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CAUCHY-KOWALEVSKI AND POLYNOMIAL ORDINARY
DIFFERENTIAL EQUATIONS

ROGER J. THELWELL, PAUL G. WARNE, DEBRA A. WARNE

Abstract. The Cauchy-Kowalevski Theorem is the foremost result guaran-
teeing existence and uniqueness of local solutions for analytic quasilinear par-
tial differential equations with Cauchy initial data. The techniques of Cauchy-
Kowalevski may also be applied to initial-value ordinary differential equations.
These techniques, when applied in the polynomial ordinary differential equa-
tion setting, lead one naturally to a method in which coefficients of the series
solution are easily computed in a recursive manner, and an explicit majoriza-
tion admits a clear a priori error bound. The error bound depends only on
immediately observable quantities of the polynomial system; coefficients, initial
conditions, and polynomial degree. The numerous benefits of the polynomial
system are shown for a specific example.

1. Introduction

The Cauchy-Kowalevski Theorem is the main tool in showing the existence and
uniqueness of local solutions for analytic quasilinear partial differential equations
(PDE) with Cauchy initial data. Cauchy developed a proof in a restricted setting
by 1842 [3], and in 1875 Kowalevski presented the full result [11]; existence of a
unique solution to the general quasilinear system of partial differential equations
given initial conditions prescribed on some non-characteristic curve. In [8], a proof
in the fully nonlinear setting is presented. The Cauchy-Kowalevski argument is
based on the construction of a power series solution, in which the coefficients of
the series expansion are reconstructed recursively, and the method of majorants
applied to verify that this solution converges locally. Convergence is demonstrated
by comparison with the analytic solution of an associated PDE.

Although the Picard-Lindelöf Theorem is the fundamental local existence argu-
ment for a large class of initial value ordinary differential equations (IVODE), in
1835 Cauchy demonstrated existence and uniqueness in the ODE setting, applying
a majorant based argument similar to that both he and Kowalevski would later use
in the PDE setting. That is, Cauchy methods can be used to show that u satis-
fies the real analytic ODE dtu(t) = f(u(t)), where u(0) = u0 using a constructive
approach, provided f(u) is analytic near u0. A nice treatment may be found in [5].
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Given that the power series solution is directly accessible via the Cauchy-Kowa-
levski construction but that the method is rarely applied suggests practical diffi-
culties. In fact, the coefficients of the series solution can be tedious to construct as
typically posed, as is a key constant in the comparison solution. In this paper, we
demonstrate that a subtle recasting of the ODE system meliorates these difficulties:
the coefficients of the analytic solution become remarkably easy to recover, and a
computable choice of the key constant in the majorization leads to an attractive a
priori error bound. To make these ideas clear, we consider the simple quasilinear
problem

dtu(t) = f(u(t)) :=
e2u(t)2

sinu(t)
, with u(0) = 1. (1)

We first consider (1) using the methods of Cauchy, and identify steps in which
the construction of solution becomes tedious. We then recast the problem as a
polynomial system, as might be done when using Taylor series based automatic
differentiation, and apply the same methods. It will be clear the computations
necessary to generate the series solution are basic, and that a simple majorization
which depends only on the magnitude of the initial conditions, the degree of the
polynomial system and the magnitude of the constant coefficients of the system
leads to an explicit bound of the remainder when approximating with the Taylor
Polynomial. Although not demonstrated here, the method applied is quite gen-
eral. The authors view this note as complimentary to [19]. Most importantly, we
conjecture that it may be possible to extend the method to analytic IVPDE.

2. Recasting (non)linear ODE(s) as polynomial systems: Why?

Ordinary differential equations, particularly nonlinear and those with singulari-
ties, play a fundamental role in understanding the principles that govern the world
around us. Left in their original (or classic) form, various analytic and numeric
methods exist which are problem specific, yet there remains a need for a system-
atic method to calculate solutions of general problems. The approach presented
here, perhaps first introduced by Cauchy and subsequently rediscovered and cou-
pled with power series methods by Fehlberg in 1964 ([7]) and others since, is simple
and surprisingly general. A recasting of the original ODE as a system of constant
coefficient polynomial ODEs via an introduction of auxiliary variables leads to a
straight forward iterative calculation of power series coefficients. This allows a clear
and systematic construction of numeric solutions and provides an immediate and
explicit a priori error bound.

A polynomial system is useful computationally, and methods are available to
recast an impressively wide variety of ODEs into an augmented polynomial system.
This includes ODEs with right-hand sides involving compositions of exponential,
logarithmic, and trigonometric functions, as well as those involving the algebraic
operations, including exponentiation of complex power and encompassing general
reciprocals and singularities. For example, the second order ODE,

y′′
[
1 +

√
2

y′2
( x

yy′
)√2−1]

=
[√

2
( x

yy′
)√2

+ 1
][ y

x2
− y′

x

]
+

π2

16
y, (2)

with ()′ := d
dx , used to model the torsional deformation of a compressible elastic

solid cylinder composed of a generalized Blatz-Ko material, does not appear amiable
to classic power series methods, and yet its series solution to arbitrary order is easily
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computable from its equivalent polynomial system [20]. While such computational
advantage is not the focus here, see [2, 9, 10, 16] for examples and discussion in the
automatic differentiation setting or [13, 15, 14, 17] in the ODE setting. Recasting
an ODE as a polynomial system also makes analysis tractable. We now explore one
such application: a proof of existence and uniqueness.

3. Cauchy solution: the classic setting

We begin with the precarious assumption that a locally analytic solution u(t)
to (1) exists, and repeatedly differentiate the equation, using the fact that f(u) is
analytic in u near the initial condition.

d2
t u(t) = duf(u)dtu

= −e4 u2
(4 u sinu− cos u)

(−1 + cos2 u) sinu
,

d3
t u(t) = d2

uf(u)[dtu]2 + duf(u)d2
t u

= −
e6 u2 (

32 u2 cos2 u + 2 cos2 u + 16 u sinu cos u− 5− 32 u2
)

(1− 2 cos2 u + cos4 u) sinu

d4
t u(t) = d3

uf(u)[dtu]3 + 3d2
uf(u)d2

t udtu + duf(u)d3
t u

=
e8 u2

(M1 + M2)
(−1 + 3 cos2 u− 3 cos4 u + cos6 u) sinu

where

M1 = −288 u2 cos3 u− 22 cos3 u + 384 u3 sinu cos2 u− 140 u sinu

M2 = 40u sinu cos2 u + 37 cos u + 288 cos uu2 + 384 u3 sinu

and
dn

t u(t) = pn(f(u), duf(u), d2
uf(u), . . . , dn−1

u f(u)), (3)

where pn(·) denotes a polynomial in n variables (here taken from the set of deriva-
tives of f with respect to u of order less than n; i.e., {dk−1

u f}, k = 1, . . . , n, and
having positive integer coefficients). By this process, all coefficients of the power
series representation of u(t) may be built;

u(t) =
∞∑

k=0

1
k!

dk
t u(0) tk. (4)

Note that the form of the polynomial pn in expression (3) allows the coefficients of
the power series to be recovered recursively, although the complexity of calculation
may (and usually does) grow exponentially.

By its very construction, this power series (4) yields a unique classical solution
to the initial-value ODE if it can be shown to converge. Cauchy demonstrated
convergence by comparison with a related analytic initial-value ODE, whose indi-
vidual coefficients majorize (absolutely bound) those of (4). We briefly illustrate
the argument. We begin with the assumption of the theorem that f(u) is analytic
in some interval of radius R ∈ R about u = 1, and remark that in practice R might
be quite difficult to determine. Then for any positive r < R, there exists

C∞ := max
k
{|Ck|} < ∞, where Cn =

1
n!

dn
uf(1)rn,
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which provides the bound

max
k

∣∣ 1
k!

dk
uf(1)

∣∣ ≤ C∞r−k

on the Taylor coefficients of f(u) about u(0) = 1. Next we define g via the geometric
series

g(v) :=
∞∑

k=0

C∞r−k(v − 1)k = C∞
r

r − (v − 1)
when |v − 1| < r,

and the comparison initial-value ODE

dtv(t) = g(v(t)) with v(0) = 1. (5)

The form of equation (5) is motivated by the observation that the polynomial pn

generated in this case is identical in form to that of (3), allowing a direct comparison
of coefficients of u(t) with those of v(t). Also, g(v) majorizes f(u) near 1 and allows
(5) an analytic solution v(t) near 0. When |v − 1| < r,

|dn
uf(1)| = n!

∣∣ 1
n!

dn
uf(1)

∣∣ ≤ n!C∞r−n = dn
v g(1)

for all n. Noting that the structure of the polynomial in (3) is identical in (1) and
(5), it follows that

|dn
t u(0)| = |pn(f(1), . . . , dn−1

u f(1))|
≤ pn(|f(1)|, . . . , |dn−1

u f(1)|)
≤ pn(g(1), . . . , dn−1

u g(1))

= dn
t v(0),

demonstrating that u(t) is majorized by v(t) in a neighborhood of t = 0. It follows
immediately that

|u(t)| =
∣∣ ∞∑

k=0

1
k!

dk
t u(0) tk

∣∣ ≤ ∞∑
k=0

1
k!

dk
t v(0) |t|k ≤ v(|t|).

The existence of an analytic solution of (5) with radius of convergence |t| < r
2C∞

,
given by

v(t) = 1 + r − r
√

1− 2C∞t/r, (6)

confirms that u(t) must also be locally analytic about t = 0.
This argument relies on C∞, a constant which in practice is often difficult to

ascertain. In our example, it can be shown that R = 1, with r = 0.9, we have

C∞ = max
k
{C0, C1, C2, . . .}

= max
k

{ e2

sin 1
,
9e2(4 sin 1− cos 1)

10 sin2 1
,
81e2(2 + 19 sin2 1− 8 cos 1 sin 1)

200 sin3 1
, . . .

}
,

and it is not immediately clear where the maximum might occur. An explicit
computation of the Ck terms, plotted in Figure 1, suggests that the maximum
occurs near k = 6, and one can easily imagine the complexity of Ck. It is also
worth noting that the ODE given by (1) is simple in comparison to the systems
often used to model problems of technological importance.
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Figure 1. Ck coefficient list

4. Cauchy solution: the polynomial setting

We now apply similar techniques to an equivalent polynomial system. Recall the
original problem:

dtu(t) =
e2u(t)2

sinu(t)
, with u(0) = 1.

Now consider the introduction of the auxiliary variables:

x(t) :=
e2u(t)2

sinu(t)
, y(t) :=

cos u(t)
sinu(t)

.

These auxiliary variables close the system of successive derivatives that are the
foundation of the Cauchy method. This approach is evident in the methods of
[9, 16, 10, 2] with an automatic differentiation flavor, or as suggested by examples
treated in [14, 13, 17].

We now generate the polynomial system

dtu = x u(0) = 1

dtx = (4xu− xy) dtu = 4x2u− x2y x(0) =
e2

sin 1
dty = −

(
1 + y2

)
dtu = −x− y2x y(0) = cot 1.

The first equation is our original ODE; the additional equations serve a purely
computational purpose.

As earlier, we assume the existence of an analytic solution u. We continue by
assuming a formal power series for x and y, which can be shown (along with u) to
be convergent via a majorant argument. Now,

u(t) =
∞∑

k=0

uktk, x(t) =
∞∑

k=0

xktk, y(t) =
∞∑

k=0

yktk.

The constant on which the previous argument relies is C∞, which is difficult in
general to construct. The constants related to the polynomial argument are easy
to construct. In this new setting, consider the companion problem

dtz = Czm z(0) = c. (7)
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The analytic solution to (7) is given explicitly by

z(t) =
(
Ct− Ctm + c1−m

)−(m−1)−1

. (8)

In general, (8) will bound solutions to all autonomous polynomial systems of degree
m, with suitable choice of C and initial condition c. If C = 5,m = 3 and c = e2/sin 1,
we claim that z(t) majorizes u(t), x(t) and y(t). These parameters arise naturally
when considering the majorization; C from the largest row sum of the absolute value
of coefficients in the system, m from the largest degree of the polynomial system,
and c from the largest of the absolute value of the initial conditions and 1. As
a brief exercise, we demonstrate this by applying an inductive argument to verify
that the coefficients of the power series representation of z(t) =

∑∞
k=0 zktk bound

those of x(t). Clearly z0 = c ≥ {|u0|, |x0|, |y0|}, since c ≥ {1, e2/sin 1, cot 1} the
absolute value of the initial conditions. Obviously,

z1 = 5z3
0 ≥ |4x2

0u0 − x2
0y0| = |x1|.

Assuming zk ≥ {|uk|, |xk|, |yk|} for k = 0, . . . , n, it follows that

zn+1 =
1

n + 1
· 5

n∑
k=0

( k∑
i=0

zizk−i

)
zn−k

≥ 1
n + 1

·
∣∣∣4 n∑

k=0

( k∑
i=0

xixk−i

)
un−k −

n∑
k=0

( k∑
i=0

xixk−i

)
yn−k

∣∣∣ (9)

= |xn+1|

where a Cauchy product of two series has been applied twice. An important (and
obvious) observation used in (9) is that

xn+1 =
1

n + 1
·
[
4

n∑
k=0

( k∑
i=0

xixk−i

)
un−k −

n∑
k=0

( k∑
i=0

xixk−i

)
yn−k

]
,

which can easily be implemented to construct the coefficient xn+1 using only coef-
ficients of order n or less. The software tools ATOMFT, Taylor, and most recently
TIDES are three such packages that exploit this recursive feature [4, 10, 1], although
only the last appears to still be supported. The polynomial used to construct coef-
ficients in the classic setting, pn, has now been replaced by an algebraic expression
whose complexity is only O(n3). (In fact, augmenting the system allows reduction
to O(n2) [18].) Since z(t) converges on some open interval containing t = 0 and ma-
jorizes x(t) for |t| < 1, x(t) must also converge on the intersection of these intervals.
The demonstration is now complete; an explicit verification that x(t) converges via
a term-by-term comparison with the convergent series representation of z(t). It is
easy to see that a similar argument may be used for u(t) and y(t).

In addition to a simple coefficient recursion and explicit majorization, the poly-
nomial comparison solution gives rise to an easily computable local a priori error
bound. To accomplish this, the comparison solution z(t) is bounded by w(t), a func-
tion with a geometric series representation. We begin with the recurrence relation
(see [19] for a detailed development) for the coefficients of z,

zn+1 =
(1 + (m− 1)n)cm−1C

n + 1
zn z0 = c, for n ≥ 1. (10)
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For m ≥ 2,
(1 + (m− 1)n)cm−1C

n + 1
≤ (m− 1)cm−1C := C∞. (11)

Combining (10) and (11) yields zn+1 ≤ C∞zn. If

wn+1 = C∞wn, with w0 = c, (12)

then the coefficients of w majorize those of z (and therefore u), and w(t) majorizes
z(t) (and u(t)). The recurrence relation (12) leads directly to the geometric series,

w(t) =
c

1− C∞t
= c

∑
k=0

(C∞t)k, when |t| < 1
C∞

.

The function w may be interpreted as a solution to the IVODE

dtw(t) = C∞w, w(0) = c (13)

where C∞ bounds the coefficient growth of terms of z, playing much the same role
as C∞. Here, however, C∞ is trivial to compute from (11).

Finally, a simple bound on the remainder term Rn, given by

Rn(t) :=
∣∣u(t)−

n∑
k=0

uktk
∣∣ ≤ c

∞∑
k=n+1

C∞|t|k ≤ c|C∞t|n+1 1
1− |C∞t|

, (14)

provides a concise and computable error bound. For (1),

Rn(t) ≤ 10e4

sin2 1
|t|n+1 1

1− 10e4

sin2 1
|t|

.

For a detailed discussion, and an example for which this bound is tight, see [19].
See [12] for a detailed discussion of Interval Analysis, an alternative approach.

In practice, this error bound may be used in a variety of ways. Here, it suggests
a small interval of convergence, with t < 1/C∞ = sin2 1/10e4 ≈ 1.3E−3, and points
to possible singularities in the solution. It can be shown that the solution of (1)
becomes singular quickly beyond t ≈ 2.6E − 2. It may used to construct a robust
marching method, and provide solutions with known error in regions of particular
interest.

Conclusion. We have demonstrated that recasting the original ODE as a polyno-
mial system has several surprising benefits. While the simple differential equation
studied here is not tied to a particular modeling scenario, it demonstrates how
the conversion makes typically abstract analysis very concrete. The techniques of
Cauchy-Kowalevski, when applied to a polynomial system, lead one naturally to a
method in which; (i) coefficients are easily computed in a recursive manner; i.e.,
un+1, xn+1, and yn+1 only depend on products and sums of {uk, xk, yk}k=1..n, (ii)
the majorization is explicit, and (iii) there is a clear a priori error bound. The
majorization and error bound depend only on immediately observable quantities of
the recast system; coefficient sums, initial conditions, and degree.
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