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SUMS OF ZEROS OF SOLUTIONS TO SECOND ORDER ODE
WITH NON-POLYNOMIAL COEFFICIENTS

MICHAEL I. GIL’

Abstract. We consider the equation y′′ = F (z)y (z ∈ C) with an entire
function F satisfying the condition

|F (z)| ≤ A exp
` |z|ρ

ρ

´
(ρ ≥ 1, A = const > 0).

Let zk(y), k = 1, 2, . . . be the zeros of a solution y(z) to the above equation.
Bounds for the sums

jX
k=1

1

|zk(y)|
(j = 1, 2, . . . )

are established. Some applications of these bounds are also considered.

1. Introduction and statement of the main result

In the present article, we consider linear differential equations with non-polynomial
coefficients in the complex domain. The literature devoted to the zeros of solutions
of such equations is very rich. Here the main tool is the Nevanlinna theory. An
excellent exposition of the Nevanlinna theory and its applications to differential
equations is given in the book [11]. In that book, in particular, the well-known
results of Bank, Brűggemann, Hellerstein, Rossi, Huang and other mathematicians
are featured. In connection with recent results see the very interesting papers [2]-
[5], [8], [12]-[17]. In particular, in the paper [15], the authors study the convergence
of the zeros of a non-trivial (entire) solution to the linear differential equation

f ′′ +
{
Q1(z)eP1(z) +Q2(z)eP2(z) +Q3(z)eP3(z)

}
f = 0

where Pj are polynomials of degree n ≥ 1 and Qj (Qj 6≡ 0) are entire functions
of order less than n (j = 1, 2, 3). The remarkable results on the zeros of a wide
class of ordinary differential equations with polynomial coefficients whose solutions
are classical orthogonal polynomials was established by Anghel [1]. Besides, he
had derived the important results connected with the equations of mathematical
physics.

Certainly we could not survey the whole subject here and we refer the reader to
the above listed publications and references given therein.
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In the above cited works mainly the asymptotic distributions of zeros and count-
ing functions of zeros are investigated. At the same time, bounds for the zeros
of solutions are very important in various applications. But to the best of our
knowledge, they have been investigated considerably less than the asymptotic dis-
tributions. In the paper [10], bounds for the sums of the zeros of solutions are
established for the second order equations with polynomial coefficients. In this
paper, we obtain such bounds in the case of non-polynomial coefficients. Besides,
below we estimate the zero free domains. That estimation supplements the well-
known results of Eloe and Henderson [7] on the positivity of solutions for higher
order ordinary differential equations, since the positivity of solutions implies the
absence of zeros. Note that, the proof of the main result of the present paper is
considerably different from the proof of the paper [10].

Consider the equation
d2y(z)
dz2

= F (z)y(z) (1.1)

with an entire function F , satisfying the condition

|F (z)| ≤ A exp
( |z|ρ
ρ

)
(ρ ≥ 1; A = const > 0; z ∈ C). (1.2)

In Section 3 below we check that to inequality (1.2) can be reduced the formally
more general inequality

|F (z)| ≤ A exp[B|z|ρ] (B = const > 0) (1.3)

by the substitution

z =
w

(ρB)1/ρ
(1.4)

into (1.1). Everywhere below, y(z) is a solution of (1.1) with y(0) = 1. Enumerate
the zeros zk(y) of y(z), with multiplicities taken into account, in order of increasing
modulus: |zk(y)| ≤ |zk+1(y)| (k = 1, 2, . . . ). Put

vn = n
e1+2/ρ

ρ
.

Theorem 1.1. Let y(z) be a solution of (1.1) with y(0) = 1 and let condition (1.2)
hold. Then

j∑
k=1

1
|zk(y)|

< θ0 + ζ0

j∑
k=1

1
ρ
√

ln vk

(j = 1, 2, . . . ),

where θ0 and ζ0 are positive constants defined by

θ0 = 2
√
e

3
(1 + |y′(0)|) exp[A2e2/ρ] and ζ0 = 2e1/2(3/ρ)1/ρ.

The proof of this theorem is presented in the next section. Let us point some
corollaries of Theorem 1.1.

Denote by ν(y, r) (r > 0) the counting function of the zeros of y in |z| ≤ r.
Theorem 1.1 implies

Corollary 1.2. With the notation

ηj(y) :=
j

θ0 + ζ0
∑j

k=1
1

ρ√ln vk

(j = 1, 2, . . . ),
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the inequality |zj(y)| > ηj(y) holds and thus ν(u, r) ≤ j − 1 for any r ≤ ηj(y)
(j ≥ 2).

Furthermore, put

ϑ1 = θ0 +
ζ0

ln1/ρ v1
, ϑk =

ζ0

ln1/ρ vk

(k = 2, 3, . . . ).

Theorem 1.1 and [9, Lemma 1.2.1] yield the following result.

Corollary 1.3. Under the hypothesis of Theorem 1.1, let φ(t) (0 ≤ t < ∞) be a
continuous convex scalar-valued function, such that φ(0) = 0. Then

j∑
k=1

φ(|zk(y)|−1) ≤
j∑

k=1

φ(ϑk) (j = 1, 2, . . . ).

In particular, take

φ(t) = tρ+1 exp[−ζ
ρ
0

tρ
].

Then

φ(ϑk) =
ζρ+1
0

ln1+1/ρ vk

exp[− ln vk] ≤ const
(ln k)1+1/ρ k

(k > 1).

By the previous corollary we get the following result.

Corollary 1.4. Under the hypothesis of Theorem 1.1, we have

∞∑
k=1

1
|zk(y)|ρ+1

e−(ζ0|zk(y)|)ρ

<∞.

In addition, in light of Theorem 1.1 and [9, Lemma 1.2.2] we obtain our next
result.

Corollary 1.5. Let Φ(t1, t2, . . . , tj) be a function with an integer j defined on the
domain

0 < tj ≤ tj−1 · · · ≤ t2 ≤ t1 <∞

and satisfying the condition

∂Φ
∂t1

>
∂Φ
∂t2

> · · · > ∂Φ
∂tj

> 0 for t1 > t2 > · · · > tj > 0.

Then

Φ
( 1
|z1(y)|

, . . . ,
1

|zj(y)|

)
≤ Φ(ϑ1, . . . , ϑj).

In particular, let {dk}∞k=1 be a decreasing sequence of positive numbers. Then
the previous corollary yields the inequality

j∑
k=1

dk

|zk(y)|
≤

j∑
k=1

dkϑk (j = 1, 2, . . . ).
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2. Proof of Theorem 1.1

Consider the entire function

f(z) =
∞∑

k−0

ckz
k (c0 = 1) (2.1)

satisfying the condition

|f(z)| ≤ (1 + qr) exp[A exp(rρ/ρ)] (q = const > 0; z ∈ C, r = |z|). (2.2)

Put
C = (1 + q) exp[

1
2
e2/ρA2].

Lemma 2.1. Let condition (2.2) hold. Then the Taylor coefficients of f are sub-
jected to the inequality

|cn| ≤ Cen/2
( 3
ρ ln vn

)(n−1)/ρ

.

Proof. Let
Mf (r) = max

|z|=r
|f(z)|.

By the well-known inequality for the coefficients of a power series,

|cn| ≤
Mf (r)
rn

(r > 0).

Take into account that

ab ≤ a2

4c
+ b2c (a, b, cpositive constants).

Then for a constant µ > 0,

A exp(rρ/ρ) ≤ A2

4µ
+ µ exp(2rρ/ρ).

Due to (2.2),

|cn| ≤ (1 + qr) exp[
A2

4µ
]h(r) where h(r) :=

exp[µe2rρ/ρ]
rn

(n = 1, 2, . . . ). (2.3)

Let us use the usual method for finding extrema. Clearly,

r2nh′(r) = eµe2rρ/ρ

[2µe2rρ/ρrn+ρ−1 − nrn−1].

Thus the zero r0 = r0(n) of h′(r) is defined by

2µrρ
0e

2rρ
0/ρ = n. (2.4)

Take
µ =

1
2
e−2/ρ.

Then
rρ
0e

2(rρ
0−1)/ρ = n. (2.5)

So for n ≥ 1 we have r0 ≥ 1. Hence by (2.4),

µe2rρ
0/ρ ≤ n/2. (2.6)

Since x ≤ ex−1 (x > 0), by (2.5) we have e3rρ
0/ρ ≥ ne1+2/ρ/ρ = vn, and therefore,

r0 ≥ (
ρ

3
ln vn)1/ρ. (2.7)
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Since r0 ≥ 1, we obtain 1+qr0
r0

≤ 1 + q. Now (2.3) and (2.6) imply

|cn| ≤ exp[
A2

4µ
](1 + q)

en/2

rn−1
0

.

Hence, (2.7) proves the lemma. �

Put D =
√
eC, and

τn = 2e1/2

(
3

ρ ln vn

)1/ρ

.

Then according to Lemma 2.1,

|cn| ≤ D
τn−1
n

2n−1
.

Denote ψ1 = 1, ψn = τn−1
n (n > 1); an = cn/ψn, and mn+1 = ψn+1/ψn. As it is

proved in [9, Theorem 5.1.1], the inequality
j∑

k=1

1
|zk(f)|

≤ θ(f) +
j∑

k=1

mk+1

is valid, where zk(f) are the zeros of f(z), with multiplicities taken into account,
enumerated in order of increasing modulus, and

θ(f) :=
[ ∞∑

k=1

|ak|2
]1/2

.

But |a1| = |c1| ≤ D; |an| ≤ D/2n−1, n ≥ 2. Moreover, since τn+1 ≤ τn, we get
mn+1 ≤ τn (n = 1, 2, . . . ), and θ(f) ≤ θ̃0, where

θ̃20 = D2
∞∑

k=0

1
4k

= 4D2/3.

We thus have proved the following result.

Lemma 2.2. Let an entire function f satisfy condition (2.2). Then
j∑

k=1

1
|zk(f)|

≤ θ̃0 +
j∑

k=1

τn = θ̃0 + ζ0

j∑
k=1

1

ln1/ρ vk

(j = 1, 2, . . . ).

Lemma 2.3. A solution y of (1.1) with the conditions (1.2) and y(0) = 1 is an
entire function satisfying the inequality

|y(z)| ≤ (1 + |y′(0)|r) exp[Aerρ/ρ] (z ∈ C).

Proof. From (1.1) for a z = reit with a fixed argument t we have e−2itd2y(z)/dr2 =
F (z)y(z). Hence, putting q = |y′(0)|, g(r) = |y(reit)|, and taking into account (1.2)
we obtain

g(r) ≤ 1 + qr +
∫ r

0

(r − s)|F (seit)|g(s)ds ≤ 1 + qr +A

∫ r

0

(r − s) exp[sρ/ρ]g(s)ds.

By [6, Lemma III.2.1] we have g(r) ≤ m(r), where m(r) is a solution of the equation

m(r) = 1 + qr +A

∫ r

0

(r − s) exp[sρ/ρ]m(s)ds.
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However, ∫ r

0

(r − s)f(s)ds =
∫ r

0

∫ s

0

f(τ)dτ ds

for any integrable function f . Thus,

m(r) = 1 + qr +A

∫ r

0

∫ s

0

exp[τρ/ρ]m(τ)dτ ds.

Clearly the derivative of m is positive. So

m(r) ≤ 1 + qr +A

∫ r

0

m(τ)
∫ τ

0

exp[sρ/ρ]ds dτ.

But for r ≤ 1, ∫ r

0

exp[sρ/ρ]ds ≤ exp[rρ/ρ],

and for an r ≥ 1,∫ r

0

esρ/ρds ≤
∫ 1

0

esρ/ρds+
∫ r

1

sρ−1esρ/ρds ≤ e1/ρ + (erρ/ρ − e1/ρ) = erρ/ρ.

Thus, ∫ r

0

exp[sρ/ρ]ds ≤ exp[rρ/ρ]. (2.8)

Consequently, m(r) ≤ 1 + qr +A
∫ r

0
m(s) exp[sρ/ρ]ds. By the Gronwall inequality,

m(r) ≤ (1 + qr) exp
[
A

∫ r

0

esρ/ρds
]
.

Now (2.8) implies the required result. �

Then the assertion of Theorem 1.1 follows from Lemmas 2.2 and 2.3.

3. Example

In this section we consider an example that illustrates Theorem 1.1. First sub-
stitute (1.4) into (1.1). Then we arrive at the equation

d2x(w)
dw2

= F1(w), where F1(w) =
1

(ρB)2/ρ
F

( w

(ρB)1/ρ

)
and x(w) = y(w/(ρB)1/ρ). If condition (1.3) holds, then

|F1(w)| ≤ A1 exp
( |w|ρ
ρ

)
,

where A1 = A/(ρB)2/ρ. By Theorem 1.1,

j∑
k=1

1
|zk(x)|

< θ1 + ζ0

j∑
k=1

1

ln1/ρ vk

(j = 1, 2, . . . ), (3.1)

where

θ1 = 2
√
e

3

(
1 + |dx(0)

dw
|
)

exp[A2
1e

2/ρ] = 2
√
e

3

(
1 +

1
(Bρ)1/ρ

|dy(0)
dz

|
)

exp[A2
1e

2/ρ].
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But zk(y) = zk(x)(ρB)1/ρ. Now (3.1) implies
j∑

k=1

1
|zk(y)|

< (ρB)1/ρ
[
θ1 + ζ0

j∑
k=1

1

ln1/ρ vk

]
(j = 1, 2, . . . ). (3.2)

So the following result is holds.

Corollary 3.1. Let y(z) be a solution of (1.1) with y(0) = 1 and condition (1.3)
hold. Then inequality (3.2) is valid.

Furthermore, it can be directly checked that the function

y(z) = ce−z/2 sin(ez) (3.3)

with c = 1/ sin(1) is a solution of the equation

y′′(z) = (
1
4
− e2z)y(z) (3.4)

Besides, y(0) = 1. Clearly, the zeros of y are lnπk (k = 0,±1,±2, . . . ). Hence, for
a sufficiently large j we have

2j∑
k=1

1
|zk(y)|

=
j∑

k=1

[ 1
|z2k−1(y)|

+
1

|z2k(y)|
]

=
j∑

k=1

[ 1
lnπk

+
1

| ln(−πk)|
]
. (3.5)

On the other hand, due to (3.4),F (z) = 1
4 −e

2z and therefore, |F (z)| ≤ (1+ 1
4 )e2|z|.

By (3.2) with B = 2, A = 1 + 1/4, we have
j∑

k=1

1
|zk(y)|

< 2θ1 + 2ζ0
j∑

k=1

1
ln(ke3)

(j = 1, 2, . . . ).

This result is rather close to (3.5).
Note that, if F (z) is of infinite order, then the problem considered in this paper

is much more complicated.
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