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RESOLUTIONS OF PARABOLIC EQUATIONS IN
NON-SYMMETRIC CONICAL DOMAINS

AREZKI KHELOUFI

Abstract. This article is devoted to the analysis of a two-space dimensional
linear parabolic equation, subject to Cauchy-Dirichlet boundary conditions.
The problem is set in a conical type domain and the right hand side term of
the equation is taken in a Lebesgue space. One of the main issues of this work
is that the domain can possibly be non regular. This work is an extension of
the symmetric case studied in Sadallah [13].

1. Introduction

Let Q be an open set of R3 defined by

Q = {(t, x1, x2) ∈ R3 : (x1, x2) ∈ Ωt, 0 < t < T}
where T is a finite positive number and for a fixed t in the interval ]0, T [, Ωt is a
bounded domain of R2 defined by

Ωt = {(x1, x2) ∈ R2 : 0 ≤ x2
1

ϕ2(t)
+

x2
2

h2(t)ϕ2(t)
< 1}.

Here, ϕ is a continuous real-valued function defined on [0, T ], Lipschitz continuous
on [0, T ] and such that

ϕ(0) = 0, ϕ(t) > 0
for every t ∈ ]0, T ]. h is a Lipschitz continuous real-valued function defined on
[0, T ], such that

0 < δ ≤ h(t) ≤ β (1.1)
for every t ∈ [0, T ], where δ and β are positive constants.

In Q, we consider the boundary-value problem

∂tu− ∂2
x1
u− ∂2

x2
u = f ∈ L2(Q),

u
∣∣
∂Q−ΓT

= 0,
(1.2)

where L2(Q) is the usual Lebesgue space on Q, ∂Q is the boundary of Q and ΓT is
the part of the boundary of Q where t = T .

The difficulty related to this kind of problems comes from this singular situation
for evolution problems; i.e., ϕ is allowed to vanish for t = 0, which prevents the
domain Q from being transformed into a regular domain without the appearance of
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some degenerate terms in the parabolic equation, see for example Sadallah [12]. In
order to overcome this difficulty, we impose a sufficient condition on the function
ϕ; that is,

ϕ′(t)ϕ(t) → 0 as t→ 0, (1.3)
and we obtain existence and regularity results for Problem (1.2) by using the domain
decomposition method. More precisely, we will prove that Problem (1.2) has a
solution with optimal regularity, that is a solution u belonging to the anisotropic
Sobolev space

H1,2
0 (Q) := {u ∈ H1,2(Q) : u

∣∣
∂Q−ΓT

= 0},
with

H1,2(Q) = {u ∈ L2(Q) : ∂tu, ∂
j
x1
u, ∂j

x2
u, ∂x1∂x2u ∈ L2(Q), j = 1, 2}.

In Sadallah [13] the same problem has been studied in the case of a symmetric
conical domain; i.e., in the case where h = 1. Further references on the analysis of
parabolic problems in non-cylindrical domains are: Alkhutov [1, 2], Degtyarev [4],
Labbas, Medeghri and Sadallah [8, 9], Sadallah [12]. There are many other works
concerning boundary-value problems in non-smooth domains (see, for example,
Grisvard [6] and the references therein).

The organization of this article is as follows. In Section 2, first we prove an
uniqueness result for Problem (1.2), then we derive some technical lemmas which
will allow us to prove an uniform estimate (in a sense to be defined later). In
Section 3, there are two main steps. First, we prove that Problem (1.2) admits a
(unique) solution in the case of a domain which can be transformed into a cylinder.
Secondly, for T small enough, we prove that the result holds true in the case of
a conical domain under the above mentioned assumptions on functions ϕ and h.
The method used here is based on the approximation of the conical domain by
a sequence of subdomains (Qn)n which can be transformed into regular domains
(cylinders). We establish an uniform estimate of the type

‖un‖H1,2(Qn) ≤ K‖f‖L2(Qn),

where un is the solution of Problem (1.2) in Qn and K is a constant independent of
n. This allows us to pass to the limit. Finally, in Section 4 we complete the proof
of our main result (Theorem 4.4).

2. Preliminaries

Proposition 2.1. Problem (1.2) is uniquely solvable.

Proof. Let us consider u ∈ H1,2
0 (Ω) a solution of Problem (1.2) with a null right-

hand side term. So,
∂tu− ∂2

x1
u− ∂2

x2
u = 0 in Q.

In addition u fulfils the boundary conditions

u
∣∣
∂Q−ΓT

= 0.

Using Green formula, we have∫
Q

(∂tu− ∂2
x1
u− ∂2

x2
u)u dt dx1 dx2 =

∫
∂Q

(
1
2
|u|2νt − ∂x1u.uνx1 − ∂x2u.uνx2)dσ

+
∫

Q

(|∂x1u|2 + |∂x2u|2)dt dx1 dx2
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where νt, νx1 , νx2 are the components of the unit outward normal vector at ∂Q.
Taking into account the boundary conditions, all the boundary integrals vanish
except

∫
∂Q

|u|2νt dσ. We have∫
∂Q

|u|2νtdσ =
∫

ΓT

|u|2 dx1 dx2.

Then ∫
Q

(∂tu− ∂2
x1
u− ∂2

x2
u)u dt dx1 dx2

=
∫

ΓT

1
2
|u|2 dx1 dx2 +

∫
Q

(|∂x1u|2 + |∂x2u|2)dt dx1 dx2.

Consequently, ∫
Q

(∂tu− ∂2
x1
u− ∂2

x2
u)u dt dx1 dx2 = 0

yields ∫
Q

(|∂x1u|2 + |∂x2u|2)dt dx1 dx2 = 0,

because
1
2

∫
ΓT

|u|2 dx1 dx2 ≥ 0.

This implies |∂x1u|2 + |∂x2u|2 = 0 and consequently ∂2
x1
u = ∂2

x2
u = 0. Then, the

hypothesis ∂tu−∂2
x1
u−∂2

x2
u = 0 gives ∂tu = 0. Thus, u is constant. The boundary

conditions imply that u = 0 in Q. This proves the uniqueness of the solution of
Problem (1.2). �

Remark 2.2. In the sequel, we will be interested only by the question of the
existence of the solution of Problem (1.2).

The following result is well known (see, for example, [11])

Lemma 2.3. Let D(0, 1) be the unit disc of R2. Then, the Laplace operator ∆ :
H2(D(0, 1))∩H1

0 (D(0, 1)) → L2(D(0, 1)) is an isomorphism. Moreover, there exists
a constant C > 0 such that

‖v‖H2(D(0,1)) ≤ C‖∆v‖L2(D(0,1)), ∀v ∈ H2(D(0, 1)).

In the above lemma, H2 and H1
0 are the usual Sobolev spaces defined, for in-

stance, in Lions-Magenes [11]. In section 3, we will need the following result.

Lemma 2.4. Let t ∈]αn, T [, where (αn)n is a decreasing sequence to zero. Then,
there exists a constant C > 0 independent of n such that for each un ∈ H2(Ωt), we
have

(a) ‖∂x1un‖2
L2(Ωt)

≤ Cϕ2(t)‖∆un‖2
L2(Ωt)

,
(b) ‖∂x2un‖2

L2(Ωt)
≤ Cϕ2(t)‖∆un‖2

L2(Ωt)
.

Proof. It is a direct consequence of Lemma 2.3. Indeed, let t ∈]αn, T [ and define
the following change of variables

D(0, 1) → Ωt

(x1, x2) 7→ (ϕ(t)x1, h(t)ϕ(t)x2) = (x′1, x
′
2).
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Set
v(x1, x2) = un(ϕ(t)x1, h(t)ϕ(t)x2),

then if v ∈ H2(D(0, 1)), un belongs to H2(Ωt).
(a) We have

‖∂x1v‖2
L2(D(0,1)) =

∫
D(0,1)

(∂x1v)
2(x1, x2) dx1 dx2

=
∫

Ωt

(∂x′
1
un)2(x′1, x

′
2)ϕ

2(t)
1

h(t)ϕ2(t)
dx′1dx

′
2

=
1
h(t)

∫
Ωt

(∂x′
1
un)2(x′1, x

′
2) dx

′
1 dx

′
2

=
1
h(t)

‖∂x′
1
un‖2

L2(Ωt)
.

On the other hand,

‖∆v‖2
L2(D(0,1)) =

∫
D(0,1)

[(∂2
x1
v + ∂2

x2
v)(x1, x2)]2 dx1 dx2

=
∫

Ωt

(ϕ2(t)∂2
x′
1
un + (hϕ)2(t)∂2

x′
2
un)2(x′1, x

′
2)

dx′1dx
′
2

(hϕ2)(t)

=
ϕ2(t)
h(t)

∫
Ωt

(∂2
x′
1
un + h2(t)∂2

x′
2
un)2(x′1, x

′
2) dx

′
1dx

′
2

≤ 1
δ
ϕ2(t)‖∆un‖2

L2(Ωt)
,

where δ is the constant which appears in (1.1). Using Lemma 2.3 and the condition
(1.1), we obtain the desired inequality.

(b) We have

‖∂x2v‖2
L2(D(0,1)) =

∫
D(0,1)

(∂x2v)
2(x1, x2) dx1 dx2

=
∫

Ωt

(∂x′
2
un)2(x′1, x

′
2)h

2(t)ϕ2(t)
1

h(t)ϕ2(t)
dx′1dx

′
2

= h(t)
∫

Ωt

(∂x′
2
un)2(x′1, x

′
2) dx

′
1 dx

′
2

= h(t)‖∂x′
2
un‖2

L2(Ωt)
.

On the other hand,

‖∆v‖2
L2(D(0,1)) ≤

1
δ
ϕ2(t)‖∆un‖2

L2(Ωt)
.

Using the inequality

‖∂x2v‖2
L2(D(0,1)) ≤ C‖∆v‖2

L2(D(0,1))

of Lemma 2.3 and condition (1.1), we obtain the desired inequality

‖∂x′
2
un‖2

L2(Ωt)
≤ Cϕ2(t)‖∆un‖2

L2(Ωt)
.

�
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3. Local in time result

3.1. Case of a truncated domain Qα. In this subsection, we replace Q by Qα

Qα = {(t, x1, x2) ∈ R3 :
1
α
< t < T, 0 ≤ x2

1

ϕ2(t)
+

x2
2

h2(t)ϕ2(t)
< 1}

with α > 0.

Theorem 3.1. The problem

∂tu− ∂2
x1
u− ∂2

x2
u = f ∈ L2(Qα),

u
∣∣
∂Qα−ΓT

= 0,
(3.1)

admits a unique solution u ∈ H1,2(Qα).

Proof. The change of variables

(t, x1, x2) 7→ (t, y1, y2) = (t,
x1

ϕ(t)
,

x2

h(t)ϕ(t)
)

transforms Qα into the cylinder Pα =] 1
α , T [×D( 1

α , 1), where D( 1
α , 1) is the unit disk

centered on ( 1
α , 0, 0). Putting u(t, x1, x2) = v(t, y1, y2) and f(t, x1, x2) = g(t, y1, y2),

then Problem (3.1) is transformed, in Pα into the variable-coefficient parabolic
problem

∂tv −
1

ϕ2(t)
∂2

y1
v − 1

h2(t)ϕ2(t)
∂2

y2
v − ϕ′(t)y1

ϕ(t)
∂y1v −

(hϕ)′(t)y2
h(t)ϕ(t)

∂y2v = g

v
∣∣
∂Pα−ΓT

= 0.

This change of variables conserves the spaces H1,2 and L2. In other words

f ∈ L2(Qα) ⇒ g ∈ L2(Pα)

u ∈ H1,2(Qα) ⇒ v ∈ H1,2(Pα).

�

Proposition 3.2. The operator

−
[ϕ′(t)y1
ϕ(t)

∂y1 +
(hϕ)′(t)y2
h(t)ϕ(t)

∂y2

]
: H1,2

0 (Pα) → L2(Pα)

is compact.

Proof. Pα has the horn property of Besov (see [3]). So, for j = 1, 2

∂yj H1,2
0 (Pα) → H

1
2 ,1(Pα)

v 7→ ∂yjv,

is continuous. Since Pα is bounded, the canonical injection is compact fromH
1
2 ,1(Pα)

into L2(Pα) (see for instance [3]), where

H1/2,1(Pα) = L2
( 1
α
, T ;H1

(
D(

1
α
, 1)

))
∩H1/2

( 1
α
, T ;L2

(
D(

1
α
, 1)

))
.

For the complete definitions of the Hr,s Hilbertian Sobolev spaces see for instance
[11].

Consider the composition

∂yj : H1,2
0 (Pα) → H

1
2 ,1(Pα) → L2(Pα)

v 7→ ∂yjv 7→ ∂yjv,
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then ∂yj is a compact operator from H1,2
0 (Pα) into L2(Pα). Since −ϕ′(t)

ϕ(t) , − (hϕ)′(t)
h(t)ϕ(t)

are bounded functions, the operators −ϕ′(t)y1
ϕ(t) ∂y1 , −

(hϕ)′(t)y2
h(t)ϕ(t) ∂y2 are also compact

from H1,2
0 (Pα) into L2(Pα). Consequently,

−
[ϕ′(t)y1
ϕ(t)

∂y1 +
(hϕ)′(t)y2
h(t)ϕ(t)

∂y2

]
is compact from H1,2

0 (Pα) to L2(Pα). �

So, to complete the proof of Theorem 3.1, it is sufficient to show that the operator

∂t −
1

ϕ2(t)
∂2

y1
− 1
h2(t)ϕ2(t)

∂2
y2

is an isomorphism from H1,2
0 (Pα) into L2(Pα).

Lemma 3.3. The operator

∂t −
1

ϕ2(t)
∂2

y1
− 1
h2(t)ϕ2(t)

∂2
y2

is an isomorphism from H1,2
0 (Pα) to L2(Pα).

Proof. Since the coefficients 1
ϕ2(t) and 1

h2(t)ϕ2(t) are bounded in Pα, the optimal
regularity is given by Ladyzhenskaya-Solonnikov-Ural’tseva [10]. �

We shall need the following result to justify the calculus of this section.

Lemma 3.4. The space

{u ∈ H4(Pα) : u
∣∣
∂pPα

= 0}

is dense in the space
{u ∈ H1,2(Pα) : u

∣∣
∂pPα

= 0}.

Here, ∂pPα is the parabolic boundary of Pα and H4 stands for the usual Sobolev
space defined, for instance, in Lions-Magenes [11].

The proof of the above lemma can be found in [7].

Remark 3.5. In Lemma 3.4, we can replace Pα by Qα with the help of the change
of variables defined above.

3.2. Case of a conical type domain. In this case, we define Q by

Q = {(t, x1, x2) ∈ R3 : 0 < t < T, 0 ≤ x2
1

ϕ2(t)
+

x2
2

h2(t)ϕ2(t)
< 1}

with
ϕ(0) = 0, ϕ(t) > 0, t ∈]0, T ]. (3.2)

We assume that the functions h and ϕ satisfy conditions (1.1) and (1.3). For each
n ∈ N∗, we define Qn by

Qn = {(t, x1, x2) ∈ R3 :
1
n
< t < T, 0 ≤ x2

1

ϕ2(t)
+

x2
2

h2(t)ϕ2(t)
< 1}

and we denote fn = f/Qn
and un ∈ H1,2(Qn) the solution of Problem (1.2) in Qn.

Such a solution exists by Theorem 3.1.
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Proposition 3.6. There exists a constant K1 independent of n such that

‖un‖H1,2(Qn) ≤ K1‖fn‖L2(Qn) ≤ K1‖f‖L2(Q),

where ‖un‖H1,2(Qn) =
(
‖un‖2

H1(Qn) +
2∑

i,j=1

‖∂xi ∂xjun‖2
L2(Qn)

)1/2.

To prove Proposition 3.6, we need the following result which is a consequence of
Lemma 2.4 and Grisvard-Looss [5] (see Theorem 2.2).

Lemma 3.7. There exists a constant C > 0 independent of n such that

‖∂2
x1
un‖2

L2(Qn) + ‖∂2
x2
un‖2

L2(Qn) + ‖∂2
x1x2

un‖2
L2(Qn) ≤ C‖∆un‖2

L2(Qn).

Proof of Proposition 3.6. Let us denote the inner product in L2(Qn) by 〈·, ·〉,
then we have

‖fn‖2
L2(Qn) = 〈∂tun −∆un, ∂tun −∆un〉

= ‖∂tun‖2
L2(Qn) + ‖∆un‖2

L2(Qn) − 2〈∂tun,∆un〉

Estimation of −2〈∂tun,∆un〉: We have

∂tun.∆un = ∂x1(∂tun∂x1un) + ∂x2(∂tun∂x2un)− 1
2
∂t[(∂x1un)2 + (∂x2un)2].

Then

−2〈∂tun,∆un〉 = −2
∫

Qn

∂tun.∆undt dx1 dx2

= −2
∫

Qn

[∂x1(∂tun∂x1un) + ∂x2(∂tun∂x2un)]dt dx1 dx2

+
∫

Qn

∂t[(∂x1un)2 + (∂x2un)2]dt dx1 dx2

=
∫

∂Qn

[|∇un|2νt − 2∂tun(∂x1unνx1 + ∂x2unνx2)]dσ

where νt, νx1 , νx2 are the components of the unit outward normal vector at ∂Qn.
We shall rewrite the boundary integral making use of the boundary conditions. On
the part of the boundary of Qn where t = 1

n , we have un = 0 and consequently
∂x1un = ∂x2un = 0. The corresponding boundary integral vanishes. On the part
of the boundary where t = T , we have νx1 = 0, νx2 = 0 and νt = 1. Accordingly
the corresponding boundary integral

A =
∫

ΓT

|∇un|2 dx1 dx2

is nonnegative. On the part of the boundary where x2
1

ϕ2(t) + x2
2

h2(t)ϕ2(t) = 1, we have

νx1 =
h(t) cos θ√

(ϕ′(t)h(t) cos2 θ + (hϕ)′(t) sin2 θ)2 + (h(t) cos θ)2 + sin2 θ
,

νx2 =
sin θ√

(ϕ′(t)h(t) cos2 θ + (hϕ)′(t) sin2 θ)2 + (h(t) cos θ)2 + sin2 θ
,

νt =
−(ϕ′(t)h(t) cos2 θ + (hϕ)′(t) sin2 θ)√

(ϕ′(t)h(t) cos2 θ + (hϕ)′(t) sin2 θ)2 + (h(t) cos θ)2 + sin2 θ
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and un(t, ϕ(t) cos θ, h(t)ϕ(t) sin θ) = 0. Differentiating with respect to t then with
respect to θ we obtain

∂tun = −ϕ′(t) cos θ.∂x1un − (hϕ)′(t) sin θ.∂x2un,

sin θ.∂x1un = h(t) cos θ.∂x2un.

Consequently the corresponding boundary integral is

Jn = −2
∫ 2π

0

∫ T

1/n

∂tun.(hϕ cos θ.∂x1un + hϕ sin θ.∂x2un) dt dθ

−
∫ 2π

0

∫ T

1/n

|∇un|2((hϕ)′ϕ sin2 θ + ϕ′(hϕ) cos2 θ) dt dθ

= 2
∫ 2π

0

∫ T

1/n

{(ϕ′ cos θ.∂x1un + (hϕ)′ sin θ.∂x2un)

× (hϕ cos θ.∂x1un + hϕ sin θ.∂x2un)} dt dθ

−
∫ 2π

0

∫ T

1/n

|∇un|2((hϕ)′ϕ sin2 θ + ϕ′hϕ cos2 θ) dt dθ

= 2
∫ 2π

0

∫ T

1/n

|∇un|2((hϕ)′ϕ sin2 θ + ϕ′hϕ cos2 θ) dt dθ

−
∫ 2π

0

∫ T

1/n

|∇un|2((hϕ)′ϕ sin2 θ + ϕ′hϕ cos2 θ) dt dθ

=
∫ 2π

0

∫ T

1/n

|∇un|2((hϕ)′ϕ sin2 θ + ϕ′hϕ cos2 θ) dt dθ.

Finally,

−2〈∂tun,∆un〉 =
∫ 2π

0

∫ T

1/n

|∇un|2((hϕ)′ϕ sin2 θ + ϕ′hϕ cos2 θ) dt dθ

+
∫

ΓT

|∇un|2(T, x1, x2) dx1 dx2.

(3.3)

Lemma 3.8. One has

−2〈∂tun,∆un〉 = 2
∫

Qn

(
ϕ′

ϕ
x1∂x1un +

(hϕ)′

hϕ
x2∂x2un)∆undt dx1 dx2

+
∫

ΓT

|∇un|2(T, x1, x2) dx1 dx2.

Proof. For 1
n < t < T , consider the following parametrization of the domain Ωt

(0, 2π) → Ωt

θ → (ϕ(t) cos θ, h(t)ϕ(t) sin θ) = (x1, x2).

Let us denote the inner product in L2(Ωt) by 〈·, ·〉, and set

In =
〈
∆un,

ϕ′

ϕ
x1∂x1un +

(hϕ)′

hϕ
x2∂x2un

〉
then we have

In =
∫

Ωt

(∂2
x1
un + ∂2

x2
un)(

ϕ′

ϕ
x1∂x1un +

(hϕ)′

hϕ
x2∂x2un) dx1 dx2
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=
∫

Ωt

(
ϕ′

ϕ
x1∂

2
x1
un∂x1un +

(hϕ)′

hϕ
x2∂

2
x2
un∂x2un) dx1 dx2

+
∫

Ωt

(
ϕ′

ϕ
x1∂

2
x2
un∂x1un +

(hϕ)′

hϕ
x2∂

2
x1
un∂x2un) dx1 dx2.

Using Green formula, we obtain

In =
1
2

∫
Ωt

(
ϕ′

ϕ
x1∂x1(∂x1un)2 +

(hϕ)′

hϕ
x2∂x2(∂x2un)2) dx1 dx2

+
∫

Ωt

(
ϕ′

ϕ
x1∂x2(∂x2un)∂x1un +

(hϕ)′

hϕ
x2∂x1(∂x1un)∂x2un) dx1 dx2

=
1
2

∫
∂Ωt

(
ϕ′

ϕ
x1νx1(∂x1un)2 +

(hϕ)′

hϕ
x2νx2(∂x2un)2)dσ

− 1
2

∫
Ωt

(
ϕ′

ϕ
(∂x1un)2 +

(hϕ)′

hϕ
(∂x2un)2) dx1 dx2

+
∫

∂Ωt

(
ϕ′

ϕ
x1νx2 +

(hϕ)′

hϕ
x2νx1)∂x1un∂x2undσ

−
∫

Ωt

(
ϕ′

ϕ
x1∂x2un∂

2
x1x2

un +
(hϕ)′

hϕ
x2∂x1un∂

2
x1x2

un) dx1 dx2

where νx1 , νx2 are the components of the unit outward normal vector at ∂Ωt. Then

In =
1
2

∫
∂Ωt

(
ϕ′

ϕ
x1νx1(∂x1un)2 +

(hϕ)′

hϕ
x2νx2(∂x2un)2)dσ

− 1
2

∫
Ωt

(
ϕ′

ϕ
(∂x1un)2 +

(hϕ)′

hϕ
(∂x2un)2) dx1 dx2

+
∫

∂Ωt

(
ϕ′

ϕ
x1νx2 +

(hϕ)′

hϕ
x2νx1)∂x1un∂x2undσ

− 1
2

∫
Ωt

(
ϕ′

ϕ
x1∂x1(∂x2un)2 +

(hϕ)′

hϕ
x2∂x2(∂x1un)2) dx1 dx2.

Thus,

In =
1
2

∫
∂Ωt

(ϕ′
ϕ
x1νx1(∂x1un)2 +

(hϕ)′

hϕ
x2νx2(∂x2un)2

)
dσ

− 1
2

∫
Ωt

(ϕ′
ϕ

(∂x1un)2 +
(hϕ)′

hϕ
(∂x2un)2

)
dx1 dx2

+
∫

∂Ωt

(ϕ′
ϕ
x1νx2 +

(hϕ)′

hϕ
x2νx1

)
∂x1un∂x2undσ

− 1
2

∫
∂Ωt

(
ϕ′

ϕ
x1νx1(∂x2un)2 +

(hϕ)′

hϕ
x2νx2(∂x1un)2) dx1 dx2

+
1
2

∫
Ωt

(ϕ′
ϕ

(∂x1un)2 +
(hϕ)′

hϕ
(∂x2un)2

)
dx1 dx2

and then

In =
1
2

∫
∂Ωt

(ϕ′
ϕ
x1νx1(∂x1un)2 +

(hϕ)′

hϕ
x2νx2(∂x2un)2

)
dσ
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+
∫

∂Ωt

(
ϕ′

ϕ
x1νx2 +

(hϕ)′

hϕ
x2νx1)∂x1un∂x2undσ

− 1
2

∫
∂Ωt

(ϕ′
ϕ
x1νx1(∂x2un)2 +

(hϕ)′

hϕ
x2νx2(∂x1un)2

)
dx1 dx2.

Consequently,

In =
1
2

∫ 2π

0

(ϕ′
ϕ
ϕhϕ(cos θ.∂x1un)2 +

(hϕ)′

hϕ
ϕhϕ(sin θ.∂x2un)2

)
dθ

+
∫ 2π

0

(
ϕ′

ϕ
ϕ2 +

(hϕ)′

hϕ
(hϕ)2) sin θ cos θ.∂x1un∂x2undθ

− 1
2

∫ 2π

0

(ϕ′
ϕ
ϕhϕ(cos θ.∂x2un)2 +

(hϕ)′

hϕ
ϕhϕ(sin θ.∂x1un)2

)
dθ

=
1
2

∫ 2π

0

(
ϕ′hϕ

(
cos θ.∂x1un

)2

+ ϕ(hϕ)′(sin θ.∂x2un)2
)
dθ

+
∫ 2π

0

(
ϕ′ϕ+ (hϕ)′hϕ

)
sin θ cos θ.∂x1un∂x2undθ

− 1
2

∫ 2π

0

(
ϕ′hϕ(cos θ.∂x2un)2 + ϕ(hϕ)′(sin θ.∂x1un)2

)
dθ.

The boundary condition un(t, ϕ(t) cos θ, h(t)ϕ(t) sin θ) = 0 leads to

sin θ.∂x1un = h(t) cos θ.∂x2un;

then
sin θ cos θ.∂x1un∂x2un = h(t)(cos θ.∂x2un)2

and
h(t) sin θ cos θ.∂x1un∂x2un = (sin θ.∂x1un)2.

Consequently,

In =
1
2

∫ 2π

0

(
ϕ′hϕ(cos θ.∂x1un)2 + ϕ(hϕ)′(sin θ.∂x2un)2

)
dθ

+
∫ 2π

0

(
ϕ′hϕ(cos θ.∂x2un)2 + ϕ(hϕ)′(sin θ.∂x1un)2

)
dθ

− 1
2

∫ 2π

0

(ϕ′hϕ(cos θ.∂x2un)2 + ϕ(hϕ)′(sin θ.∂x1un)2)dθ

=
1
2

∫ 2π

0

(
ϕ′hϕ(cos θ.∂x1un)2 + ϕ(hϕ)′(sin θ.∂x2un)2

)
dθ

+
1
2

∫ 2π

0

(
ϕ′hϕ(cos θ.∂x2un)2 + ϕ(hϕ)′(sin θ.∂x1un)2

)
dθ

=
1
2

∫ 2π

0

{
ϕ′hϕ(cos θ.∂x1un)2 + ϕ(hϕ)′(sin θ.∂x2un)2

+ ϕ′hϕ(cos θ.∂x2un)2 + ϕ(hϕ)′(sin θ.∂x1un)2
}
dθ

=
1
2

∫ 2π

0

[(∂x1un)2 + (∂x2un)2](ϕ(hϕ)′ sin2 θ + ϕ′hϕ cos2 θ)dθ.
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So

In =
1
2

∫ 2π

0

|∇un|2(ϕ(hϕ)′ sin2 θ + ϕ′hϕ cos2 θ)dθ

and ∫ T

1/n

∫ 2π

0

|∇un|2(ϕ(hϕ)′ sin2 θ + ϕ′hϕ cos2 θ) dt dθ

= 2
∫

Qn

(
ϕ′

ϕ
x1∂x1un +

(hϕ)′

hϕ
x2∂x2un)∆undt dx1 dx2.

Finally, by (3.3), it follows that

−2〈∂tun,∆un〉 = 2
∫

Qn

(ϕ′
ϕ
x1∂x1un +

(hϕ)′

hϕ
x2∂x2un

)
∆undt dx1 dx2

+
∫

ΓT

|∇un|2(T, x1, x2) dx1 dx2.

�

Now, we continue the proof of Proposition 3.6. We have

|
∫

Qn

(ϕ′
ϕ
x1∂x1un +

(hϕ)′

hϕ
x2∂x2un

)
∆undt dx1 dx2|

≤ ‖∆un‖L2(Qn)‖
ϕ′

ϕ
x1∂x1un‖L2(Qn) + ‖∆un‖L2(Qn)‖

(hϕ)′

hϕ
x2∂x2un‖L2(Qn),

but Lemma 2.4 yields

‖ϕ
′

ϕ
x1∂x1un‖2

L2(Qn) =
∫ T

1/n

ϕ′2(t)
∫

Ωt

(
x1

ϕ(t)
)2(∂x1un)2dt dx1 dx2

≤
∫ T

1/n

ϕ′2(t)
∫

Ωt

(∂x1un)2dt dx1 dx2

≤ C2

∫ T

1/n

(ϕ(t)ϕ′(t))2
∫

Ωt

(∆un)2dt dx1 dx2

≤ C2ε2‖∆un‖2
L2(Qn),

since (ϕ(t)ϕ′(t)) ≤ ε. Similarly, we have

‖ (hϕ)′

hϕ
x2∂x2un‖2

L2(Qn) ≤ C2ε2‖∆un‖2
L2(Qn).

Then

|
∫

Qn

(ϕ′
ϕ
x1∂x1un +

(hϕ)′

hϕ
x2∂x2un

)
∆undt dx1 dx2| ≤ 2Cε‖∆un‖2

L2(Qn).

Therefore, Lemma 3.8 shows that

|2〈∂tun,∆un〉| ≥ −2
∣∣ ∫

Qn

(ϕ′
ϕ
x1∂x1un +

(hϕ)′

hϕ
x2∂x2un

)
∆undt dx1 dx2

∣∣
+

∫
ΓT

|∇un|2(T, x1, x2) dx1 dx2

≥ −4Cε‖∆un‖2
L2(Qn).
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Hence

‖fn‖2
L2(Qn) = ‖∂tun‖2

L2(Qn) + ‖∆un‖2
L2(Qn) − 2〈∂tun,∆un〉

≥ ‖∂tun‖2
L2(Qn) + (1− 4Cε)‖∆un‖2

L2(Qn).

Then, it is sufficient to choose ε such that 1 − 4Cε > 0 to get a constant K0 > 0
independent of n such that

‖fn‖L2(Qn) ≥ K0‖un‖H1,2(Qn),

and since
‖fn‖L2(Qn) ≤ ‖f‖L2(Qn),

there exists a constant K1 > 0, independent of n satisfying

‖un‖H1,2(Qn) ≤ K1‖fn‖L2(Qn) ≤ K1‖f‖L2(Q).

This completes the proof of Proposition 3.6.

Passage to the limit. We are now in position to prove the main result of this
work.

Theorem 3.9. Assume that the functions h and ϕ verify the conditions (1.1),
(1.3) and (3.2). Then, for T small enough, Problem (1.2) admits a unique solution
u ∈ H1,2(Q).

Proof. Choose a sequence Qn n = 1, 2, . . . , of truncated conical domains (see sub-
section 3.2) such that Qn ⊆ Q. Then we have Qn → Q, as n→∞.

Consider the solution un ∈ H1,2(Qn) of the Cauchy-Dirichlet problem

∂tun − ∂2
x1
un − ∂2

x2
un = f in Qn

un

∣∣
∂Qn−ΓT

= 0,

where ΓT is the part of the boundary of Qn where t = T . Such a solution un exists
by Theorem 3.1. Let ũn the 0-extension of un to Q. By Proposition 3.6, we know
that there exists a constant C such that

‖ũn‖L2(Q) + ‖∂tũn‖L2(Q) +
2∑

i,j=0, 1≤i+j≤2

‖∂j
x1
∂j

x2
ũn‖L2(Q) ≤ C‖f‖L2(Q).

This means that ũn, ∂tũn, ∂j
x1
∂j

x2
ũn for 1 ≤ i + j ≤ 2 are bounded functions in

L2(Q). So for a suitable increasing sequence of integers nk, k = 1, 2, . . . , there exist
functions u, v, vi,j , 1 ≤ i+ j ≤ 2 in L2(Q) such that

ũnk
⇀ u weakly in L2(Q) as k →∞

∂tũnk
⇀ v weakly in L2(Q) as k →∞

∂j
x1
∂j

x2
ũnk

⇀ vi,j weakly in L2(Q) as k →∞, 1 ≤ i+ j ≤ 2.

Clearly,
v = ∂tu, vi,j = ∂i

x1
∂j

x2
u, 1 ≤ i+ j ≤ 2

in the sense of distributions in Q and so in L2(Q). So, u ∈ H1,2(Q) and

∂tu− ∂2
x1
u− ∂2

x2
u = f in Q.

On the other hand, the solution u satisfies the boundary conditions u
∣∣
∂Q−ΓT

= 0
since u

∣∣
Qn

= un for all n ∈ N∗. This proves the existence of a solution to Problem
(1.2). �
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4. Global in time result

Assume that Q satisfies (3.2). In the case where T is not in the neighborhood of
zero, we set Q = D1 ∪D2 ∪ ΓT1 where

D1 = {(t, x1, x2) ∈ R3 : 0 < t < T1, 0 ≤ x2
1

ϕ2(t)
+

x2
2

(hϕ)2(t)
< 1}

D2 = {(t, x1, x2) ∈ R3 : T1 < t < T, 0 ≤ x2
1

ϕ2(t)
+

x2
2

(hϕ)2(t)
< 1}

ΓT1 = {(T1, x1, x2) ∈ R3 : 0 ≤ x2
1

ϕ2(T1)
+

x2
2

(hϕ)2(T1)
< 1}

with T1 small enough.
In the sequel, f stands for an arbitrary fixed element of L2(Q) and fi = f

∣∣
Di

,
i = 1, 2.

Theorem 3.9 applied to the conical domain D1, shows that there exists a unique
solution u1 ∈ H1,2(D1) of the problem

∂tu1 − ∂2
x1
u1 − ∂2

x2
u1 = f1, f1 ∈ L2(D1)

u1

∣∣
∂D1−ΓT1

= 0.
(4.1)

Hereafter, we denote the trace u1/ΓT1
by ψ which is in the Sobolev space H1(ΓT1)

because u1 ∈ H1,2(D1) (see [11]).
Now, consider the following problem in D2,

∂tu2 − ∂2
x1
u2 − ∂2

x2
u2 = f2 f2 ∈ L2(D2)

u2/ΓT1
= ψ

u2

∣∣
∂D2−(ΓT1∪ΓT )

= 0
(4.2)

We use the following result, which is a consequence of [11, Theorem 4.3, Vol. 2],
to solve Problem (4.2).

Proposition 4.1. Let Q be the cylinder ]0, T [×D(0, 1), f ∈ L2(Q) and ψ ∈ H1(γ0).
Then, the problem

∂tu− ∂2
x1
u− ∂2

x2
u = f in Q

u
∣∣
γ0

= ψ

u
∣∣
γ0∪γ1

= 0

where γ0 = {0} × D(0, 1), γ1 =]0, T [×∂D(0, 1), admits a (unique) solution u ∈
H1,2(Q).

Remark 4.2. In the application of [11, Theorem 4.3, Vol.2], we can observe that
there are no compatibility conditions to satisfy because ∂xψ is only in L2(γ0).

Thanks to the transformation

(t, x1, x2) 7→ (t, y1, y2) = (t, ϕ(t)x1, (hϕ)(t)x2),

we deduce the following result.

Proposition 4.3. Problem (4.2) admits a (unique) solution u2 ∈ H1,2(D2).
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So, the function u defined by

u =

{
u1 in D1

u2 in D2

is the (unique) solution of Problem (1.2) for an arbitrary T . Our second main result
is as follows.

Theorem 4.4. Assume that the functions h and ϕ verify conditions (1.1), (1.3)
and (3.2). Then, Problem (1.2) admits a unique solution u ∈ H1,2(Q).
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