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PROPAGATION OF PERTURBATIONS FOR A SIXTH-ORDER
THIN FILM EQUATION

ZHENBANG LI, CHANGCHUN LIU

ABSTRACT. We consider an initial-boundary problem for a sixth-order thin
film equation, which arises in the industrial application of the isolation oxida-
tion of silicon. Relying on some necessary uniform estimates of the approx-
imate solutions, we prove the existence of radial symmetric solutions to this
problem in the two-dimensional space. The nonnegativity and the finite speed
of propagation of perturbations of solutions are also discussed.

1. INTRODUCTION

This article is devoted to the radial symmetric solutions for a sixth-order thin
film equation

% = div[ju|"VA?u], =z € B,

with the boundary value conditions
Ju _ 0Au B 0A%u
37‘83 v ‘313 v |aB

and the initial value condition

:07

u|t:0 = uo (@),

where B is the unit ball in R%, n > 0 is a constant, and v is the outward unit
normal to 0B.

The equation is a typical higher order equation, which has a sharp physical
background and a rich theoretical connotation. It was first introduced in [I3] [14]
in the case n = 3

ou 0 [ 30

ot oz (u @)
It describes the spreading of a thin viscous fluid under the driving force of an
elastica (or light plate).
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During the past years, only a few works have been devoted to the sixth-order
thin film equation [4] @, 10 T3], [14]. Bernis and Friedman [4] have studied the initial
boundary value problems to the thin film equation

ou mo1 O 92mtly
ot +(=1) Oz (f(u) 8m2m+1> =0,
where f(u) = |u|™fo(u), fo(u) > 0, n > 1 and proved existence of weak solutions
preserving nonnegativity. Barrett, Langdon and Nuernberg [2] considered the above
equation with m = 2. A finite element method is presented which proves to be well
posed and convergent. Numerical experiments illustrate the theory.

Recently, Jiingel and Milisié¢ [12] studied the sixth-order nonlinear parabolic
equation

% = {u(%(u(lnu)m)m + %((mu)mﬁ)mk.

They proved the global-in-time existence of weak nonnegative solutions in one space
dimension with periodic boundary conditions.

Evans, Galaktionov and King [6l [7] considered the sixth-order thin film equation
containing an unstable (backward parabolic) second-order term

% = div [Ju|"VA?u] — A(jufP'u),n >0, p>1.

By a formal matched expansion technique, they show that, for the first critical
exponent p = po =n+ 1+ % for n € (0, %), where N is the space dimension,
the free-boundary problem with zero-height, zero-contact-angle, zero-moment, and
zero-flux conditions at the interface admits a countable set of continuous Ipranches
of radially symmetric self-similar blow-up solutions uy(z,t) = (T —t)” »N¥6 fi.(y),

k=1,2,---,y= —=2+—, where T" > 0 is the blow-up time.

T—t)nN+6
We also refer the following relevant equation
ou 9 0%
ot 83:( 8353)’
which has been extensively studied. Bernis and Friedman [4] studied the initial
boundary value problems to the thin film equation n > 0 and proved existence of
weak solutions preserving nonnegativity (see also [3l, 15, [16] [I8]). They proved that
if n > 2 the support of the solutions u(-,t) is nondecreasing with respect to t.
Our purpose in this paper is to study the radial symmetric solutions for the
equation. We will study the problem in two-dimensional case, which has particular
physical derivation of modeling the oil film spreading over a solid surface, see [17].

After introducing the radial variable r = |z|, we see that the radial symmetric
solution satisfies
o(ru) 0 nOW 90V 0 [ Ou
o~ etk Weg () v=glE)
@‘7:@L:al‘i:al’i:aiwk:@iw‘izo’ (1.2)
or'r=0  gp'r=1 gy lr=0 " gplr=L — gp Ir=0 " gy Ir=1
u|t:0 = ug(r). (1.3)

It should be noticed that the equation is degenerate at the points where r = 0
or u = 0, and hence the arguments for one-dimensional problem can not be applied
directly. Because of the degeneracy, the problem does not admit classical solutions
in general. So, we introduce the weak solutions in the following sense
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Definition 1.1. A function u is said to be a weak solution of the problem (|1.1)—
(1.3), if the following conditions are fulfilled:

(1) ru(r,t) is continuous in @, where Q7 = (0,1) x (0,7);
(2) Vrlu[*?5E € L*(Qr);
(3) For any ¢ € C*(Qr), the following integral equality holds

/1ru(rT) (rT)dr—/lruo() (r, 0) dr

// ru—drdt—l—// ddt—O
Qr Qr

Our interest lies in the existence of weak solutions. Because of the degeneracy,
we will first consider the regularized problem. Based on the uniform estimates for
the approximate solutions, we obtain the existence. Owing to the background, we
are much interested in the nonnegativity of the weak solutions and the solutions
with the property of finite speed of propagation of perturbations. Using weighted
Nirenberg’s inequality and Hardy’s inequality, we proved these properties. This
paper is arranged as follows. We shall prove several preliminary lemmas and obtain
some a priori estimates on the solutions of regularized problem in Section 2, and
then establish the existence in Section 3. Subsequently, we discuss the nonnegativity
of weak solutions in Section 4 and the finite speed of propagation in Section 5.

2. REGULARIZED PROBLEM

Bernis and Friedman [4] obtained several uniform estimations for the regular-
ized solutions of fourth order thin film equation with the initial boundary value
problems. To discuss the existence of weak solutions of problem —, we
adopt the method of parabolic regularization, namely, the desired solution will be
obtained as the limit of some subsequence of solutions of the following regularized
problem

d(reuw) 0 ow 0 ov 0 ou
= E{T‘Ems(u)ﬁ}, TEW = E (TEE), TEV = E(T’sa), (21)
ou ou oV oV ow ow
Frl=0= 7 lm1 = 5 limo = Grlimi = B limo = 3l =00 (22)
u|t:O = uoc (1), (2.3)

where r. = r + ¢, me(u) = (|u|? + )™? and ug.(r) is a smooth approximation of
the initial data ug(r).

From the classical approach [, it is not difficult to conclude that the problem
f admits a global classical solution. We need some uniform estimates on
the classical solutions.

We ﬁrst introduce some notation. Let I = (0,1) and for any fixed € > 0 denote
by W (I ) the class of all functions satisfying

e = (/Ol(r + €)|u’(r)|2dr) i + (/1(7“ + 5)|u(r)|2dr> i < +oo0.

0

It is obvious that W'2(I) C W, 7(I), but the class W, s (I) is quite different from
WL2(T). In particular, we notice that the functions in W*lg (I) may not be bounded.
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For & > 0 the spaces W12(I) and W, 2 (I) coincide. However, it is not difficult to
prove that for u € W*lf(l ), the following properties hold:

Lemma 2.1. If0 < a <1, and u € W2(I). Then
sup ((r+¢&)*[u(r)]) < Cllulls.c,
0<r<1
where C' is a constant depending only on «;

Proof. First we consider the case that 0 < r < 1/2. From the mean value theorem,
we obtain immediately

/ w(@)dz = w(€)(1 — )

for some & € [r,1]. Thus
)] < Jutr) = u(©)] + )] < [ (o + | / u(a)da]
< /r1 o ()| dae + 2[ ()| d.

It follows that
1 1
(r+e)*|u(r)] g/ (r+6)a\u’(x)|dx—|—2/ (r+e)%|u(z)|dx

1

§/0 (r+5)“\u'(r)\dr+2/0 (r +&)*|u(r)|dr

< (/01(7’+€)’LL,(7”‘)QdT)1/2(/01(7‘ +€)2a*1dr) i
+ 2(/01(7“ +5)|u(r)er)1/2</01(r+5)2a_1dr)1/2

< C()lull+e-

Finally, we discuss the case that 1/2 <r <1, we have

(r+e)%u(r)] < (1 + &) |u(r)]

<(1+4¢e)*° [/1/2 |u(z)|dz + 2/1;2 |u(y)\dy}

1 1/2
<@+o[( [ eralwmpa) v [
0 0
< Cla)]lull+e
The proof is complete. O

1

(r+ €)|u(r)\2dr) 1/2]

Lemma 2.2. If0 < o < 1/2, and u € W2(I). Then for any B < a,
|(r1 4 €)% u(r1) = (r2 + &) *u(r2)| < Clr1 = | [[ull. e,
where C' is a constant depending only on « and 3.

Proof. For fixed 0 < ry <11 < 1, we have

lu(re) — u(r)| < /T1 | (t)|dt.

T2
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It follows that

(ra 4 €)°furs) = )| < (2 +9)* | " (1)t < / (o) (1) de

T2 T2

/ (t+ €)|u'(t)\2dt)1/2(/n (t +5)2”‘_1dt>1/2

(
T2
Cla)ullve((r +e)** = (ra +2)*)"/?
Cla)llullselry —ra|™.
On the other hand, from Lemma [2.1] we have
[((r1 + )% = (r2 +)%)ulr1)] < 2Jr1 — 72 *[u(r1)]
< 2lry — ol (r1 + &) |u(r)|
< Clry = raf”|ful v,z

IA

IAIA

Therefore,
[(r1 + €)% u(r1) = (rz 4+ &)%u(rz)|
<|((r €)% = (ra +)%)ulry)| + (r2 + €)% fu(ra) — u(r1)]
< Clry — rof?||ullx.c
with C' depending only on « and (3. The proof is complete. O

Remark 2.3. Let 0 < 3 < 1/2 and u € W, 2(I). Then
|(r1 4+ )ulry) = (r2 + e)ulrz)| < C(B)lr1 —ra|”
where C(3) is a constant depending only on f3.

Lemma 2.4. Let u be a smooth solution of problem (2.1)—(2.3) and for any o €
(0,1/2] and B < «, there is a constant M independent of € such that

[rfu(r,t) — sSu(s,t)] < M|r — s|”,
[reu(r,t) — seu(s, t)| < M|r — s\ﬁ

*,E 9

for allr,s € (0,1), where s, = s+e¢.

Proof. Multiplying (2.1) by W and integrating with respect to r over (0,1), we
obtain

0—/ {87"5 [rgmg( )88W]W}dr

10r.V oW . 2
/ {2 5 rgme(u)(ﬁ) }dr.

Hence, integrating also with respect to t, we hve

1
/ r.Vidr < C, (2.4)
0

OW 2
€ € S . 2.
//QTrm(uﬂar’dr C (2.5)
It is easy to see that

! Y9 Ou, 10, Ou
‘r2 o e el Dl
/0 e dr—/o 8T(T68r) Te 8r(r 87‘>dr§0'
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A simple calculation shows that

L 9%2uy2 ou L 524 du
- - dr<C.
/Org( )dr+/0 T€(8r> a2 | 555 dr<C

Or?
Using boundary condition (2.2)), we have
L 924 du
T = 0.
0 872 37"
Hence
1 1
ou\ 2 1 /0u
— < < .
/0 rf(ar) dr_/o 7"5<87’) dr<C. (2:6)

1 2
0%u
/ (3 2) dr < C,
On the other hand, integrating the equation (2.1) on @

1 1
/ reu(r, t) dr = / retoe(r) dr.
0 0

Note that, for any p € (0,1),

1+2 !
z Eu(p,t)—/ seu(s,t)ds
0

1
= [ seluto.t) — uts.vds
0
Lo ou e ou P du
f/ / ss—(r,t)drdsf/o /S ssar(r,t)drds+/p /5 SEE(T,t)d’I"dS
11
// rtdsdr+/ / 55%(r,t)dsdr
p Jr o Or
ur,t)dr

:/O (2 —|—5r>g:f(r,t)dr+/p1 [%(1—1"2)4-6(1—7’)]27(

P ou L u
< [ rlgreolar 2 [ 1500l

Setting p. = p 4+ ¢ and multiplying the above inequality by 2pz

1
@+ 22)p2 2 up,t) 20172 [ st )|
0
P 1
32/);/2/ ra!@<r,t>|dr+4pi/2/ \a—“(r,t)!dr
0 or or
(2.9)

<21/2pa—“td 4| rl/? t)|d
< 2p; OTE’&"(T’ )’r—i— ’8 7“)|r

1 1/2
ou 2
< -
< C(/o rs|a7a(r,t)| dr>

From (2.6)), (2.8) and (2.9)), we see that e

Furthermore u(-,t) € W,z (I) for any fixed ¢t € (0,T), with [Ju(-,¢

(2.7)
= (0,1) x (0,t), we have

(2.8)

/2, we obtain

/2 (r,t) is uniformly bounded on Q7.
)||«,e bounded by a
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constant C' independent of e. The desired estimates then follow from the properties
1,2 .
of W, 2(I) mentioned above.
From the above results and using the Remark, we conclude the second inequality.
The proof is complete. O

Lemma 2.5. For any o > 0, there is a constant M independent of € such that
P u(r, )] < M, JJulle < M, (2.10)
[reu(r, ta) — reu(r, t)] < M|ty — ty|*/*6 (2.11)
for all r € (0,1), t1,t2 € (0,T).

Proof. The first two estimates have already been seen from the arguments in Lemma
Now, we begin to show . Without loss of generality, we assume that
t1 < ty and set At = to — t;. Integrating both sides of the equation over
(t1,t2) % (y,y + (At)*) and then integrating the resulting relation with respect to
y over (z,x + (At)®), we obtain

TH(ADS  p1
@i [ [ oan® 4 o) [uly + 0807 1) — uty + 01" 1) b dy

sHADY pyHADT st g oW

:/x /y /t1 ar{rgmg(u)ar} drdrdy
(A pto

— [ [ o+ @0+ omtuty + (a02)
xr t1

X W+ (0% 7) = (3 + )m(ul) 5 W ()] dr dy.

By the mean value theorem, there exists * = y*+60*(At)?*, y* € (z, z+(At)*),0* €
(0,1) such that the left hand side of the above equality can be expressed by

H(AD® 1
(At)~ / / (y + (A + &) [u(y + (AL, t2) — u(y + O(AL), ¢1)] dO dy
T 0
— (A6 (5" + 07 (A0 + &) [uly” + 0" (A, 12) — uly” + 0" (A, t1)].
For the right hand side, we have

/mach(At)“ [2 [(y + (AD® + )me (uly + (AD)Y))

< W+ (A% 7) = 3+ 2)m(ul)) 5 W) dr dy

T+2(A)  pto
_ / / (r—l—e)ms(u(r))%W(r,T)der

+(AY)= t1

(AL P
_ / (r +&)me (u(r))aW(r7 T)drdr

+2(ADT  pto 9
< / / rsms(u(r))}a—W(r, T)| drdr.
T+ (AL) t r

By (2.5), we see that
[wiul®, o) — atu(a” 1) < C(AL) =7,
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which implies, by setting @« = 1/4 and using the properties of the functions in
W.2(I), that

|reu(r, ta) — reu(r,t1)| < C’(At)l/w.
The proof is complete. O

3. EXISTENCE

After the discussion of the regularized problem, we can now turn to the inves-
tigation of the existence of weak solutions of the problem (1.1)—(1.3). The main
existence result is the following

Theorem 3.1. Ifug(r) € H?(I), then problem (1.1)—(1.3)) admits at least one weak
solution.

Proof. Let u. be the approximate solution of (2.1)—(2.3) constructed in the pre-
vious section. Using the estimates in Lemma |2 4 and for any 8 < é, and
(r1,ta), (r2,t1) € Qr, we have

r1etue (71, ta) — Tactue (ra, t1)] < C(|ry — ra|® + [ty — t2]/4)

with constant C' independent of €. So, we may extract a subsequence from {r.u.},
denoted also by {reu.}, such that

reue(r,t) — ru(r,t) uniformly in Q,

and the limiting function ru € CY/4/16(Q).
Now we prove that u(r,t) is a weak solution of problem (L.1] . let § > 0 be
fixed and set Ps = {(r,t) : r|u|™ > 0}. We choose £¢(d) > 0, such that

5
re(Jue|? + €)™/ > 3 (nt) € P, 0<e<eo(d). (3.1)

Then from ([2.5)
OW\2 C
< —. .
//Ij(s(aT)drdt_é (3.2)

To prove the integral equality in the definition of solutions, it suffices to pass the
limit as € — 0 in

1 1
/ reue(r, T)p(r,T) dr — / reugep(r,0) dr — // rEuEg—f drdt
0 0 T

-l-//TrE(ug—F )"/26a gs&d dt = 0.

The limits

1 1
lim reue(r, T)p(r,T) = / ru(r,T)p(r,T) dr,
0

e—0 0

1

hm reuge (r)p(r, 0) dr —/ o(r)p(0,7)dr,

lim // rsug drdt // ru— dr dt,
e—0 - T

are obvious. It remains to show that

liH(l)// re(u + ¢ ”/Zaw 3“"d dt = // 3W8§0d dt. (3.3)
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In fact, for any fixed 6 > 0,

|// re(u? +¢) "/QaW 8(pd dt—// 8W8(pdrdt|
< |// re(u? +¢) ”/QaW &pd dt — // 3W8<pd dt|
Ps
W 9y
2 n/2
+|//QT\p5TE(uE €) ddt\+]// a 5, drat|.

From the estimates (2.5)), we have

’ﬂ“ W%Z?”ﬂéwmﬁﬂ 0 <e<eo(d),
QT\Pa

’// aVV&'Dd dt’<Césup’ |
orvey O or
‘// re(u? +e) "/QaW &pd dt—// nOW a‘pdrdt’

Ps
< [ I )| 2 2

8W _ow 330
+‘// 7"|u| ar >87‘d dt’
8W 8W)

< sup |re(u? 4 €)% — rlu” Ha ‘\[ ‘// r|u\ B

and hence

limsup‘// oW &pd dt — // 8W&pd dt‘ <C§sup|—‘
0 . < or or

By the arbitrariness of §, we see that the limit . ) holds. The proof is complete.
O

9% ar dt‘

4. NONNEGATIVITY

Just as mentioned by several authors, it is much interesting to discuss the phys-
ical solutions. For the two-dimensional problem 7, a very typical example
is the modeling of oil films spreading over a solid surface, where the unknown
function v denotes the height from the surface of the oil film to the solid surface.
Motivated by this idea, we devote this section to the discussion of the nonnegativity
of solutions.

Theorem 4.1. The weak solution u obtained in Section 8 satisfies u(r,t) > 0, if
ug(r) > 0.

Proof. Suppose the contrary, that is, the set

E={(r,t) € Qq;u(r.t) < 0} (4.1)
is nonempty. For any fixed § > 0, choose a C* function Hs(s) such that Hj(s) =
—¢§ for s > =4, Hs(s) = —1, for s < —2§ and that Hs(s) is nondecreasing for

—20 < s < —0. Also, we extend the function u(r,t) to be defined in the whole
plane R? such that the extension i(r,t) = 0 for t > T +1 and t < —1. Let a(s) be
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the kernel of mollifier in one- dlmension that is, a(s) € C*°(R), suppa = [—1,1],
a(s) >0in (—1,1) andf s)ds = 1. For any fixed k > 0,8 > 0, define
ul(r,t) = / a(s,r)ap(t — s)ds,
R

w

+oo _ T 1
t) = 2 d
65() /t a(%fé)%f(; S,

where ay(s) = +a(s/h).
The function

O (r,t) = [Bs(t)Hs(u"))"

is clearly an admissible test function, that is, the following integral equality holds

1 1
/ u(r, T)<p5 (T,r)dr f/ rug(r )ap(; (r,0)dr

// ru—drdt—}—// 8W3g05d dt = 0.

To proceed further, we give an analysis on the properties of the test function gpg(r, t).
The definition of G5(t) implies that

(4.2)

ol (r,t) =0, tZT—g, h < g. (4.3)
Since @(r,t) is continuous, for fixed §, there exists 7;(d) > 0, such that
)23, tSm@), 0Sr<l h<m(), (14)
which together with the definition of G5(t) and Hs(s) imply
Hs(u(r,t)) = =6, t<m(s), 0<r<1, h<mn(d) (4.5)
and hence
oh=-5 t< %m(é), 0<r<1, h< %771(6)- (4.6)

We note also that for any functions f(t), g(t) € L*(R

/Rf(t t)dt = /f dt/ ant—st—/f / s)an(s —t)ds
= [ atsyas [ san(s=nat = [ foga

Taking this into account and using (4.3] -, ., we have

//Tru<p5 drdt = /+Oodt/ ruf 8t (Bs(t)Hs (u ))]hdr

_ / / (m)ha (B (t) Hs (u)) dr dt

and hence by integrating by parts

//QT(ru)haat (ﬁg(t)Hg(uh)) dr dt
- / (ru)* (r, T) 35 (T) H (u" (1 T)) dr — / (ru)" (r,0)85(0) Hs (u" (1, 0)) dr
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/QT

)()ddt

75/ (ru)"(r,0) dr//Trﬂg

where Fs(s) =

ul) drdt,
= |5 Hs(o)do.
Again by (Z5)

" (r,0) 1
B (r,O)):/O H(;(o')do':/o Hs (i (r, 0))dA - uh (r, 0)

= —ul(r,0)
and hence

// ru) at (Bs(t)Hs(u")) dr dt

—5T/ (ru) rO)dH—/ rB5(0) F5 (u"(r, 0)) d7’+//T’"F5 u")B5(t) drdt (4.7)

777—5// rF(u % 5)drdt

From , it is clear that

1
/ ru(r, T)@S‘(T, r)dr=0, 0<h< 2771((5)
0

, (48)
1 1

—/ rug(r)h (r,0)dr =6 | rug(r) dr. (4.9)

0 0

Substituting (4.7] and ( . ) into 7 we have

725/‘/ rEs(u I_(S)drdt—l-(;/ ruo(r) dr

2 (4.10)
/ / 8 a% drdt =0

By the uniform continuity of u(r,t) in Q, there exists 12(8) > 0, such that

4]
u(r,t) > —3 V(r,t) € P°, (4.11)
where P = {(r,t);dist((r,t), P) < n2(8)}. Here we have used the fact that u(r,t)
0 in P. Thus

1
Hs(u"(r,t)) = =6, Y(r,t)e PY? 0<h< -n
where P%/2 = {(r,t); dist((r, ), P)

S2(6)

< Im(®)}.
By this and the definition of u”, Hs(s) shows that the function ¢ (r,t) is only a
function of ¢ in P, whenever h < 57,(9). Therefore
Dh(r,t) =0, Y(rt)€ P,

1
0<h< 5772(5) (4.12)

11
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and so ) becomes
(5/ rug(r dr—l—T 25//T7“F5 T 25)d7“dt—0 (4.13)

where 7(0) = min(n;1(0),72(0)). Letting h tend to zero, we have

5/ rug(r) dr + —25// rFs(u T 26)drdtf0 (4.14)

From the definition of Fy(s) and Hs(s), it is easily seen that
Fs(u(r,t)) — fXE(r, Hu(r,t) (6 —0)
and so by letting J tend to zero in , we have

//|u7‘t|a

which contradicts the fact that a(% T) > 0 for 0 <t <T. We have thus proved
the theorem. g

)d dt = 0,

Lemma 4.2. Let u be the limit function of the approximate solutions obtained
above. Then the following integral inequality holds

1 2
/ ruz_"dr—i—// r(a—v) drdsg/ ruo ~"dr.
0 Q: 31"

Proof. Let u. be the solution of the problem (2.1)-(2.3). Denote

v dr
ga(u)z/o W, GE(U)Z/O ge(r) dr.

Multiplying both sides of the equation (2.1) by g.(uc), and then integrating over
Q¢, we obtain

' OW 9ue = lr uge (1)) dr
[oraeomas [[ erafl S = [ o >(>4d.)
15

Integrating by parts, we obtain

/01(7“—1—E)Gs(us(r,t))dr+//t(7‘—i—s)(aa‘;)erds: /OlGe(uog(r))dr.

Letting ¢ — 0 and using the fact that G.(u.) — v?>~"/(1 —n)(2 — n) and u. — u
pointwise and the lower semi-continuity of the integrals, we immediately get the
conclusion of the lemma. The proof is complete. (Il

Theorem 4.3. Suppose that ug(r) > 0 and n > 6, then the weak solution u satisfies
u(r,t) > 0.

Proof. Since we have proved that u(r,t) > 0, if the conclusion were false, then
there would exist a point (rg,ty) € Qr, such that u(rg,tp) = 0. From the Holder
continuity of ru, we see that

ru(r,to) < Clr —ro|'/*.

Since n > 6, we have

1 1
/ ru(r, to)* "dr > C/ Ir — 10| @/ 4dr = 00
0 0
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On the other hand, by Lemma [£.2]

1
/ ru(r, to)? "dr < C,
0
which is a contradiction. The proof is complete. O

5. FINITE SPEED OF PROPAGATION OF PERTURBATIONS

As is well known, one of the important properties of solutions of the porous
medium equation is the finite speed of propagation of perturbations. So from the
point of view of physical background, it seems to be natural to investigate this
property for thin film equation. Bernis and Friedman [4], Bernis [5] considered this
property for thin film equation. On the other hand, the mathematical description
of this property is that if suppwug is bounded, then for any ¢ > 0, suppu(-,t) is
also bounded. So from the point of view of mathematics, this problem seems to be
quite interesting. We adopt the weighted energy method and the main technical
tools are weighted Nirenberg’s inequality and Hardy’s inequality.

Theorem 5.1. Assume 0 <n < 1, ug € Hi(I)NH?*(I), up > 0, suppug C [r1,ra],
0<m <ry <1, andu is the weak solution of the problem (L.1)-(1.3), then for any
fized t > 0, we have

supp u(x,-) C [ri(t),r2(t)] N[0, 1],
where 1(t) =11 — C1t7, ro(t) = ro + Cot?, C1,Co,v > 0.

We need some uniform estimates on such approximate solutions u..

Lemma 5.2. Let u be the limit function of the approximate solutions obtained
above. Then for any y € RT, the following integral inequality holds

1 . 3U 2

/r( y)Gu 2=y 4+ = // r(r—uy 737“3) drds
6u 0%u\2
(x 42" _a—2
<C//t Y <8r d’/‘dS—‘rC//QtT(JT v <8r2> drds
1/2
—I—C'/ r(r—y)i|uo|2_"dr+0<// r\u0|2_"drds) ,
0 t

where C' depends only on n,ug and o > 2p — 1, where (r —y)4+ denotes the positive
part of r —y

Proof. Let g-(u) and G.(u) be defined as in the proof of Lemma Let u. be
the approximate solutions derived from the problem (2.1))—(2.3). Then, using the
equation (2.1) and integrating by parts, we obtain

/ r(r —y)$Ge(ue) dr — / r(r —y)$Ge(uo) dr
0 0
//t 7“5(|u5|2 Jr&:)"/zaa—W% [(r - y)‘_)f_gg(ug)] drds

ow du.
—// TEW(’I’f y)g 5 drds

B // re(fuc|? + 6)"/2W [a(r —y)$ " ge (uc)] drds
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EIl —|—IQ

As for I, integrating by parts, we have

1914 o Oue
//tretar(r 5 drds
Ou, o 0 Oue o
/QtWrsaroz(ry)+ 1d7’ds+// Wa(rsa—)(rfy)+drds
2
:7// T a—vausa( —-y)5 1drdsf// rsavaus (a—1)(r —y)s *drds

cor or?
8V w10V
//t r—y 7) drds//trsa(ry) 5 —Vdrds.
Therefore,
1 1 OV 2
| et =Gedr = [ r - 03Getu dr+// retr =3 (25) ar s
ov 82u5 jo-1 ov 3“5 a—2
//t 3 52 @ r—y)% drds—//t e B @ —1)(r—y){ “drds

_// rea(r —y)§ 1%Vdrds
// re(Juc)?® +€) ”/2 [ (r—y)5 "9 (ue)] drds
:Ia+Ib+IC+Id.

Hoélder’s inequality yields

2% ao [ 0%uc\2
|I,| < = // re(r 6—) drds—i—C// re(r—y)§ 2( a2 ) drds,
ov Oug\ 2
|| < §// re(r —y) <8) drds + Cy // rg(r—y)i_‘l( (;:4) drds,
|I.] < = // re(r a—) drds + Cs // re(r — y)‘j‘__QV2 drds.

Noticing that

2
(Juel® + )" |ge(ue)| < T, luel;
using (2.5, we have

4] < C(//t re(|ue|? +€)n/2<887v;/)2drd3)1/2

< C(// relue|* "™ dr ds) i



EJDE-2012/112 PROPAGATION OF PERTURBATIONS 15

Summing up, we have

1 1
/ rs(rfy)iGs(us)drf/ re(r —y)$Ge(ug) dr
0 0
1 o (OV\2
+*// rg(r—y)Jr(E) drds
0%u ou
a 2 E _ £
<0//1r5 -7 (5%) drds+01//fr€r (m)dds
1/2
—|—Cg// rg(r—y)i72V2drds+C3 // T5|u5\2_”drds)
t Qt
A simple calculation shows that
1 OV \2
,// rer )3 (5) drds
83u8 2 OBu. 0 /1 Ou, 0
N //frs B ( 83>+28r38r(r55)r>+(87
3
// re(r — 8836 drds+ - // re(r—y Bg
0 /1 Ou,
//trE —v)i 37“3 87"(7“8 8r>d ds.
Note that
0 /1 Ou.
’//tr6 ry)E 67“3 87“(7“6 8r)drd5’
83u5 0% u. a Ue Oue
’//t +8r382dd_//trg +8T3 8rdrd8’
83 Uge Te 82ug 2
// re(r 763 dds+C’// e —W) dr ds
(“)3u6 3 8u6 2
+8//tr5(r )(83 dds—i—C//t;1 ar)d?”als
83 5 oo (O%uN2
R e e o
Oou,
+C’//t7“5r— <8r)dd8.
On the other hand, we have

// re(r —y)$ *V3drds
Oug\ 2

oo [ 0PuN\2 o
<2 [ rr - () drds w2 [[ ot (Ge) dras

Letting ¢ — 0, we immediately get the desired conclusion and complete the proof
O

(5 50)) ) wres

(7 55)) aras

+Q

of the lemma.
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Proof of Theorem[5.1. For any y > 72, Lemma and Hardy’s inequality [L1]
imply that for any ¢ € [0, T,

1 3

/ r(r —y)2u?"dr + = // y)ﬂ%ﬁdms

<C// (r—y a4—]dds+()// r(r—y a2\8“|2dd (5.1)
<C’// r—y a2| ’drds

For any positive number m, define

y)=/ot/olr(r— +\33|de3 foly // |83’dd

By y > ro > 0, then, weighted Nirenberg’s inequality [I] and estimate (5.1]) imply
that

f2p+1

<C// r—y)P” 1| |drds
1 a, 1 _ 2(1-a)/q
scl/o (/O (r—y)2~ 1! | dr) (/0 (r = )2 fultar) ds
! 2(1- a)/q
o 2p—1 — o 2p 1
SCOE?ET(/O r(r—y)i |u|qdr) // (r ’83| dd) .

Using (5.1) and Hardy’s inequality, we have

1 3
sup / r(r —y) P ul%dr < C// (r— y)ip71|%|2 drds
o<t<T Jo Q: "

and hence

o3 a+2(1—a)/
fops1(y <Ct1“// y)rt “2d d) !

where ¢ = 2 — n and

7

1_1_1
_ 2 p q
@=1T_-3 1
2 2p q

Denote A = 1 —a,up = a+2(1 —a)/q, then A > 0, 1 < u. Applying Holder’s
inequality, we have

fop1(y) < CE // r—y 2pla“2drds]

<ctt // r(r—y) 2p 2| |drd5}

r Bu 2 (2p—2)p/(2p+1)
<ot // r(r —y)PH! ﬁ| drds}

3u/(2p+1)
/ / O ar ]
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< Ot [fapra ()] B2 CPED[fo ()P0 oD,

Therefore,

2p — 2
< oMo su/(2ptlo o _q_ <P
fap+1(y) < CV7[fo(y)] » 0 w1t 0

Using Holder’s inequality again, we obtain

F1(y) < o)/ 2P fopia ()] V/2PHE < O [foly)) o,

where

A m 1

1= e =

) - > 0.
2p+1)o 2p+1)2c 2p+1

Noticing that fi(y) = —fo(y), we obtain

fi(y) < —Ct= 7/ OFD[ £ ()] O+,

If fi(re) = 0, then suppu C [0,72]. If fi(r2) > 0, then there exists a maximal
interval (rg,r3) in which fi(y) > 0 and

Integrating the above inequality over (rq,

/ 0 /
[fl(y)a/(eﬂ)} R [fl(g;f)l](lzjza+1) < -G/,
3

), we have

f1(7"§)9/(9+1) — f1(7‘2)9/(9+1) < _Ct—v/(9+1)(T; — 1),

which implies

v < 1o+ CH (folra))’.

Therefore.
supsupp u(-,t) < ro + CtY = ro(t).
We have thus completed the proof of Theorem O
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