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POLYNOMIAL AND RATIONAL INTEGRABILITY OF
POLYNOMIAL HAMILTONIAN SYSTEMS

JAUME LLIBRE, CRISTINA STOICA, CLÀUDIA VALLS

Abstract. Within the class of canonical polynomial Hamiltonian systems
anti-symmetric under phase-space involutions, we generalize some results on
the existence of Darboux polynomial and rational first integrals for “kinetic
plus potential” systems to general systems.

1. Introduction and statement of the main results

This note concerns the integrability of canonical polynomial Hamiltonian sys-
tems. Usually the integrability of these kind of Hamiltonian systems is considered
using Ziglin’s approach [8] or differential Galois theory [5], but here we use the
Darboux theory of integrability [1]. Our findings are generalisations of some results
presented by Maciejewski et al. in [7, 6], and Garcia at el. in [2].

A natural class of canonical Hamiltonian systems is given by systems expressed
as sum of the kinetic and potential terms

H(q, p) =
1
2

m∑
i=1

µip
2
i + V (q), (1.1)

where q, p ∈ Cm, and µi ∈ C for i = 1, . . . ,m. In what follows we observe that
certain statements on polynomial Hamiltonians of the form (1.1) obtained in [2]
generalize to time-reversible Hamiltonian systems with an arbitrary polynomial
Hamiltonian H(q, p). For such systems, under convenient assumptions, we deduce
the existence of a second polynomial first integral independent of the Hamiltonian.

Further, we consider polynomial Hamiltonian systems together with anti-sym-
metric under involutions (q, p) → (−q, p). In this case we obtain a second polyno-
mial or rational first integral independent of the Hamiltonian.

A canonical Hamiltonian system with m degrees of freedom and Hamiltonian
H(q, p) is given by

dqi

dt
=

∂H(q, p)
∂pi

,
dpi

dt
= −∂H(q, p)

∂qi
, for i = 1, . . . ,m, (1.2)

where q = (q1, . . . , qm) ∈ Cm and p = (p1, . . . , pm) ∈ Cm are the generalized
coordinates and momenta, respectively.
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We denote by XH the associated Hamiltonian vector field in C2m to the Hamil-
tonian system (1.2); i.e.,

XH =
m∑

i=1

∂H(q, p)
∂pi

∂

∂qi
−

m∑
i=1

∂H(q, p)
∂qi

∂

∂pi
. (1.3)

Let U be an open subset of C2m, such that its closure is C2m. Then, a function
I : U → C2m constant on the orbits of the Hamiltonian vector field XH contained
in U is called a first integral of XH , i.e. XHI ≡ 0 on U . It is immediate that H is
a first integral of the vector field XH .

A non-constant polynomial F ∈ C[q, p] is a Darboux polynomial of the polyno-
mial Hamiltonian vector field XH if there exists a polynomial K ∈ C[q, p], called
the cofactor of F , such that XHF = KF . We say that F is a proper Darboux
polynomial if its cofactor is not zero, i.e. if F is not a polynomial first integral of
XH .

One may check directly from the definition of a Darboux polynomial F that the
hypersurface F (q, p) = 0 defined by a Darboux polynomial is invariant by the flow
of XH , i.e., if an orbit of the vector field XH has a point on that hypersurface, then
the whole orbit is contained in it.

The Darboux polynomials where introduced by Darboux [1] in 1878 for studying
the existence of first integrals in the polynomial differential systems in Cm. His
original ideas have been developed by many authors; see the survey [3] and the
paper [4] with the references therein on the recent result on the Darboux theory of
integrability.

We say that a function G(q, p) is even with respect to the variable q if G(q, p) =
G(−q, p), and we say that it is odd with respect to the variable q if G(q, p) =
−G(−q, p). An analogous definition applies for G being even or odd with respect
to the variable p.

2. Involutions with respect to momenta

In general, a (smooth) involution is a (smooth) map f such that f ◦ f = Id,,
where Id is the identity. In our context, consider the involution given by the
diffeomorphism τ : C2m → C2m , τ(q, p) := (q,−p). The vector field XH on C2m is
said to be τ–reversible if τ∗(XH) = −XH , where τ∗ is the push–forward associated
to the diffeomorphism τ . This is the case when

∂H(q,−p)
∂pi

= −∂H(q, p)
∂pi

and
∂H(q,−p)

∂qi
=

∂H(q, p)
∂qi

.

For instance, systems of the form (1.1) fulfill these conditions.

Theorem 2.1. Consider a polynomial Hamiltonian H(q, p) such that its corre-
sponding Hamiltonian vector field (1.3) is τ -reversible. Let F (q, p) be a proper
Darboux polynomial of the Hamiltonian vector field XH with a cofactor K(q, p)
which is an even function with respect to the variable p. Then F (q, p)F (q,−p) is a
polynomial first integral of XH .

To prove the above theorem, we need the following result.

Lemma 2.2. Under the assumptions of Theorem 2.1, we have that F (q,−p) is
another proper Darboux polynomial of XH with cofactor −K(q,−p).
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Proof. Since
XHF (q, p) = K(q, p)F (q, p),

we have
τ∗(XHF )(q, p) = τ∗(K · F )(q, p) .

In the relation above, the left hand side is

τ∗(XHF )(q, p) = τ∗(XH)τ∗(F )(q, p) = −XHF
(
τ−1(q, p)

)
= −XHF (τ(q, p)) = −XHF (q,−p)

(2.1)

where we used that τ−1 = τ . The right hand side is

τ∗(K · F )(q, p) =
(
(K · F ) ◦ τ−1

)
(q, p) = ((K · F ) ◦ τ) (q, p)

= (K · F )(q,−p) = K(q,−p) · F (q,−p)
(2.2)

Since (2.1) equals (2.2) we obtain

XHF (q,−p) = −K(q,−p)F (q,−p).

So F (q,−p) is a proper Darboux polynomial of XH with cofactor −K(q,−p) 6= 0,
because K(q, p) 6= 0 due to the fact that F (q, p) is a proper Darboux polynomial.

�

Proof of Theorem 2.1. Under the assumptions of Theorem 2.1 we have XHF (q, p) =
K(q, p)F (q, p) with K(q, p) 6= 0. By Lemma 2.2 we have that XHF (q,−p) =
−K(q,−p)F (q,−p). Therefore,

XH(F (q, p)F (q,−p)) = XH(F (q, p))F (q,−p) + F (q, p)XH(F (q,−p))

= K(q, p)F (q, p)F (q,−p) + F (q, p)(−K(q,−p)F (q,−p))

= (K(q, p)−K(q,−p))F (q, p)F (q,−p).

This last expression is zero due to the fact that the cofactor K(q, p) is an even
function in the variable p. So F (q, p)F (q,−p) is a polynomial first integral of
Hamiltonian vector field XH . �

Corollary 2.3. Consider a polynomial Hamiltonian H(q, p) given by (1.1). Let
F (q, p) be a proper Darboux polynomial of the Hamiltonian vector field XH . Then
F (q, p)F (q,−p) is a polynomial first integral of XH .

A proof of the above corollary can be found in [2, Theorem 3]; We omit it.
A Hamiltonian system is called time-reversible if for any integral curve (q(t), p(t))

of XH we have (q(−t), p(−t)) = (q(t),−p(t)). In the configurations space this means
that whenever we have a trajectory q(t) then q(−t) is also a trajectory. Note that
time-reversibility is equivalent to the invariance of the flow under involutions acting
on the independent variable (time) as well; i.e., (q, p, t) → (q,−p,−t). In this
context, Theorem 2.1 may be extended as follows:

Theorem 2.4. Let H(q, p) be a time-reversible polynomial Hamiltonian system and
assume that F (q, p) is a proper Darboux polynomial of the Hamiltonian vector field
XH with a cofactor K(q, p) such that K ◦ τ = K. Then F · (F ◦ τ) is a polynomial
first integral of XH .

The proof of Theorem 2.4 is similar to the proof of Theorem 2.1. We omit it.
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3. Involutions with respect to coordinates

Let τ̂ : C2m → C2m be the involution τ̂(q, p) = (−q, p). The vector field XH or
the Hamiltonian system (1.2) on C2m is τ̂ -equivariant if the Hamiltonian system
(1.2) is invariant under σ̂, that is τ̂∗(XH) = −XH . This is the case when

∂H(−q, p)
∂pi

=
∂H(q, p)

∂pi
and

∂H(−q, p)
∂qi

= −∂H(q, p)
∂qi

Theorem 3.1. Consider a polynomial Hamiltonian H(q, p) such that its corre-
sponding Hamiltonian vector field (1.3) is τ̂ -equivariant. Let F (q, p) be a proper
Darboux polynomial of the Hamiltonian vector field XH with a cofactor K(q, p).
Then the following statements hold.

(a) If K(q, p) is an even function with respect to q, then F (−q, p)F (q, p) is a
polynomial first integral of XH .

(b) If K(q, p) is an odd function with respect to q, then F (−q, p)/F (q, p) is a
rational first integral of XH .

To prove the above theorem we need the following result:

Lemma 3.2. Under the assumptions of Theorem 3.1 we have that F (−q, p) is
another proper Darboux polynomial of XH with cofactor −K(−q, p).

Proof. From the definition of τ̂∗ it follows that τ̂∗(XH) = −XH . This implies that

τ̂∗(XHF ) = −XH τ̂(F ) = −XHF (−q, p). (3.1)

Moreover, we have that XHF = KF and thus

τ̂∗(XHF ) = τ̂∗(KF ) = τ̂∗(K)τ̂∗(F ) = K(−q, p)F (−q, p). (3.2)

Combining equations (3.1) and (3.2) we obtain

XHF (−q, p) = −K(−q, p)F (−q, p).

Therefore, F (−q, p) is a proper Darboux polynomial of XH with cofactor−K(−q, p).
We note that K(−q, p) 6= 0 due to the fact that F (−q, p) is a proper Darboux poly-
nomial and consequently K(q, p) 6= 0. �

Proof of Theorem 3.1. Under the assumptions of Theorem 3.1 we have XHF (q, p) =
K(q, p)F (q, p) with K(q, p) 6= 0. By Lemma 3.2 we have that XHF (−q, p) =
−K(−q, p)F (−q, p). Therefore,

XH(F (−q, p)F (q, p)) = XH(F (−q, p))F (q, p) + F (−q, p)XH(F (q, p))

= −K(−q, p)F (−q, p)F (q, p) + F (−q, p)K(q, p)F (q, p)

= (−K(−q, p) + K(q, p))F (q,−p)F (q, p).

If K is an even function in the variable q, the last expression is zero. So, in this
case, F (−q, p)F (q, p) is a polynomial first integral of the Hamiltonian vector field
XH . This completes the proof of statement (a).

On the other hand,

XH(F (−q, p)/F (q, p)) =
XH(F (−q, p))F (q, p)− F (−q, p)XH(F (q, p))

F (q, p)2

=
−K(−q, p)F (−q, p)F (q, p)− F (−q, p)K(q, p)F (q, p)

F (q, p)2
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= −(K(−q, p) + K(q, p))
F (−q, p)
F (q, p)

.

If K is an odd function in the variable q, the last expression is zero. So, in this
case, F (−q, p)/F (q, p) is a rational first integral of the Hamiltonian vector field XH .
This completes the proof of the theorem. �

It is natural to extend Theorem 3.1 to involutions acting on the independent
variable (time) of the form (q, p, t) → (−q, p,−t), under which the flow is invariant.
In this case, whenever (q(t), p(t)) is an integral curve, so is (−q(−t), p(−t)).

Theorem 3.3. Consider a polynomial Hamiltonian H(q, p) such that its flow is in-
variant under (q, p, t) → (−q, p,−t). Let F (q, p) be a proper Darboux polynomial of
the Hamiltonian vector field XH with a cofactor K. Then the following statements
hold.

(a) If K is such that K ◦ τ̂ = K, then F · (F ◦ τ̂) is a polynomial first integral
of XH .

(b) If K is such that K ◦ τ̂ = −K, then (F ◦ τ̂)/F is a rational first integral of
XH .

The proof of Theorem 3.3 is the same as the proof of Theorem 3.1. we omit it.

Proposition 3.4. Consider a polynomial Hamiltonian H(q, p) given by (1.1),
where V (q) is even. Let F (q, p) be a proper Darboux polynomial of the Hamiltonian
vector field XH with cofactor K. Then the following statements hold.

(a) If K is an even function in the variable q, then F (−q, p)F (q, p) is a poly-
nomial first integral of XH .

(b) If K is an odd function in the variable q, then F (−q, p)/F (q, p) is a rational
first integral of XH .

To prove Proposition 3.4 we recall the following result whose proof can be found
in [2].

Lemma 3.5. Let F (q, p) be a proper Darboux polynomial of the Hamiltonian vector
field XH associated to the Hamiltonian H given by (1.1). Then its cofactor is a
polynomial of the form K(q).

Proof of Proposition 3.4. If F (q, p) is a proper Darboux polynomial of the Hamil-
tonian vector field XH , by Lemma 3.5 we have that its cofactor is of the form K(q).
Then, if K is an even function in the variable q then the Hamiltonian vector field XH

satisfies all the assumptions of Theorem 3.1(a), and consequently F (−q, p)F (q, p)
is a polynomial first integral of XH . On the other hand, if K is an odd function in
the variable q then the Hamiltonian vector field XH satisfies all the assumptions
of Theorem 3.1(b), and consequently F (−q, p)/F (q, p) is a rational first integral of
XH . This completes the proof. �
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