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SOLVABILITY OF (K,N-K) CONJUGATE BOUNDARY-VALUE
PROBLEMS AT RESONANCE

WEIHUA JIANG, JIQING QIU

ABSTRACT. Using the coincidence degree theory due to Mawhin and construct-
ing suitable operators, we prove the existence of solutions for (k,n — k) conju-
gate boundary-value problems at resonance.

1. INTRODUCTION

The existence of solutions for (k,n — k) conjugate boundary-value problems at
non-resonance has been studied in many papers (see [1l 2, Bl 4, [7, 8, 1T, 12| 13|
14, 17, 221 26l 27, 28, 31, B32] 33]). For example, using fixed point theorem in a
cone, Jiang [I3] obtained the existence of positive solutions for (k,n — k) conjugate
boundary-value problem

(=" Fy () = fty(1), 0<t<l,
yD(0)=yW(1)=0, 0<i<k—1,0<j<n—k—1,
where f(t,y) may be singular at y = 0, ¢ = 0, ¢t = 1. By using fixed point
index theory, Zhang and Sun [33] studied the existence of positive solutions for the
problem
(~1)" ™ (x) = h(2) f(p(2)), 0<z<ln>21<k<n-—1,

subject to the boundary conditions

m—2
00) = aip&), ¢P(0)=¢P(1)=0, 1<i<k-1,0<j<n-k-1,
=1

and

m—2

(1) = ap(&), ¢D0) =P (1)=0,0<i<k—1, 1<j<n—k-1,
=1

respectively. Solvability of boundary-value problems at resonance has been inves-
tigated by many authors (see [5} [6 @ [0} 15, (16, 18|, 19, 20} 211, 23] 25, 29, 30, 34]).
For example, in [5], using the coincidence degree theory due to Mawhin, Du, Lin
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and Ge investigated the existence of solutions for the (n — 1,1) boundary-value
problems at resonance

2™ () = f(t,zt), 2’ (t),...,e"V() +e(t), ae te(0,1),
m—2
2(0) = > (&), 2'(0)=2"(0)=---=2""2(0) =0, =z(1)=zx(n).
i=1

Motivated by the results in [5, 13} B3], in this paper, we discuss the existence of
solutions for the (k,n — k) conjugate boundary-value problem at resonance

(1) FyM(t) = fty@®), 9 (@), ...,y V(@) +et), ae te0,1], (11)
yD0)=9yD(1)=0, 0<i<k-1,0<j<n—k-2

y" M) =) e V(&), 2
i=1
where 1 <k<n—-1,0<& <& <o <& < 1.
As far as we know, this is the first paper to study the existence of solutions for
(k,n — k) boundary-value problems at resonance with 1 <k <n — 1.
In this paper, we assume the following conditions:
(H].) 0<£1 <£2 < - <£m <1, Z:-ilai:]., Zglazfz 7é 1.
(H2) e(t) € L*[0,1], f : [0,1] x R® — R satisfies Carathdodory conditions;
ie., f(-,x) is measurable for each fixed x € R™, f(¢t,-) is continuous for
a.e. t € [0,1], and for each r > 0, there exists ®, € L*°[0,1] such that
|f(t, 21, @0, .., 20)| < @p(t) for all |z;] <7, i=1,2,...,n, ae. t€]0,1].

2. PRELIMINARIES

First, we introduce some notation and state a theorem to be used later. For
more details see [24].

Let X and Y be real Banach spaces and L : dom L C X — Y be a Fredholm
operator with index zero, P: X — X, @Q : Y — Y be projectors such that

ImP=kerL, kerQ=ImL, X=kerL®kerP, Y =ImL&ImQ.

It follows that
L’domLﬁkerP :domLNkerP — ImL

is invertible. We denote the inverse by Kp.

Assume that € is an open bounded subset of X, dom LNQ # ), the map N : X —
Y will be called L-compact on Q if QN (Q) is bounded and Kp(I — Q)N : Q — X
is compact.

Theorem 2.1 ([24]). Let L : domL C X — Y be a Fredholm operator of index
zero and N : X — Y L-compact on Q. Assume that the following conditions are
satisfied:
(1) Lz # ANz for every (x,\) € [(dom L \ ker L) N 09] x (0, 1);
(2) Nz ¢ Im L for every x € ker L N 0%);
(3) deg(QN|ker, 2QNker L,0) # 0, where Q : Y — Y is a projection such that
Im L = ker Q.

Then the equation Lx = Nx has at least one solution in dom L N Q.
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Take X = C" 10,1] with norm |Ju| = max{|u|lec, [|t]lec,- - - |t s},

where |[uls = max;eqoq u(t)], Y = L'[0,1] with norm [[z|, = fo |x(¢)|dt. De-
fine the operator Ly(t) = (—1)"*y™)(t) with

domL={yeX:y™ ey, y90)=yP1)=0,0<i<k—1,

0<j<n—k-2 y" 1 Zay(" Ve

Let N : X — Y be defined as

Ny(t) = f(ty(t), v’ (), ..,y (8) +&(t), teo,1].
Then problem (L., (I.2) becomes Ly = Ny.

3. MAIN RESULTS

By Cramer’s rule, we can get the following lemmas.

Lemma 3.1. For given u € Y, the system of linear equations

Tk Tht1 - Tn—2 (_1)n_k /1 _ \n—1 _
T + Gt 1)1 +-+ (n—2)] + =11 ), (1—s)""u(s)ds =0
Tp Tht Tnoy | (=D F /1 g
_ Tk 1— )™ ds —
Gl T w T ey Ty ), () T ule)ds =0
(3.1)
Tk Th+41 T Tn—2
[k—(n—Fk-2)] [k:+1—(n—k—2)]! [n—2—(n—Fk—2)]
+ (=) /1(1 — )" u(s)ds = 0
[n—1—-(mn—-k-=2)]Jy
has an only one solution, (xk, Tr11, . - . ,xn_g) with
/ (=1 Lm! _yymoi—iCmos
" Sy (m =k (k-1 (n—m m —2)! 4 m—1
n—m-—2
1— n—1—-i1—j
[ Z n m— 2%}“(5)6%, m=k,k+1,...,n—2.
= n—1—1—7
Lemma 3.2. The system of linear equations
LTk Tk+1 Tp—2 1 _
R N s TR e T
Tk Thyr | Tp—2 1 _
GOl R T T e Ty O
(3.2)
Tk Tk+1 +
[k —(n—Fk—2)) [k+1—(n—k—2)]! h
_ 1
+ Tn—2 + -0

m—2—-n—-k=-2)]! [n—-1—(n—k-=2)]
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has an only one solution, (Tg, Tk+1,.-.,Tn_2) wWith

m—k i
m! C!

= — _1ym—k—iZm=k

. (m—k’)!(k‘—l)!(n—m—?)!;( ) m—i

n—m-—2 1
—1)icd 7) —kk4+ 1.2
(X WO g) kL

Let (By(u), Byg1(u), ..., Bn—2(u)) denote the only solution of (3.1]), and let
(Ak, Agy1, - .., Ap—2) denote the only solution of (3.2)), and let A, = 1.

In order to obtain our main results, we firstly present and prove the following
lemmas.

Lemma 3.3. Suppose (H1) holds, then L : dom L C X — Y is a Fredholm operator
of index zero and the linear continuous projector @ : Y — Y can be defined as

1 1
Qu= 1= aii ; a,;/ u(s)ds,

i

m

and the linear operator Kp : Im L — dom L Nker P can be written as

Kpu _ 2_: Bi(u)ti + (_1)nik /t(t _ 8)"71u(3)d$.
0

= il (n—1)!

Proof. By simple calculations, we obtain that

n—1

ker L = {y:y:c(Z %tl), CER}.

i=k
Define linear operator P : X — X as follows
n—1 A
_ i3\, (n—1)
Py(t) = (D 5)y" D).
i=k
Obviously, ImP = ker L and P%?y = Py. For any y € X, it follows from y =

(y — Py) + Py that X = ker P + ker L. By simple calculation, we can get that
ker L Nker P = {0}. So, we have

X =ker L ® ker P. (3.3)
We will show that

m

1
ImL={ueY: Zai/ u(s)ds = 0}.
i=1 &i

In fact, if u € Im L, there exists y € dom L such that u = Ly € Y. So, we have

n—1
— Ci i (_l)n_k ! — )" Lu(s)ds
y_;i!t—’_(nl)!/()(t )" uls)ds.

Since 37" a; =1 and y™ V(1) = -7 ay Y (&), we have

/01 u(s)ds = i:l Q; /0& u(s)ds;

Le, Yot f; u(s)ds = 0.
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On the other hand, if u € Y satisfies >\ | f; u(s)ds = 0, we take

NS Biw) e )R
y_; il t+(n—1)!/0(t )" uls)ds.

Obviously, Ly = u and y™~ V(1) = POy iy (&), By Lemma we obtain
that y € dom L; i.e., u € Im L.
Define operator @ : Y — Y as follows
1 - !
Quzﬁ( ai/usds).
1=300 i ; : )

Obviously, Q?y = Qy and Im L = ker Q. For y € Y, set y = (y — Qy) + Qy. Then
y—Qy €kerQ =ImL, Qy € ImQ. It follows from ker Q = Im L and Q%y = Qy
that Im@ NIm L = {0}. So we have

Y=ImL&ImQ.

This, together with (3.3]), means that L is a Fredholm operator of index zero.
Define operator Kp : Y — X as follows

n—2

() _1\n—k pt
Kpu = Zk BZZ.(! )tl + ((nl) ol /0 (t — s)" tu(s)ds.

Now we show that Kp(ImL) C domL NkerP. Take u € ImL. Obviously,
(Kp(u))™=1D(0) = 0. This implies that Kp(u) € ker P. Tt is easy to see that
(Kp(u))®(0) =0, 0 < i < k—1. Tt follows from Lemmathat (Kp(u)W) (1) =0,
0<j<n-—k—2. Fromu € Im L, we obtain

m

(Kp(u)" V(1) = Zai(KP(U))("’”(&)-

So, Kp(u) € dom L.
Now we prove that Kp is the inverse of L|qom Lrker - Obviously, LKpu = u,
for v € Im L. On the other hand, for y € dom L N ker P, we have

n—2 ] ) _1\n—k
KpLy(t) =Y Bl(ﬂLy) t 4 ((nl_) ol
i=k : ’
n—2 Bi I 0
-3¢ (Ly) —y'(0)

i=k

i

| =t ey sgas

1t +y().

Since y and KpLy € dom L, we have (KpLy)W) (1) =y (1) =0, 0 < j < n—k—2.
This means that (By(Ly)—y*) (0), Bei1(Ly)—y*+t1(0),..., By_2(Ly)—y=2(0))
is the only zero solution of the system of linear equations

Lk Th+1 Tn—2

Lk .. =0
T Erl T T o)
Tk Th4+1 Lpn—2
. =0
G-t T ey
Tk Th41 Tn—2 0.

1 ot

k—n—k—2]  [k+1—(n—k—2)] m—2—(n—k—2]
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So, we have KpLy =y, for y € dom LNker P. Thus, Kp = (L|qom Lrker p) - The
proof is complete. (Il

Lemma 3.4. Assume Q2 C X is an open bounded subset and dom L NQ#0, then
N is L-compact on €.

Proof. Obviously, QN (Q) is bounded. Now we will show that Kp(I—Q)N : Q — X
is compact.

It follows from (H2) that there exists constant My > 0 such that |(I — Q)Ny| <
My; ae., t € [0,1], y € Q. Thus, Kp(I — Q)N(Q) is bounded. By (H2) and
Lebesgue Dominated Convergence theorem, we get that Kp(I — Q)N : Q — X
is continuous. Since {fot(t —8)(I — Q)Ny(s)ds, y € ﬁ}, j=0,1...,n—1 are

equi-continuous, and #/, j = 0,1...,n — 1 are uniformly continuous on [0, 1], using
Ascoli-Arzela theorem, we obtain that Kp(I — Q)N : 2 — X is compact. The
proof is complete. ([

To obtain our main results, we need the following conditions.
(H3) There exists a constant M > 0 such that if |y~ (t)| > M, t € [&,,, 1] then

ZO‘Z’/ [F(s,9(5), 5/ (), 9" D (s)) + e(s)]ds # 0.
i=1 i

(H4) There exist functions g, h,¢; € L'[0,1], i = 1,2,...,n, with Y, [[vill1 <
1/2, 6 € [0,1), some 1 < j < n such that

[tz @, w)l < g(8) + D i)zl + h(t)|z;)”.
i=1

(H5) There exists a constant ¢y > 0 such that, if |¢| > ¢g, one of the following
two conditions holds

Ciai/& [f(s,c(jz_; ’Zisi),c(f_ G Ail)!si—l)...,c) +€(s)}ds>0, (3.4)

- = i=k
c;m;ai /: [f(sc(nzk ?!Z’sz‘),c(j_k - ilz'l)lsu),...,c) +e(s)]ds < 0. (35)

Lemma 3.5. Assume (H1)—(H4). Then the set
Q1 ={yedomL\kerL:Ly=ANy, e (0,1)}
1s bounded.

Proof. Take y € Q1. Since Ny € Im L, we have
m 1
Soai [ [#ere)y 9)y® V() +s)] ds =0, (3.6)
i=1 i

Since Ly = ANy and y € dom L, it follows that

n—1 (_1)n—k

(0= 3 Gt g [0 [0/ 0 o) (0]
(3.7)
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where ¢;, it =k, k+1,...,n — 1 satisfy

n—1 c _1\n—k 1
Z Z—; = _((nl—)l)!)\/o (L—=38)"" [f(s,9(5),9'(5), ... T (s)) + e(s)]ds

= c (—nn*k ! n—2 / n—1
B i ey AR O CRAC A CIRERI

n—1 ¢ B (_1)n7k 1
[i—(n—k—2)] [n—l—(n—k:—Q)]!A/o (=9

X [f(s, y(s), 4/ (s), ...,y V(s)) + s(s)]ds.

It follows from 3 (0) =y (1) =0,0<i <k —1,0 < j <n —k — 2 that there
exists at least one point §; € [0,1] such that 4 (8;) =0, i =0,1,...,n — 2. So, we
have

-
Il
e

t
y (t) =/ y D (s)ds, i=0,1,...,n—2.
05
Therefore,
1D loe < Iy < Iy oo, i=0,1,...,n—2. (3.8)

By (3.6) and (H3), there exists to € [£,1] such that |y~ Y (tg)| < M. This,
together with (3.7)), implies

1
onal <M+ [ [Fep@y Oy )| sk el (39
0
It follows from (3.7))-(3.9) and (H4) that

1
Iy Vloe < M +2 / |£(5,9(),9/ (), -,y V() |ds + 2lle]|
0

< M +2{llgll + D il lly oo + Al lly Y1) + 2l

=1

n
< M +2lgl +2) il ly™ Voo + 201l lly™ V1% + 2llellr-

i=1
So, we obtain
||y(n71)|| < M+2H9H1 +2H6H1 2||h||1 ”y(nfl)”G
To1=23 0 bl T =230 ([l °°

Then 6 € [0,1) implies that {||y™ V|| : ¥ € 21} is bounded. Considering of
(3.8), we obtain that € is bounded. O

Lemma 3.6. Assume (H1), (H2), (H5). Then the set
Qo={y:ye€kerL, NycImL}

is bounded.
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Proof. Take y € Qo, then y(t) = c( X1, 4it), c € Rand Ny € Im L. So, we have
m 1 n—1 n—1
A Ai i _
ci_zlaz/& [f(s,c(% s ),c(é = 1)!5 >7...,c> —l—a(s)]ds =0.
By (H5), we obtain that |¢| < ¢g. So, Q3 is bounded. O

Lemma 3.7. Assume (H1), (H2), (H5). Then the set
Q3= {y cker L: \Jy + (1 — \)IQNy =0, A € [0,1]}

is bounded, where J : ker L — Im Q is a linear isomorphism given by

nflAii c
J(Czki!t> :71_2?;1%&, ceR

1=

and 6 — 1 if (3.4]) holds,
-1, if (B5) holds.

Proof. For y € Q3, we get y = ¢( Z:’;kl 4i) with

)\ch(l/\)Giai /; [f(s,c( i__k ﬁsz),c(g i fli)!sil),. .. ,c) +€(s)}ds =0.

If A=0, by (H5), we get || < ¢g. f A=1,¢=0. For A € (0,1), if |¢| > ¢, then

- ! i i = { i—1
)\02:—(1—)\)%;%/& [f(s,c( % ’),c(;(ifl)!s ),...,c)

+ e(s)}ds <0.

n

n

>

-1
i=k

This is a contradiction. So, {23 is bounded. O

Theorem 3.8. Assume (H1)—(H5) Then problem (1.1)—(1.2]) has at least one so-
lution in X.

Proof. Let Q D U?_,Q; U {0} be a bounded open subset of X. It follows from
Lemma that N is L—compact on Q. By Lemmas and we obtain: (1)
Ly # ANy for every (y,A) € [(dom L\ ker L) N 99] x (0, 1); and (2) Ny ¢ Im L for
every y € ker L N 02. We need to prove only (3) deg(QN |xerz, 2 Nker L, 0) # 0.
To do this, we take

H(y,A) = Ay +6(1 — \)QNy.

According to Lemma we know H(y, \) # 0 for y € 9QNker L. By the homotopy
of degree, we obtain

deg(QN|ker L, 2 Nker L,0) = deg(6H(-,0), 2 N ker L, 0)
=deg(AH(-,1),2Nker L,0)
= deg(6J,Q2Nker L,0) # 0.

By Theorem m we obtain that Ly = Ny has at least one solution in dom L N Q;
i.e., (1.1)-(1.2) has at least one solution in X. The prove is complete. |
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