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MULTIPLICITY OF POSITIVE SOLUTIONS FOR QUASILINEAR
ELLIPTIC P-LAPLACIAN SYSTEMS

ASADOLLAH AGHAJANI, JAMILEH SHAMSHIRI

Abstract. We study the existence and multiplicity of solutions to the elliptic
system

− div(|∇u|p−2∇u) + m1(x)|u|p−2u = λg(x, u) x ∈ Ω,

− div(|∇v|p−2∇v) + m2(x)|v|p−2v = µh(x, v) x ∈ Ω,

|∇u|p−2 ∂u

∂n
= fu(x, u, v), |∇v|p−2 ∂v

∂n
= fv(x, u, v),

where Ω ⊂ RN is a bounded and smooth domain. Using fibering maps and ex-
tracting Palais-Smale sequences in the Nehari manifold, we prove the existence
of at least two distinct nontrivial nonnegative solutions.

1. Introduction

In this article, we study the existence and multiplicity of positive solutions of
the quasilinear elliptic system

−div(|∇u|p−2∇u) +m1(x)|u|p−2u = λg(x, u) x ∈ Ω,

−div(|∇v|p−2∇v) +m2(x)|v|p−2v = µh(x, v) x ∈ Ω,

|∇u|p−2 ∂u

∂n
= fu(x, u, v), |∇v|p−2 ∂v

∂n
= fv(x, u, v)x ∈ ∂Ω,

(1.1)

where λ, µ > 0, p > 2, Ω ⊂ RN is a bounded domain in RN with the smooth bound-
ary ∂Ω, ∂

∂n is the outer normal derivative, m1,m2 ∈ C(Ω̄) are positive bounded
functions together with the following assumptions on the functions f, g and h:

(A1) ∂2

∂t2 f(x, t|u|, t|v|)|t=1 ∈ C(∂Ω × R2) and for u, v ∈ Lp(∂Ω), the integral∫
∂Ω

∂2

∂t2

(
f(x, t|u|, t|v|)

)
dx has the same sign for every t > 0.

(A2) There exists C1 > 0 such that

f(x, u, v) ≤ 1
r

∂

∂t
f(x, tu, tv)|t=1 ≤

1
r(r − 1)

∂2

∂t2
f(x, tu, tv)|t=1 ≤ C1(ur + vr),

where p < r < p∗ (p∗ = pN
N−p if N > 2, p∗ = ∞ if N ≤ p) for all

(x, u, v) ∈ ∂Ω× R+ × R+.
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(A3) ∂
∂tf(x, tu, tv)|t=0 ≥ 0 and limt→∞

∂
∂t f(x,tu,tv)

tp−1 = η(x, u, v) uniformly respect
to (x, u, v), where η(x, u, v) ∈ C(Ω̄ × R2) and |η(x, u, v)| > θ > 0, a.e. for
all (x, u, v) ∈ Ω× R+ × R+.

(A4) g(x, u), h(x, v) ∈ C1(Ω × R) such that g(x, 0) ≥ 0, h(x, v) ≥ 0, g(x, 0) 6≡ 0
and there exist C2 > 0, C3 > 0 such that, |g(x, u)| ≤ C2(1 + up−1) and
|h(x, v)| ≤ C3(1 + vp−1), where x ∈ Ω, u, v ∈ R+ and p > 2.

(A5) For u, v ∈ W 1,p(Ω),
∫
Ω

∂
∂ug(x, t|u|)u

2dx and
∫
Ω

∂
∂vh(x, t|v|)v

2dx have the
same sign for every t > 0 and there exist C4 > 0, C5 > 0 such that
|gu(x, u)| ≤ C4u

p−2 and |hv(x, v)| ≤ C5v
p−2 for all (x, u, v) ∈ Ω×R+×R+.

Remark 1.1. Equations involving positively homogeneous functions have been
considered in many papers, such as [3, 10, 17, 18, 28, 29]. It is clear that, if
f(x, u, v) is a positively homogeneous function of degree r(r > p > 2), that is,
f(x, tu, tv) = trf(x, u, v) (t > 0), then it satisfies conditions (A1)–(A3). Note that
for such an f we have

fuu+ fvv = rf(x, u, v) ≤ rKf (|u|r + |v|r),

where

Kf = max{f(x, u, v) : (x, u, v) ∈ Ω× R2, |u|r + |v|r = 1}.

In recent years, there have been many papers concerned with the existence and
multiplicity of positive solutions for the elliptic equations (systems) with nonlinear
boundary conditions. The results relating to these problems can be found in [1,
4, 6, 9, 11, 12, 13, 16, 19, 20, 21, 22, 24, 25, 26, 27, 30, 31, 32] and the references
therein. For instance, Drabek and Schindler [15] showed the existence of positive,
bounded and smooth solutions of the following p-Laplacian equation

−∆pu+ b|u|p−2u = f(., u) in Ω,
<u = 0 on ∂Ω,

where <u = |∇u|p−2 ∂u
∂ν + b0|u|p−2u, Ω ⊂ RN is a bounded domain and 1 < p < N .

Brown and Wu [7] considered the semilinear elliptic system

−∆u+ u =
α

α+ β
f(x)|u|α−2u|v|β in Ω,

−∆v + v =
β

α+ β
f(x)|u|α|v|β−2v in Ω,

∂u

∂n
= λg(x)|u|q−2u,

∂v

∂n
= µh(x)|v|q−2v on ∂Ω,

where Ω is a bounded domain in RN , α, β > 1, 2 < α + β < 2∗ and the functions
f, g, h satisfy the following conditions:

• f ∈ C(Ω) with ‖f‖∞ = 1 and f+ = max{f, 0} 6≡ 0,
• g, h ∈ C(∂Ω) with ‖g‖∞ = ‖h‖∞ = 1, g± = max{±g, 0} 6≡ 0 and h± =

max{±h, 0} 6≡ 0.

They found that the above problem has at least two nonnegative solutions if the pair
(λ, µ) belongs to a certain subset of R2. Note that the function 1

α+β f(x)|u|α|v|β
with the above given conditions is positively homogeneous of degree r = α+ β and
clearly satisfies our conditions (A1)–(A3).
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Recently, Shen and Zhang [29] considered the semilinear p-Laplacian system

−∆pu =
1
p∗
∂F (x, u, v)

∂u
+ λ|u|q−2u in Ω,

−∆pv =
1
p∗
∂F (x, u, v)

∂v
+ µ|v|q−2v in Ω,

u > 0, v > 0 in Ω,
u = v = 0 on ∂Ω,

where Ω is bounded domain in RN with smooth boundary, F ∈ C1(Ω,×(R+)2) is
positively homogeneous of degree p∗, they proved that this system has at least two
positive solutions when the pair of parameters (λ, µ) belongs to certain subset of
R2.

In this article, the main difficulty will be the nonlinearity of f(x, u, v), g(x, u) and
h(x, v) in problem (1.1) and the lack of separability. To overcome this difficultly, we
need to restrict the problem (1.1) to assumptions (A1) and (A5). Here we present
some examples for f(x, u, v) satisfying the conditions (A1)–(A3).

f1(x, u, v) ∈ C1(∂Ω× R2,R),

f1(x, tu, tv) = trf1(x, u, v) for (x, u, v) ∈ ∂Ω× R+ × R+ and t > 0,

f2(x, u, v) = a1(x)(−a2(x) + q
√

(a2(x)q + uqr + vqr),

ai(x) ∈ C(∂Ω), ai(x) ≥ 0, q > 1, q ∈ N,

f3(x, u, v) = b(x)
uq+r + vq+r

1 + uq + vq
, b(x) ∈ C(∂Ω), b(x) ≥ 0, r ≥ 0.

Now we present some examples for g(x, u) and h(x, v) satisfying the conditions
(A4) and (A5):

Q1(x, z) =
−a1(x)zp+r

1 + a2(x)z2
+ a3(x)

with ai(x) ∈ C(Ω), ai(x) ≥ 0, a3(x) 6≡ 0, max{2− p,−1} ≤ r ≤ 1.

Q2(x, z) = b1(x) tan−1(b2(x)zp+k) ln[1 + z2k] + b3(x)

with bi(x) ∈ C(Ω), bi(x) ≥ 0, b3(x) 6≡ 0, p
2 ≤ k ∈ N.

Q3(x, z) = c1(x) r

√
(1 + c2(x)z2k)p−1

with ci(x) ≥ 0, ci(x) ∈ C(Ω), c1(x) 6≡ 0, k ∈ N, 0 < 2k ≤ r.

Q4(x, z) =
−e1(x)zp−1

4 + cot−1(e2(x)zk)
+ e3(x)

ei(x) ∈ C(Ω), ei(x) ≥ 0, e3(x) 6≡ 0, k ≥ 0.
Here our main tool is the Nehari manifold method which is similar to the fibering

method by Drabek and Pohozaev [14]. The main idea in our proofs lies in dividing
the Nehari manifold associated with the Euler functional for problem (1.1) into two
disjoint parts and then considering the infima of this functional on each part and by
extracting Palais-Smale sequences we show that there exists at least one solution
on each part.

Define the Sobolev space

W := W 1,p(Ω)×W 1,p(Ω), (1.2)
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endowed with the norm

‖(u, v)‖W =
( ∫

Ω

(|∇u|p +m1(x)|u|p)dx+
∫

Ω

(|∇v|p +m2(x)|v|p)dx
)1/p

,

which is equivalent to the standard norm. We use the standard Lr(Ω) spaces whose
norms are denoted by ‖u‖r. Throughout this paper, we denote Sq and S̄q the best
Sobolev and the best Sobolev trace constants for the embedding of W 1,p(Ω) into
Lq(Ω) and W 1,p(Ω) into Lq(∂Ω), respectively. So we have

(‖(u, v)‖p
W )q

(
∫

∂Ω
(|u|q + |v|q)dx)p

≥ 1
2pS̄pq

q
and

(‖(u, v)‖p
W )q

(
∫
Ω
(|u|q + |v|q)dx)p

≥ 1
2pSpq

q
. (1.3)

Before stating our main results, we mention the following remarks.

Remark 1.2. Notice that using conditions (A4) and (A5), for all (x, u, v) ∈ Ω ×
R+ × R+, we have

(A6) (r − 1)g(x, u)− ugu(x, u) ≤ C6(1 + up−1) and (r − 1)h(x, v)− vhv(x, v) ≤
C7(1 + vp−1).

(A7) G(x, u) − 1
r g(x, u)u ≤ C8(1 + up) and H(x, v) − 1

rh(x, v)v ≤ C9(1 + vp),
where

G(x, u) =
∫ u

0

g(x, s)ds, H(x, v) =
∫ v

0

h(x, s)ds. (1.4)

Remark 1.3. It should be mentioned that using condition (A3) we have

| ∂
∂t
f(x, tw1, tw2)| ≤ (1 + |η(x,w1, w2)|)tr−1

for t sufficiently large and (x,w1, w2) ∈ Ω̄ × (R+)2, hence taking w1 = |u|
|u|+|v| ,

w2 = |v|
|u|+|v| and t = |u|+ |v| for |u| and |v| sufficiently large we arrive at∣∣fu(x, |u|, |v|)|u|+ fv(x, |u|, |v|)|v|

∣∣ ≤ (
1 + |η(x, |u|

|u|+ |v|
,

|v|
|u|+ |v|

)|
)
(|u|+ |v|)r

≤ A0(|u|r + |v|r),

where A0 = 2r max{1 + |η(x, |u|, |v|)| : |u| + |v| = 1} and (x, u, v) ∈ Ω̄ × R2.
Furthermore, if we assume that f ∈ C2(Ω̄ × R+2), then there exists A1 > 0 such
that

| ∂
∂t
f(x, tu, tv)|t=1 = |fu(x, u, v)u+ fv(x, u, v)v| ≤ A1(1 + |u|r + |v|r), (1.5)

where (x, u, v) ∈ Ω̄× (R+)2.

The purpose of this paper is to prove the following results.

Theorem 1.4. There exists K∗ ⊂ (R+)2 such that for each (λ, µ) ∈ K∗ problem
(1.1) has at least one positive solution.

Theorem 1.5. There exists K∗∗ ⊂ K∗ such that for each (λ, µ) ∈ K∗∗ problem
(1.1) has at least two distinct positive solutions.

This paper is organized as follows. In section 2 we point out some notation and
preliminary results and give some properties of Nehari manifold and fibering maps.
In section 3 a fairly complete description of the Nehari manifold and fibering maps
associated with the problem is given, and finally Theorems 1.4 and 1.5 are proved
in Section 4.
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2. Preliminaries and auxiliary results

First, we define the weak solution of problem (1.1) as follows.

Definition 2.1. A pair of functions (u, v) ∈W (W is given by (1.2)) is said to be
a weak solution of (1.1), whenever∫

Ω

(
|∇u|p−2∇u.∇ϕ1 +m1(x)|u|p−2uϕ1

)
dx

− λ

∫
Ω

g(x, u)ϕ1dx−
∫

∂Ω

fu(x, u, v)ϕ1dx = 0,∫
Ω

(
|∇v|p−2∇v.∇ϕ2 +m2(x)|v|p−2vϕ2

)
dx

− µ

∫
Ω

h(x, v)ϕ2dx−
∫

∂Ω

fv(x, u, v)ϕ2dx = 0,

for all (ϕ1, ϕ2) ∈W .

Associated with problem (1.1), we consider the energy functional Jλ,µ : W → R

Jλ,µ(u, v) =
1
p
M(u, v)− F (u, v)− λ

∫
Ω

G(x, |u|)dx− µ

∫
Ω

H(x, |v|)dx, (2.1)

where G(x, u) and H(x, v) are introduced in (1.4) and

M(u, v) =
∫

Ω

(|∇u|p +m1(x)|u|p)dx+
∫

Ω

(|∇v|p +m2(x)|v|p)dx,

F (u, v) =
∫

∂Ω

f(x, |u|, |v|)dx.
(2.2)

If Jλ,µ is bounded from below and Jλ,µ has a minimizer onW , then this minimizer
is a critical point of Jλ,µ, so it is a solution of (1.1). Since Jλ,µ is unbounded from
below on whole space W , it is useful to consider the functional on the Nehari
manifold

Nλ,µ(Ω) = {(u, v) ∈W \ {(0, 0)} : 〈J ′λ,µ(u, v), (u, v)〉 = 0}, (2.3)

where 〈, 〉 denotes the usual duality between W and W−1 ( W−1 is the dual space
of the Sobolev space W ). We recall that any nonzero solution of problem (1.1)
belongs to Nλ,µ(Ω). Moreover, by definition, we have that (u, v) ∈ Nλ,µ(Ω) if and
only if

M(u, v)−
∫

∂Ω

(
fu(x, |u|, |v|)|u|+ fv(x, |u|, |v|)|v|

)
dx

− λ

∫
Ω

g(x, |u|)|u|dx− µ

∫
Ω

h(x, |v|)|v|dx = 0.
(2.4)

Furthermore, we have the following result.

Theorem 2.2. Jλ,µ is coercive and bounded from below on Nλ,µ(Ω) for λ and µ
sufficiently small.

Proof. Let (u, v) ∈ Nλ,µ(Ω), then by (A2), (A7), (1.3) and (2.1)–(2.4), we obtain

Jλ,µ(u, v) ≥ (
1
p
− 1
r
)M(u, v)− λ

∫
Ω

(
G(x, |u|)− 1

r
g(x, |u|)|u|

)
dx
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− µ

∫
Ω

(
H(x, |v|)− 1

r
h(x, |v|)|v|

)
dx

≥ (
1
p
− 1
r
)‖(u, v)‖p

W − λ

∫
Ω

C8(1 + |u|p)dx− µ

∫
Ω

C9(1 + |v|p)dx

≥ r − p

rp
‖(u, v)‖p

W − (C8λ+ C9µ)|Ω| − (C8λ+ C9µ)2Sp
p‖(u, v)‖

p
W ,

thus Jλ,µ is coercive and bounded from below on Nλ,µ(Ω) provided that 0 ≤ (C8λ+
C9µ)2Sp

p < (r − p)/(rp). �

It can be proved that the points in Nλ,µ(Ω) correspond to the stationary points
of the fibering map φu,v(t) : [0,∞) → R defined by φu,v(t) = Jλ,µ(tu, tv), which
were introduced by Drabek and Pohozaev in [14] and also discussed in Brown and
Zhang [8]. Using (2.1) for (u, v) ∈W , we have

φu,v(t) = Jλ,µ(tu, tv)

=
tp

p
M(u, v)− F (tu, tv)− λ

∫
Ω

G(x, t|u|)dx− µ

∫
Ω

H(x, t|v|)dx,

φ′u,v(t) = tp−1M(u, v)−
∫

∂Ω

∇f(x, t|u|, t|v|).(|u|, |v|)dx

− λ

∫
Ω

g(x, t|u|)|u|dx− µ

∫
Ω

h(x, t|v|)|v|dx,

φ′′u,v(t) = (p− 1)tp−2M(u, v)−
∫

∂Ω

F(x, tu, tv)dx

− λ

∫
Ω

gu(x, t|u|)u2dx− µ

∫
Ω

hv(x, t|v|)v2dx,

(2.5)

where

∇f(x, u, v) := (
∂f

∂u
,
∂f

∂v
),

F(x, tu, tv) :=
∂2

∂t2
(
f(x, t|u|, t|v|) = fuuu

2 + fvvv
2 + 2fuv|uv|.

(2.6)

Hence it is natural to divide Nλ,µ into three subsets N+
λ,µ, N

−
λ,µ and N 0

λ,µ which
correspond to local minima, local maxima and points of inflection of the fibering
maps and so we define

N+
λ,µ = {(u, v) ∈ Nλ,µ(Ω) : φ′′u,v(1) > 0},

N−
λ,µ = {(u, v) ∈ Nλ,µ(Ω) : φ′′u,v(1) < 0},

N 0
λ,µ = {(u, v) ∈ Nλ,µ(Ω) : φ′′u,v(1) = 0}.

(2.7)

The following lemma shows that minimizers for Jλ,µ(u, v) on Nλ,µ(Ω) are usually
critical points for Jλ,µ, as proved by Brown and Zhang in [8] or in Aghajani et al.
[2].

Lemma 2.3. Let (u0, v0) be a local minimizer for Jλ,µ(u, v) on Nλ,µ(Ω). If (u0, v0)
is not in N 0

λ,µ(Ω), then (u0, v0) is a critical point of Jλ,µ.

Motivated by the above lemma, we give conditions for N 0
λ,µ = ∅.

Lemma 2.4. There exists K0 ⊂ (R+)2 such that for all (λ, µ) ∈ K0, we have
N 0

λ,µ = ∅.
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Proof. Suppose the contrary, that is there exists (λ, µ) such that N 0
λ,µ 6= ∅. Then

for (u, v) ∈ N 0
λ,µ by (2.5)–(2.7) we have

φ′u,v(1) = M(u, v)−
∫

∂Ω

(
∇f(x, |u|, |v|).(|u|, |v|)

)
dx

− λ

∫
Ω

g(x, |u|)|u|dx− µ

∫
Ω

h(x, |v|)|v|dx = 0,
(2.8)

and by (2.7) φ′′u,v(1) = 0, so

(p− 1)M(u, v)−
∫

∂Ω

(
fuuu

2 + fvvv
2 + 2fuv|uv|

)
dx

− λ

∫
Ω

gu(x, |u|)u2dx− µ

∫
Ω

hv(x, |v|)v2dx = 0,
(2.9)

using (A2) in (2.9) we obtain

(p− 1)M(u, v)− (r − 1)
∫

∂Ω

∇f(x, |u|, |v|).(|u|, |v|)dx

− λ

∫
Ω

gu(x, |u|)u2dx− µ

∫
Ω

hv(x, |v|)v2dx ≥ 0.
(2.10)

Using (1.3), (2.8), (2.10) and condition (A6) we obtain

(r − p)M(u, v) ≤ λ

∫
Ω

(
(r − 1)g(x, |u|)− gu(x, |u|)|u|

)
|u|dx

+ µ

∫
Ω

(
(r − 1)h(x, |v|)− hv(x, |v|)|v|

)
|v|dx

≤ 2λC6

∫
Ω

(1 + |u|p)dx+ 2µC7

∫
Ω

(1 + |v|p)dx

≤ (2λC6 + 2µC7)|Ω|+ (2λC6 + 2µC7)2Sp
p‖(u, v)‖

p
W ,

which concludes

M(u, v) ≤
( (2λC6 + 2µC7)|Ω|

(r − p)− (4λC6 + 4µC7)S
p
p

)
. (2.11)

Moreover, (1.3), (2.2) together (A2) imply∫
∂Ω

(
fuuu

2 + fvvv
2 + 2fuv|uv|

)
dx

≤ r(r − 1)
∫

∂Ω

C1(|u|r + |v|r)dx ≤ 2r(r − 1)C1S̄
r
r‖(u, v)‖r

W ,

(2.12)

hence using (2.12) in (2.9) and taking into account (A5) and (1.3) we obtain

M(u, v) ≤ L‖(u, v)‖r
W + (λL′ + µL′′)M(u, v), (2.13)

where

L =
2r(r − 1)C1S̄

r
r

p− 1
, L′ =

C4S
p
p

p− 1
, L′′ =

C5S
p
p

p− 1
. (2.14)

From (2.13) we obtain

M(u, v) ≥
(1− λL′ − µL′′

L

) p
r−p

, (2.15)
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so using (2.11) we must have(1− λL′ − µL′′

L

) p
r−p ≤

( (2λC6 + 2µC7)|Ω|
(r − p)− (4λC6 + 4µC7)S

p
p

)
,

which is a contradiction for λ, µ sufficiently small. So there exists K0 ⊂ (R+)2 such
that for (λ, µ) ∈ K0, N 0

λ,µ = ∅. �

Definition 2.5. A sequence yn = (un, vn) ⊂ W is called a Palais-Smale sequence
if Iλ,µ(yn) is bounded and I ′λ,µ(yn) → 0 as n→∞. If Iλ,µ(yn) → c and I ′λ,µ(yn) →
0, then yn is a (PS)c-sequence. It is said that the functional Iλ,µ satisfies the
Palais-Smale condition (or (PS)c-condition), if each Palais-Smale sequence ((PS)c-
sequence) has a convergent subsequence.

Now we prove the boundedness of Palais-Smale sequences.

Lemma 2.6. If {(un, vn)} is a (PS)c-sequence for Jλ,µ, then {(un, vn)} is bounded
in W provided that (λ, µ) ∈ K1 = {(λ, µ) : r − p− 4r(C8λ+ C9µ)Sp

p > 0}.

Proof. Using (1.3), (2.5), (A2) and (A7) we have

Jλ,µ(un, vn)− 1
r
〈J ′λ,µ(un, vn), (un, vn)〉

≥ r − p

rp
M(un, vn)− λ

∫
Ω

(G(x, |un|)−
1
r
g(x, |un|)|un|)dx

− µ

∫
Ω

(H(x, |vn|)−
1
r
h(x, |vn|)|vn|)dx

≥ r − p

rp
M(un, vn)− λ

∫
Ω

C8(1 + |un|p)dx− µ

∫
Ω

C9(1 + |vn|p)dx

≥
r − p− 4r(C8λ+ C9µ)Sp

p

rp
‖(un, vn)‖p

W − (C8λ+ C9µ)|Ω|,

so for (λ, µ) ∈ K1, {(un, vn)} is bounded in W . �

Lemma 2.7. There exists K2 ⊂ R2 such that if (λ, µ) ∈ K2 and (u, v) ∈ N−
λ,µ,

then
∫

∂Ω
F(x, u, v)dx > 0, where F(x, u, v) is defined by (2.6).

Proof. Suppose otherwise, then −
∫

∂Ω
F(x, u, v)dx ≥ 0 and from (2.5) and (2.7) we

obtain

φ′′u,v(1) = (p− 1)M(u, v)−
∫

∂Ω

F(x, u, v)dx

− λ

∫
Ω

gu(x, |u|)u2dx− µ

∫
Ω

hv(x, |v|)v2dx < 0,

so by (1.3), (2.2), (2.14) and condition (A5) we have

‖(u, v)‖p
W ≤ λ

p− 1

∫
Ω

gu(x, |u|)u2dx+
µ

p− 1

∫
Ω

hv(x, |v|)v2dx

≤ (λL′ + µL′′)‖(u, v)‖p
W ,

which is a contradiction for (λ, µ) ∈ K2 = {(λ, µ) : λL′ + µL” < 1}. �
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3. Properties of Nehari manifold and fibering maps

To obtain a better understanding of the behavior of fibering maps, we will de-
scribe the nature of the derivative of the fibering maps for all possible signs of∫

∂Ω
F(x, tu, tv)dx (by (A1) and (2.6),

∫
∂Ω
F(x, tu, tv)dx has the same sign for ev-

ery t > 0). Define the functions R(t) and S(t) as follows

R(t) :=
1
p
tpM(u, v)− F (tu, tv) (t > 0), (3.1)

S(t) := λ

∫
Ω

G(x, t|u|)dx+ µ

∫
Ω

H(x, t|v|)dx (t > 0), (3.2)

then from (2.5) it follows that φu,v(t) = R(t)− S(t). Moreover, φ′u,v(t) = 0 if and
only if R′(t) = S′(t), where

R′(t) = tp−1M(u, v)−
∫

∂Ω

(
fu(x, t|u|, t|v|)|u|+ fv(x, t|u|, t|v|)|v|

)
dx, (3.3)

and

S′(t) = λ

∫
Ω

g(x, t|u|)|u|dx+ µ

∫
Ω

h(x, t|v|)|v|dx. (3.4)

In the next result we see that, φu,v and φ′u,v take on positive values for all nonzero
(u, v) ∈W whenever, λ and µ belong to a certain subset of R2.

Lemma 3.1. There exists K3 ⊂ (R+)2 such that for all nonzero (u, v) ∈W , φu,v(t)
and φ′u,v(t) take on positive values whenever (λ, µ) ∈ K3.

Proof. First we show that φu,v(t) takes on positive values, for all possible signs of∫
∂Ω
F(x, tu, tv)dx. If

∫
∂Ω
F(x, tu, tv)dx ≤ 0, then by (3.1) R′′(t) ≥ 0 and using

(3.2), R(t) > S(t) for t sufficiently large, so φu,v(t) > 0 for t sufficiently large .
Now, suppose there exists (u, v) ∈ W such that

∫
∂Ω
F(x, tu, tv)dx ≥ 0. Condition

(A2) together (3.1) imply that

R(t) ≥ 1
p
tpM(u, v)− C1t

r

∫
∂Ω

(|u|r + |v|r)dx.

Define

K(t) :=
1
p
tpM(u, v)− C1t

r

∫
∂Ω

(|u|r + |v|r)dx (t > 0), (3.5)

we obtain R(t) ≥ K(t), and by elementary calculus, we see that K(t) takes a
maximum value at

tmax =
( M(u, v)
rC1

∫
∂Ω

(|u|r + |v|r)dx)

) 1
r−p

, (3.6)

then follows by (3.1), (3.6), (1.3) and (2.2) that

R(tmax) ≥ K(tmax) =
r − p

rp

( (‖(u, v)‖p
W )r(

rC1

∫
∂Ω

(|u|r + |v|r)dx
)p

) 1
r−p

≥ r − p

rp

( 1
(2rC1)pS̄rp

r

) 1
r−p

= δ1,

(3.7)
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where δ1 is independent of (u, v). Now from (3.6), (3.7) and (1.3) for 1 ≤ α < p∗,
we deduce

(tmax)α

∫
Ω

(|u|α + |v|α)dx ≤ 2Sα
α

( ‖(u, v)‖p
W

rC1

∫
∂Ω

(|u|r + |v|r)dx

) α
r−p

(‖(u, v)‖p
W )

α
p

= 2Sα
α

( (‖(u, v)‖p
W )r(

rC1

∫
∂Ω

(|u|r + |v|r)dx
)p

) α
p(r−p)

≤ 2Sα
α

( rp

r − p

)α
p (R(tmax)

)α
p = c1(R(tmax)

)α
p .

(3.8)

Combining (A4), (A7), (1.3) and (3.8) imply that

S(tmax) = λ

∫
Ω

G(x, tmax|u|)dx+ µ

∫
Ω

H(x, tmax|v|)dx

≤ λ

r

∫
Ω

rC8(1 + |tmaxu|p) + C2(|tmaxu|+ |tmaxu|p)dx

+
µ

r

∫
Ω

rC9(1 + |tmaxv|p) + C3(|tmaxv|+ |tmaxv|p)dx

≤ λb0

∫
Ω

(1 + |tmaxu|p)dx+ µb1

∫
Ω

(1 + |tmaxv|p)dx

≤ λB0(1 +R(tmax)) + µB1(1 +R(tmax)),

(3.9)

where B0 and B1 are independent of (u, v). Using (3.9) together with (3.7) and
(2.5), we obtain

φu,v(tmax) = R(tmax)− S(tmax)

≥ R(tmax)
(
1− (λB0 + µB1)(R(tmax)−1 + 1)

)
≥ δ1

(
1− (λB0 + µB1)(δ−1

1 + 1)
)
.

(3.10)

So we conclude that if 2(λB0 + µB1)(1 + δ1) < δ1, then φu,v(tmax) > 0 for all
nonzero (u, v) ∈W .

Now we prove that φ′u,v(t) takes on positive values. If
∫

∂Ω
F(x, tu, tv)dx ≤ 0,

then using (3.1), (3.2) φ′u,v(t) ≥ 0 for t sufficiently large. Suppose that, there
exists (u, v) ∈ W such that

∫
∂Ω
F(x, tu, tv)dx ≥ 0. To verify that φ′u,v(t) > 0, it is

sufficient to show that tR′(t) > tS′(t). Using (A2) and (3.3) we have

tR′(t) ≥ tpM(u, v)− rC1t
r

∫
∂Ω

(|u|r + |v|r)dx.

In view of (3.5), we write

K̄(t) := tpM(u, v)− rC1t
r

∫
∂Ω

(|u|r + |v|r)dx (t > 0), (3.11)

so tR′(t) > K̄(t) and by elementary calculus we can show that K̄(t) achieves its
maximum at

τmax =
( pM(u, v)
r2C1

∫
∂Ω

(|u|r + |v|r)dx

) 1
r−p

. (3.12)
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Using (1.3), (3.3), (3.11) and (3.12), we arrive at

τmaxR
′(τmax) = (

p

r2C1
)

p
r−p (

r − p

r
)
( (‖(u, v)‖p)r

(
∫

∂Ω
(|u|r + |v|r)dx)p

) 1
r−p

≥ (
p

r2C1
)

p
r−p (

r − p

r
)
( 1

2pS̄rp
r

) 1
r−p

= δ2 > 0,

(3.13)

where δ2 is independent of (u, v). Using (1.3), (3.12) and (3.13), and by some
calculations very Similar to (3.8), we obtain

(τmax)β

∫
Ω

(|u|β + |v|β)dx ≤ c2(τmaxR
′(τmax)

) β
p , (3.14)

for 1 ≤ β < 2∗. Then using (1.3), (3.4), (3.14) and condition (A4) we find

τmaxS
′(τmax) = λτmax

∫
Ω

g(x, τmax|u|)|u|dx+ µτmax

∫
Ω

h(x, τmax|v|)|v|dx

≤ λ

∫
Ω

C1(|tmaxu|+ |tmaxu|p)dx+ µ

∫
Ω

C3(|tmaxv|+ |tmaxv|p)dx

≤ (λe0 + µe1)
(
(tmaxR

′(tmax))
1
p + tmaxR

′(tmax)
)
,

where e0 and e1 are independent of (u, v), so from the above inequality and (3.13),
we obtain

τmaxφ
′
u,v(τmax) = τmaxR

′(τmax)− τmaxS
′(τmax)

≥ τmaxR
′(τmax)

(
1− (λe0 + µe1)

(
(τmaxR

′
λ(τmax))

1−p
p + 1

))
≥ δ2

(
1− (λe0 + µe1)

(
δ

1−p
p

2 + 1
))
,

Clearly for all nonzero (u, v) ∈ W , τmaxφ
′
u,v(τmax) > 0 provided that 2(λe0 +

µe1)
(
δ

1
p

2 + δ2
)
< δ2.

Using the above inequality and (3.10), we obtain that if (λ, µ) ∈ K3, where

K3 = {(λ, µ) : 2(λB0 +µB1)(1+ δ1) < δ1 and 2(λe0 +µe1)
(
δ

1
p

2 + δ2
)
< δ2}, (3.15)

then φu,v(t) and φ′u,v(t) take on positive values for all nonzero (u, v) ∈W and this
completes the proof. �

Corollary 3.2. If (λ, µ) ∈ K2∩K3, then there exists ε > 0 such that Jλ,µ(u, v) > ε
for all (u, v) ∈ N−

λ,µ.

Proof. If (u, v) ∈ N−
λ,µ, then by lemma 2.7,

∫
∂Ω
F(x, u, v)dx > 0. Also due to (A1)

and (A5), φu,v has a positive global maximum at t = 1 and so by (2.5), (3.10) and
(3.15)

Jλ,µ(u, v) = φu,v(1) ≥ φu,v(tmax) ≥ δ1
(
1− (λB0 + µB1)(δ−1

1 + 1)
)
≥ δ1/2 = ε > 0.

�

From (A1) and (2.6),
∫

∂Ω
F(x, tu, tv)dx has the same sign for every t > 0, so we

have the following corollary.

Corollary 3.3. for (u, v) ∈W \ {(0, 0)} we have
(i) If

∫
∂Ω
F(x, tu, tv)dx ≤ 0, then there exists t1 such that (t1u, t1v) ∈ N+

λ,µ

and φu,v(t1) < 0.
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(ii) If
∫

∂Ω
F(x, tu, tv)dx ≥ 0 and (λ, µ) ∈ K3, then there exist 0 < t1 < t2 such

that (t1u, t1v) ∈ N+
λ,µ, (t2u, t2v) ∈ N−

λ,µ and φu,v(t1) < 0.

Proof. (i) From (2.5), (A3), (A4) and the assumptions we obtain φ′u,v(0) < 0 and
limt→∞ φ′u,v(t) = +∞, so by the intermediate value theorem, there exists t1 > 0
such that φ′u,v(t1) = 0. Now using (A1) and (A5), for 0 < t < t1, φ′u,v(t) < 0 and
for t > t1, φ′u,v(t) > 0, therefore (t1u, t1v) ∈ N+

λ,µ and φu,v(t1) < φu,v(0) = 0.
(ii) Using (2.5), (A3), (A5) and the assumption that

∫
∂Ω
F(x, tu, tv)dx ≥ 0 we

obtain limt→∞ φ′u,v(t) = −∞, φ′u,v(0) < 0 and by Lemma 3.1 we have φ′u,v(τ) > 0
for suitable τ > 0, so using again the intermediate value theorem concludes that
there exist t1 and t2 such that 0 < t1 < τ < t2, and φ′u,v(t1) = φ′u,v(t2) = 0. Also
using the same argument as in the proof of (i) and using (A1) and (A5) we have
(t1u, t1v) ∈ N+

λ,µ, (t2u, t2v) ∈ N−
λ,µ and φu,v(t1) < φu,v(0) = 0. �

4. Proof of Theorems 1.4 and 1.5

To prove these to theorems, we need to show the existence of local minimum
for Jλ,µ on N+

λ,µ and N−
λ,µ. To do this, we need the Remark 4.1, below. Here for

simplicity, for a functional ψ defined on a normed space E, and w ∈ E by ψ′(w)
and ψ′′(w), we mean ∂

∂tψ(wt)|t=1, and ∂2

∂t2ψ(wt)|t=1, respectively.

Remark 4.1. From Remark 1.3, (2.6) and (A2) we obtain that

|∇f(x, |u|, |v|).(|u|, |v|)| ≤ A1(1 + |u|r + |v|r)
and |F(x, u, v)| ≤ A2(1 + |u|r + |v|r), also from (A4) and (A5) we obtain

|g(x, |u|)| ≤ C2(1 + |u|p−1), |gu(x, |u|)| ≤ C4(1 + |u|p−1),

|h(x, |v|)| ≤ C3(1 + |v|p−1), |hv(x, |v|)| ≤ C5(1 + |v|p−1),

for r > p ≥ 2. Hence from the compactness of the embeddings W 1,p ↪→ Lα(Ω) and
W 1,p ↪→ Lα(∂Ω) for 1 ≤ α < p∗ (the Rellich-Kondrachov Theorem [5]) and the
fact that the g(x, u), h(x, u) are continuous and f(x, u, v) ∈ C2(∂Ω× R2), we con-
clude that the functionals I1(u, v) =

∫
∂Ω
f(x, |u|, |v|)dx, I2(u) =

∫
Ω
G(x, |u|)dx

and I3(A5) =
∫
Ω
H(x, |v|)dx are weakly continuous, i.e. if (un, vn) ⇀ (u, v),

then I1(un, vn) → I1(u, v), I2(un) → I2(u) and I3(vn) → I3(A5). Moreover
the operators I ′1(u, v) =

∫
∂Ω
∇f(x, |u|, |v|).|(|u|, |v|)dx, I ′2(u) =

∫
Ω
g(x, |u|)|u|dx,

I ′3(A5) =
∫
Ω
h(x, |v|)|v|dx, I ′′1 (u, v) =

∫
∂Ω
F(x, u, v)dx, I ′2(u) =

∫
Ω
gu(x, |u|)u2dx

and I ′3(A5) =
∫
Ω
hv(x, |v|)v2dx are weak to strong continuous, i.e. if (un, vn) ⇀

(u, v) then I ′1(un, vn) → I ′1(u, v), I
′′
1 (un, vn) → I ′′1 (u, v), I ′2(un) → I ′2(u), I

′′
2 (un) →

I ′′2 (u), I ′3(vn) → I ′3(A5) and I ′′3 (vn) → I ′′3 (A5).

Now, we establish the existence of local minimum for Jλ,µ on N+
λ,µ and N−

λ,µ.
For simplicity let K∗ = K0 ∩K1 ∩K3 and K∗∗ = K0 ∩K1 ∩K2 ∩K3, where Ki’s
(i = 0, 1, 2, 3) are given in the previous section.

Lemma 4.2. (i) For (λ, µ) ∈ K∗, there exists a minimizer of Jλ,µ on N+
λ,µ(Ω).

(ii) For (λ, µ) ∈ K∗∗, there exists a minimizer of Jλ,µ on N−
λ,µ(Ω).

Proof. (i) As in Theorem 2.2, Jλ,µ is bounded from below on Nλ,µ(Ω) and so on
N+

λ,µ(Ω). Let {(un, vn)} be a minimizing sequence for Jλ,µ on N+
λ,µ(Ω); i.e.,

lim
n→∞

Jλ,µ(un, vn) = inf
(u,v)∈N+

λ,µ

Jλ,µ(u, v).
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By Ekeland’s variational principle [16] we may assume that

〈J ′λ,µ(un, vn), (un, vn)〉 → 0,

combining the compact embedding Theorem [5] and Lemma 2.6, we obtain that
there exists a subsequence {(un, vn)} and (u1, v1) in W such that

un ⇀ u1 weakly in W 1,p(Ω),

vn ⇀ v1 weakly in W 1,p(Ω),

un → u1 strongly in Lm(Ω), 1 ≤ m < p∗,

vn → v1 strongly in Lm(∂Ω), 1 ≤ m < p∗,

(4.1)

and (un(x), vn(x)) → (u1(x), v1(x)) almost everywhere.
By Corollary 3.3 for (u1, v1) ∈W \{(0, 0)}, there exists t1 such that (t1u1, t1v1) ∈

N+
λ,µ and so φ′u1,v1

(t1) = 0. Now we show that (un, vn) → (u1, v1) in W . Suppose
this is false, then

M(u1, v1) < lim inf
n→∞

M(un, vn), (4.2)

so from (2.5), (4.1), (4.2) and Remark 4.1, φ′un,vn
(t1) > φ′u1,v1

(t1) = 0 for n suffi-
ciently large. Since {(un, vn)} ⊆ N+

λ,µ(Ω), by considering the possible fibering maps
it is easy to see that, φ′un,vn

(t) < 0 for 0 < t < 1 and φ′un,vn
(1) = 0 for all n. Hence

we must have t1 > 1, but (t1u1, t1v1) ∈ N+
λ,µ and so

Jλ,µ(t1u1, t1v1) = φu1,v1(t1) < φu1,v1(1)

< lim
n→∞

φun,vn(1) = lim
n→∞

Jλ,µ(un, vn) = inf
(u,v)∈N+

λ,µ

Jλ,µ(u, v),

which is a contradiction. Therefore, (unvn) → (u1, v1) in W and this concludes
that

Jλ,µ(u1, v1) = lim
n→∞

Jλ,µ(un, vn) = inf
(u,v)∈N+

λ,µ

Jλ,µ(u, v).

Thus (u1, v1) is a minimizer for Jλ,µ on N+
λ,µ(Ω).

(ii) By Corollary 3.2 we have Jλ,µ(u, v) ≥ ε > 0 for all (u, v) ∈ N−
λ,µ, so

inf
(u,v)∈N−λ,µ

Jλ,µ(u, v) > 0,

hence, there exists a minimizing sequence {(un, vn)} ⊆ N−
λ,µ(Ω) such that

lim
n→∞

Jλ,µ(un, vn) = inf
(u,v)∈N−λ,µ

Jλ,µ(u, v) > 0. (4.3)

Similar to the argument in the proof of (i) we find that {(un, vn)} is bounded in W
and also the results obtained in (4.1) are satisfied for {(un, vn)} and {(u2, v2)}.

Since (un, vn) ∈ N−
λ,µ(Ω), so by (2.7), φ′′un,vn

(1) < 0, letting n → ∞, by (2.5),
Remark 4.1 and the above argument we see that

φ′′u2,v2
(1) = M(u2, v2)−

∫
∂Ω

F(x, u2, v2)dx− λ

∫
Ω

gu(x, |u2|)u2
2dx

− µ

∫
Ω

hv(x, |v2|)v2
2dx ≤ 0.

(4.4)

On the other hand for (un, vn) ∈ N−
λ,µ, by Lemma 2.7,

∫
∂Ω
F(x, un, vn)dx > 0.

Letting n→∞, we see that
∫

∂Ω
F(x, u2, v2)dx ≥ 0.
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We claim that
∫

∂Ω
F(x, u2, v2)dx 6= 0. If

∫
∂Ω
F(x, u2, v2)dx = 0, then by (A4),

(1.3), (2.14) and (4.4) we have

M(u2, v2) ≤ λ

∫
∂Ω

gu(x, |u2|)u2
2dx+ µ

∫
∂Ω

hv(x, |v2|)v2
2dx ≤ (λL+ µL′)M(u2, v2),

which is a contradiction for (λ, µ) ∈ K2. So
∫

∂Ω
F(x, u2, v2)dx > 0 and by Corol-

lary 3.3 (ii) there exists t2 > 0 such that (t2u2, t2v2) ∈ N−
λ,µ(Ω). We claim that

(un, vn) → (u2, v2) in W . Suppose that this is false, so we have

M(u2, v2) < lim inf
n→∞

M(un, vn). (4.5)

However, (un, vn) ∈ N−
λ,µ and so Jλ,µ(un, vn) ≥ Jλ,µ(tun, tvn) for all t ≥ 0.

Therefore, considering (2.5), (4.3)–(4.5) and Remark (4.1), we can write

Jλ,µ(t2u2, t2v2)

=
tp2
p
M(u2, v2)− F (t2u2, t2v2)− λ

∫
Ω

H(x, t2|u2|)dx− µ

∫
Ω

G(x, t2|v2|)dx

< lim
n→∞

( tp2
p
M(un, vn)− F (t2un, t2vn)− λ

∫
Ω

H(x, t2|un|)dx

− µ

∫
Ω

G(x, t2|vn|)dx
)

= lim
n→∞

Jλ,µ(t2un, t2vn) ≤ lim
n→∞

Jλ,µ(un, vn) = inf
(u,v)∈N−λ,µ

Jλ,µ(u, v),

which is a contradiction. So, (un, vn) → (u2, v2) inW and the proof is complete. �

Proof of Theorem 1.4. By Lemma 4.2 (i) there exists (u1, v1) ∈ N+
λ,µ(Ω) such that

Jλ,µ(u1, v1) = inf(u,v)∈N+
λ,µ

Jλ,µ(u, v) and by Lemmas 2.3 and 2.4, (u1, v1) is a
critical point of Jλ,µ on W and hence is a weak solution of problem (1.1). On the
other hand Jλ,µ(u, v) = Jλ,µ(|u|, |v|), so we may assume that (u1, v1) is a positive
solution and the proof is complete. �

Proof of Theorem 1.5. By Lemma 4.2 there exist (u1, v1) ∈ N+
λ,µ(Ω) and (u2, v2) ∈

N−
λ,µ(Ω) such that

Jλ,µ(u1, v1) = inf
(u,v)∈N+

λ,µ

Jλ,µ(u, v), Jλ,µ(u2, v2) = inf
(u,v)∈N−λ,µ

Jλ,µ(u, v).

By Lemmas 2.3 and 2.4, (u1, v1) and (u2, v2) are critical points of Jλ,µ on W
and hence are weak solutions of problem (1.1). Similar to the proof of Theorem
1.4, we may assume that (u1, v1) and (u2, v2) are positive solutions. Also since
N+

λ,µ ∩N
−
λ,µ = ∅, this implies that (u1, v1) and (u2, v2) are distinct and the proof is

complete. �
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