : 0 < η ≤ η0, ‖βη(S)‖L2(0,T ;H1(Ω)) ≤ c, ‖∂t(ΦS)‖L2(0,T ;V ′) ≤ c

}
is relatively compact in L2(Q).

Lemma 7.3. For any c > 0 and for any η0 > 0, the set

Bc,η0 =
{
ρg(P η

g (S, P ))S : 0 < η ≤ η0, ‖P‖L2(0,T ;H1(Ω)) ≤ c,

‖βη(S)‖L2(0,T ;H1(Ω)) ≤ c, ‖∂t(Φρg(P η
g (S, P ))S)‖L2(0,T ;V ′) ≤ c}

is relatively compact in L2(Q).

The limit behavior as η → 0 of the solutions to the regularized problem given
by Theorem 3.3 is described by the following result.
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Lemma 7.4. Let θη = βη(Sη). The following convergence results hold, up to a
subsequence, as η → 0.

P η ⇀ P ∈ L2(0, T ;V ) + PD weakly in L2(0, T ;H1(Ω)), (7.5)

θη ⇀ θ ∈ L2(0, T ;V ) + θD weakly in L2(0, T ;H1(Ω)) and a.e. in Q, (7.6)

Sη → S(θ) strongly in L2(Q), (7.7)

∂t(ΦSη) ⇀ ∂t(ΦS(θ)) weakly in L2(0, T ;V ′), (7.8)

∂t(Φρg(P η
g (Sη, P η))Sη) ⇀ ∂t(Φρg(Pg(S(θ), P ))S(θ)) weakly in L2(0, T ;V ′).

(7.9)

Moreover, 0 ≤ θ ≤ β(1) a.e. in Q.

Proof. Weak convergence of (P η), (θη), ∂t(ΦSη) and ∂t(Φρg(P η
g (Sη, P η))Sη) follow

from Proposition 7.1. Strong convergence of Sη to S in L2(Q) is a consequence of
Lemma 7.2; we also get S = S(θ). In order to identify the limit in (7.9), we conclude
from Lemma 7.3 and the uniform convergence (3.20) that

ρg(Pg(Sη, P η))Sη → lg in L2(Q) and a.e. in Q. (7.10)

Now we apply Lemma 6.1 to obtain lg = ρg(S, P )S. This completes the proof of
Lemma 7.4. �

Remark 7.5. Using Lemma 6.3 we get the following convergence results a.e. in
Q, as η → 0,

Λw(Sη, P η) → Λw(S, P ), A(Sη, P η) → A(S, P ), fw(Sη, P η) → fw(S, P ),

Λg(Sη, P η) → Λg(S, P ), λg(Sη)ρη
g(Sη, P η)2 → λg(S)ρg(S, P )2,

ρη
g(Sη, P η)fg(Sη, P η) → ρg(S, P )fg(S, P ).

Finally, we insert a test function ϕ ∈ C1([0, T ];V ) such that ϕ(T ) = 0 into
(3.11). After the integration by parts in the time derivative term we obtain

ρw

∫
Q

ΦSη∂tϕdx dt+
∫

Q

[Λη
w(Sη, P η)K∇P η · ∇ϕ−A(Sη, P η)K∇θη · ∇ϕ] dx dt

−
∫

Q

λw(Sη)ρ2
wKg · ∇ϕdx dt− η

∫
Q

K∇Sη · ∇ϕdx dt

=
∫

Q

Fwϕdx dt−
∫

ΓT
N

Gwϕdσ dt− ρw

∫
Ω

Φsη
0ϕ(0) dx.

Here we take into account the definitions (3.10), (2.6) and (3.15) which give

Aη(Sη, P η)∇Sη = A(Sη, P η)∇βη(Sη) + η∇Sη.

We can pass to the limit as η → 0 in the nonlinear terms using pointwise convergence
in Remark 7.5 and uniform convergence in Lemma 3.1. The penalisation term tends
to zero due to (7.3). Thus we obtain

ρw

∫
Q

ΦS∂tϕdx dt+
∫

Q

[Λw(S, P )K∇P · ∇ϕ−A(S, P )K∇θ · ∇ϕ] dx dt

−
∫

Q

λw(S)ρ2
wKg · ∇ϕdx dt
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=
∫

Q

Fwϕdx dt−
∫

ΓT
N

Gwϕdσ dt− ρw

∫
Ω

Φs0ϕ(0) dx,

where S = S(θ). In the same way, taking a test function ψ ∈ C1([0, T ];V ) with
ψ(T ) = 0 we get by integration by parts from (3.26)

−
∫

Q

Φρη
g(Sη, P η)Sη∂tψ dx dt

+
∫

Q

[Λη
g(Sη, P η)K∇P η · ∇ψ +A(Sη, P η)K∇θη · ∇ψ] dx dt

−
∫

Q

λg(Sη)ρη
g(Sη, P η)2Kg · ∇ψ dx dt+ η

∫
Q

K∇Sη · ∇ψ dx dt

=
∫

Q

Fgψ dx dt−
∫

ΓT
N

Ggψ dσ dt+
∫

Ω

Φρη
g(sη

0 , p
η
0)sη

0ψ(0) dx,

and after passing to the limit as η → 0,

−
∫

Q

Φρg(S, P )S∂tψ dt+
∫

Q

[Λg(S, P )K∇P · ∇ψ +A(S, P )K∇θ · ∇ψ] dx dt

−
∫

Q

[λg(S)ρg(S, P )2Kg · ∇ψ − ρg(S, P )fg(S, P )FPψ] dx dt

=
∫

Q

Fgψ dx dt−
∫

ΓT
N

Ggψ dσ dt+
∫

Ω

Φρg(s0, p0)s0ψ(0) dx.

Using the fact that the functions Φρg(S, P )S and ΦS belong to C([0, T ];V ′)
and by an integration by parts, we easily conclude that the initial condition in
Theorem 2.3 is satisfied and the proof of Theorem 2.3 is completed.
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[40] F. Smäı; A model of multiphase flow and transport in porous media applied to gas migration

in underground nuclear waste repository, C. R. Math. Acad. Sci. Paris 347 (2009), 527–532.
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UMR 5142, Av. de l’Université, 64000 Pau, France
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