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RESOLUTIONS OF PARABOLIC EQUATIONS IN
NON-SYMMETRIC CONICAL DOMAINS

AREZKI KHELOUFI

ABSTRACT. This article is devoted to the analysis of a two-space dimensional
linear parabolic equation, subject to Cauchy-Dirichlet boundary conditions.
The problem is set in a conical type domain and the right hand side term of
the equation is taken in a Lebesgue space. One of the main issues of this work
is that the domain can possibly be non regular. This work is an extension of
the symmetric case studied in Sadallah [I3].

1. INTRODUCTION
Let @ be an open set of R? defined by
Q={(t,x1,22) ER®: (21,20) € Y, 0< t < T}

where T is a finite positive number and for a fixed ¢ in the interval ]0,T[, Q; is a
bounded domain of R? defined by
x? 3
Q= , eR?2:0< 1L 2
1= ) €R0 S 5o e
Here, @ is a continuous real-valued function defined on [0, T'], Lipschitz continuous
on [0,T] and such that

<1}

©(0) =0, (t)>0
for every ¢ € ]0,T]. h is a Lipschitz continuous real-valued function defined on
[0, T], such that
0<d<h(t)y<p (1.1)
for every ¢ € [0, T, where § and § are positive constants.
In @, we consider the boundary-value problem
du—02 u—02 u=feL*Q), 12
“|3Q—FT =0,
where L?((Q) is the usual Lebesgue space on @, 9Q is the boundary of @ and T'r is
the part of the boundary of @) where t =T
The difficulty related to this kind of problems comes from this singular situation
for evolution problems; i.e., ¢ is allowed to vanish for ¢ = 0, which prevents the
domain @ from being transformed into a regular domain without the appearance of
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some degenerate terms in the parabolic equation, see for example Sadallah [12]. In
order to overcome this difficulty, we impose a sufficient condition on the function
©; that is,

o' (t)e(t) =0 ast— 0, (1.3)
and we obtain existence and regularity results for Problem by using the domain
decomposition method. More precisely, we will prove that Problem has a
solution with optimal regularity, that is a solution u belonging to the anisotropic
Sobolev space

Hy*(@) 1= {u € H'*(Q) s ulyq_r, =0}
with
HY(Q) = {u € LX(Q) : 00w, 03,1, 03,1, 0, Doy € LX(Q), j = 1,2}

Xy 7 Y2
In Sadallah [I3] the same problem has been studied in the case of a symmetric
conical domain; i.e., in the case where h = 1. Further references on the analysis of
parabolic problems in non-cylindrical domains are: Alkhutov [I] 2], Degtyarev [4],
Labbas, Medeghri and Sadallah [8, 0], Sadallah [I2]. There are many other works
concerning boundary-value problems in non-smooth domains (see, for example,
Grisvard [6] and the references therein).

The organization of this article is as follows. In Section 2, first we prove an
uniqueness result for Problem (L.2)), then we derive some technical lemmas which
will allow us to prove an uniform estimate (in a sense to be defined later). In
Section 3, there are two main steps. First, we prove that Problem admits a
(unique) solution in the case of a domain which can be transformed into a cylinder.
Secondly, for T small enough, we prove that the result holds true in the case of
a conical domain under the above mentioned assumptions on functions ¢ and h.
The method used here is based on the approximation of the conical domain by
a sequence of subdomains (@), which can be transformed into regular domains
(cylinders). We establish an uniform estimate of the type

[unllmrz@.) < Kllfllzz@.),

where wu,, is the solution of Problem (1.2]) in @,, and K is a constant independent of
n. This allows us to pass to the limit. Finally, in Section 4 we complete the proof
of our main result (Theorem [4.4)).

2. PRELIMINARIES
Proposition 2.1. Problem (1.2) is uniquely solvable.

Proof. Let us consider u € Hy 2(Q) a solution of Problem with a null right-
hand side term. So,

du—02u—02u=0 inQ.
In addition u fulfils the boundary conditions

u‘anrT =0.
Using Green formula, we have

1
/ (Opu — 02 u— 02 wudtdry dvs = / (§|u|21/t — Opy WUV, — Oy U UV, )do
Q 0Q

Jr/(l%ul2 + |0, ul?)dt dzcy dao
Q
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where vy, v, Vg, are the components of the unit outward normal vector at 9Q.
Taking into account the boundary conditions, all the boundary integrals vanish
except [y, [ul*vy do. We have

/ |u\21/td(7:/ |u|? dzy dxs.
oQ I'r

Then

/Q((‘)tu — 92 u— 07 u)udtdxy dzs

_ /FT %|u|2d:c1 das +/Q(|5'm1u|2 |0, ul?)dt dy ds.
Consequently,

/ (Opu — 6§1u — 8£2u)udt dxidxre =0
yields ¢
/ (|0z,u)? + |Opyu|?)dt day dao = 0,

because ¢

1

f/ |u|? day dzy > 0.
2 Jr,

This implies |9, u|* 4 [05,ul* = 0 and consequently 97 u = 82,u = 0. Then, the
hypothesis Oyu — 65111 — 832u = 0 gives dyu = 0. Thus, u is constant. The boundary
conditions imply that v = 0 in . This proves the uniqueness of the solution of

Problem (1.2). d

Remark 2.2. In the sequel, we will be interested only by the question of the
existence of the solution of Problem ([1.2)).

The following result is well known (see, for example, [I1])

Lemma 2.3. Let D(0,1) be the unit disc of R%. Then, the Laplace operator A :
H?(D(0,1))NH}(D(0,1)) — L*(D(0,1)) is an isomorphism. Moreover, there exists
a constant C > 0 such that

||’UHH2(D(O,1)) S CHAUHLQ(D(OJ)); V’U (S H2<D(O, 1))

In the above lemma, H? and H{ are the usual Sobolev spaces defined, for in-
stance, in Lions-Magenes [I1]. In section 3, we will need the following result.

Lemma 2.4. Let t €]ay,, T, where (o), is a decreasing sequence to zero. Then,
there exists a constant C > 0 independent of n such that for each u, € H*(Qy), we
have

(a) HaﬂclunH%?(Qt) < CSDQ(t)HAunH%?(Qt),
(b) 10z,tnll72(q,) < CO* ) Aunllizq,)-
Proof. Tt is a direct consequence of Lemma Indeed, let ¢ €]a,,T] and define
the following change of variables
D(0,1) —
(z1,22) = (p)z1, h(t)p(t)z2) = (21, 25).
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Set
v(z1, 22) = un(p(t)z1, h(t)p(t)z2),

then if v € H3(D(0,1)), u, belongs to H?(€2;).
(a) We have

10202001y = / 9y 0) (21, 22) day day
D(0,1)

— 20,0 0 2 ; ! /
= | @), ) 0 e
1

- m/Q (Oay un)? (3], 7h) da') day
1 ( 2
= W\\ax’lunﬂmmty

On the other hand,

||Av||2L2(D(O,1)) = / (07,04 02,v) (21, 22)]? dzy day
D(0,1)

. (he?)(t)
0
h(t)

1

< PO Aunl sy,

where 0 is the constant which appears in (1.1). Using Lemma and the condition
(1.1), we obtain the desired inequality.
(b) We have

/ /

— [ PO 00+ (P00 ah)
Q
s02

[ @+ 0200200} )
Q

102s2 00,17y = / (Ba0)? (21, 2) dity dlics
D(0,1)

N /Q (Duyun)® (2, ) h2 (1) % (1)

/ /
dzidxy

1
h(t)?(t)
— h(t)/ (8x/2un)2(x'1,:c'2) dx'y daf,

= h(t)[|0zy un 720,y
On the other hand,
1
1A% 2(po,1)) < 5<P2(t)HAUn||2Lz(Qt)~
Using the inequality
192,011 22(p(0,1)) < CIAV[IT2(p0,1)
of Lemma and condition (L.1)), we obtain the desired inequality

102y unll72(,) < CE° (1) Aun|Z2(q,)-
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3. LOCAL IN TIME RESULT

3.1. Case of a truncated domain @,. In this subsection, we replace Q by @,

1 2 2
Qa:{(t,xl,xg)6R3:—<t<T,0§ | + 2
«

20 T e <Y

with o > 0.

Theorem 3.1. The problem
Opu — 8§1u — 6§2u =fe LQ(QQ),

U‘BQafFT =0,

admits a unique solution u € H»*(Q,).

Proof. The change of variables
X1 To
(ta x1, .’172) = (tv Y1, 3/2) = (t’ R 7)
o(t) " h(t)p(t)

transforms @, into the cylinder P, :]é, T[xD(é, 1), where D(é, 1) is the unit disk
centered on (éa 07 O) Putting ’U,(t, T1, 1'2) = U(tv Y1, y2) and f(ta T, CEQ) = g(ta Y1, y2)7
then Problem (3.1) is transformed, in P, into the variable-coefficient parabolic
problem

R 1 s ¢ B _ (h)' (D2 B
IO TR

20220 " ()
U‘anFT =0.

This change of variables conserves the spaces H L2 and L2. In other words

feL*(Qa) = g€ L?(Pa)

u€ HY(Q,) = v € HY2(P,).

Proposition 3.2. The operator

")y ho) (t)yo Lo ,
_[Wézz)y dy, + (hé))g(f()ty 0,,] - HY2(Py) — L2(P)

18 compact.
Proof. P, has the horn property of Besov (see [3]). So, for j = 1,2
0y, Hy*(Py) — Hz'(P,)

Yj
v = 0y,

is continuous. Since P, is bounded, the canonical injection is compact from Hz! (Py)
into L?(P,) (see for instance [3]), where
1 1 1 1
HY2(P, :LQ(— T:H' (D(=,1 )mH1/2<— T:L2(D(=,1 )
(Pa) = 12(Z, 15 Y (D, 1)) ~ T, 13(D(=, 1))
For the complete definitions of the H™*® Hilbertian Sobolev spaces see for instance
[11].
Consider the composition
ayj : HS’Q(PQ) H%J(Pa) - LQ(Pa)

N
v — Oy, v = 0y,
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then 0, is a compact operator from H&’QI(PQ) into L? (Pa/) Since —%, —,(f(bf));gg
are bounded functions, the operators — “’9452;“ Oy, — (’;lft))(‘(;()gz ., are also compact

from Hy?(P,) into L?(P,). Consequently,

A (he) (t)y2
o0 O Rt

is compact from Hy?(Py) to L2(P,). O
So, to complete the proof of Theorem [3.1] it is sufficient to show that the operator
1 1
O — ———0% — —— 07
) R (t) v

is an isomorphism from Hy?(P,) into L*(P,).
Lemma 3.3. The operator

R R
%= 2w T B O

is an isomorphism from Hy*(Py) to L*(P,).

Proof. Since the coefficients @21(75) and hQ(t)lwz,(t) are bounded in P,, the optimal
regularity is given by Ladyzhenskaya-Solonnikov-Ural’tseva [10]. O

We shall need the following result to justify the calculus of this section.
Lemma 3.4. The space
{u € H*P,): U‘BPPQ =0}
is dense in the space
{u e H1’2(Pa) : u’appa =0}.

Here, 0,P, is the parabolic boundary of P, and H* stands for the usual Sobolev
space defined, for instance, in Lions-Magenes [11].

The proof of the above lemma can be found in [7].

Remark 3.5. In Lemma[3.4] we can replace P, by @, with the help of the change
of variables defined above.

3.2. Case of a conical type domain. In this case, we define Q) by
0={t JeR  0<t<To0< L 4 "B _q
= , L1, T2 : y U X
@ (t)  R2(t)e*(t)

with
w(0) =0, ¢(t) >0, te€]0,T]. (3.2)
We assume that the functions h and ¢ satisfy conditions and (1.3). For each
n € N*, we define @Q,, by
3.1 3 a3
Qn ={(t,z1,22) eR’: < t<T,0< 20 + OO
and we denote f,, = f/q, and u, € H"?(Q,) the solution of Problem in Q.
Such a solution exists by Theorem

<1}
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Proposition 3.6. There exists a constant K1 independent of n such that

[unllgr2q.) < Killfullz2@.) < Killflliz2@)
where [unll vz, = (Il gy + 52 190, Oay el )
n Hl,Q(Qn) - n Hl(Qn) ’LJ:1 Z; xTjUn L2(Qn)
To prove Proposition we need the following result which is a consequence of
Lemma [2.4] and Grisvard-Looss [5] (see Theorem 2.2).
Lemma 3.7. There exists a constant C' > 0 independent of n such that
102, unll22(q,) + 102, unllZ2(0,) + 102, 2yunllZ2 (0, < ClAUT(q,)-

Proof of Proposition Let us denote the inner product in L?(Q.,,) by (-,-),
then we have

||fn||%2(Qn) = (Orn, — A, Opuy, — Aup)
= [|0vunll7z (g, + 1Aunl2(0,) = 2(Brtin, Auy)
Estimation of —2(du,,, Au,): We have

1
Oty Atty, = O, (04t Oy ) + Oy (Optun Oy i) — 5&[(3@111”)2 + ((’“)wzun)Z].
Then

—2(Optin, Aty = —2 Osthy, Aupdt daq dzo
Qn

= —2/ [0z, (04, O, Up,) + Oy (Opth, Oy iy, )] dt dazy dixo

n

+ [ 0[(0nyun)? + (Onyun)?]dt day dos
Q’VL

— / [V, |?vs — 200 (O, UnVa, + Opytinla,)]do
0Qn

where vy, vy, , Vs, are the components of the unit outward normal vector at Q.
We shall rewrite the boundary integral making use of the boundary conditions. On
the part of the boundary of @, where t = %, we have u,, = 0 and consequently
Oy, Un = Oz,un, = 0. The corresponding boundary integral vanishes. On the part
of the boundary where ¢ = T, we have v, =0, v, = 0 and v; = 1. Accordingly
the corresponding boundary integral

A= / |V, |? doy dao
I'r

2 2
is nonnegative. On the part of the boundary where % + W@f#(t) =1, we have

b= h(t) cos 6
" \/(w’(t)h(t) cos2 0 + (he)'(t)sin? 0)2 + (h(t) cos §)2 + sin? 97
sin 6
" \/(go’(t)h(t) cos? 0 + (hp)' (t) sin? 0)2 + (h(t)cos0)? + sin? 0’
vy = — (¢’ (t)h(t) cos® 6 + (hy)'(t) sin® 0)

\/(cp’(t)h(t) cos2 0 + (he)(t)sin? 0)2 4 (h(t) cos §)2 + sin? @
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and wu, (t, o(t) cos 8, h(t)e(t) sind) = 0. Differentiating with respect to ¢ then with
respect to 6 we obtain

Oy, = —¢' (t) €08 0.0, uy, — (hep)' () sin 0.0z, unp,
Sin 0.0,y = h(t) cos 0.0, u,.

Consequently the corresponding boundary integral is

27 T
J, = —2/ Oty .(hep €08 0.0y, up, + hsin 6.0, uy, ) dt d
0 1/n

27 T
- / / |Vun |2 ((he) psin® 6 + ¢’ (he) cos? 0) dt df
0 1/n

2 T
= 2/ {(¢" c080.05,up, + (hp)' sin 6.0,,u,)
0 1/n

X (hg 08 0.0y, Uy, + hesin .0y, uy,) } dt df

2 T
— / / |V, |?((he) psin® 0 + o' h cos? 0) dt df
0 1/n
27 T
=2 / / |V |2 ((he) @ sin? 6 + ¢’ hg cos? 0) dt df
0 1/n
2m T
- / / |V, |?((hg) psin® 0 + o' he cos? 0) dt df
0 1/n

2m T
= / / |V, |?(hg) psin? 0 + o' hy cos? 0) dt df.
0 1/n
Finally,

2m T
—2(Opun, Auy,) = / / |V, |?((hg) psin? 8 + o' he cos® §) dt df
0 1/n (33)
+/ |V |2(T, 21, z2) dey dzs.
I'r

Lemma 3.8. One has

/ /
® he

n

290z, Un ) Ay dt dzy dy

+ / |V, |?(T, 21, 22) day dzs.
I'r

Proof. For %L <t < T, consider the following parametrization of the domain €2,

(0,27) —
0 —  (p(t)cos 8, h(t)p(t)sind) = (x1,x2).

Let us denote the inner product in L?(£2;) by (-,-), and set

! h !
I, = (Auy,, %xlamlun + (hi) 2903, Un )

then we have

! /
I, = / (3ilun + 8§2un)(£x18wlun + ()
Qy ®

he

X920z, Un) dxy das
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/ h /
= / (%xlﬁglunamlun + (h:Do) xgaiunamun) dxy dxg
Qy

/ h /
+ / (%x16§2unaxlun + ﬂ:102(951unagczun) dzy dxs.
Qq

EJDE-2012/116

he

Using Green formula, we obtain

A i
I, = 1/ (ﬁzlaxl(ﬁxlunf + MIQ@;EQ (8w2un)2) dxq dxo
2 oM th

/ !
+ / (210, (st ) Ot + L 00 (D 1) Dot iy e
Q ¢ he

1 ¢ 5 (hp) 2
=3 - T zq, Un 2o \ Uz Un d
2/8%( 1V, (O Un)” + ho TV, (Op,Un)°)do

_ 1 SD/ 2 (hsﬂ)/ 2
2/Qt((azlun) + h(p (8;32’“”) )d{El d$2

! h !
+/ (gsclu$2 + (hi)xguwl)amun@munda
fSIoN ¥

/ ho)’
a / (%xlaizuna§1w2un + (h,:’;) x28$1una§lw2un) d.’II]_ dx2
Qy

where v, , V,, are the components of the unit outward normal vector at 0,

1 / he)
L, = 7/ (ﬁlem (afmun)z + ( SD) L2V, (812u”)2)d0
o

2 he

_ 1 gl 2 (h@)/ 2

! h !
+/ (gxll/m2 + (hi) ToVy, ) Oy Up OpyUndo

1 @' 2 (hSO)/ 2
/Qt(wxlaml(amun) +Wx28w2(6mlun) ) dzq dxs.

Thus,

¢’ o (hy) 2
- x x1 Un To xo Un d
/Sﬂt(leyl(a Up ) + ho ToVy, (O u))a

1 ¢’ 2, (ho) 2
2/Qt (g(axlun) + T(p(amun) )dml dxo

¢’ (he)’ )
—l—/am((prQ—i— ho Toly, L Up Oy, Upn Ao

1 / /
- */ (ﬁlewl(awzun)Q + (he) LoV, (O, un)?) day dzo
2 Jaq, he

} ﬁl 2 (hp) 2
+ 5 /Qt (tp (O, un)” + ho (Ozptin) )dml dxo

and then

1 ¢ 2, (he) 2
I=3 /89 (Ewlvm(amw T g P2Ve(Oratin) )do

. Then
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/ ho)
+/ (%xll/mz + ( Z) xQVfl)afluna$2u”da

L2 (he)
S /69t (Exll/ml (azQUn)2 =+ WxQVCEQ (azlun)2> d.’El d:[,’g.

Consequently,

12y 2, (he) : 2
I, = 5/0 (Egohgo(cos 0.0;,un)” + T@h@(SIH 0.0:,un) )d9
/

27 /
n / (£<p2 + (]Z‘;)(hcpf) sin 6 cos 6.0, Upn Oy U db
0

27 / !
_ %/0 (%Sﬁhsﬁ(cos 0.00,un)? + U;:;) gphsﬁ(sinG.é‘xlunf)dG

— ;/% ((p/hgp(COS 9.81.111")2 + @(hyp)' (sin 9.3w2un)2)d9
0

27
+ / ((p’(p + (h(p)’h@p) sin 0 cos 0.0, Uy o, Uy, dO
0

2m
- % / (cp'hga(cos 0.05,un)* + @(he) (sin 0.611un)2>d9.
0

The boundary condition wu, (¢, p(t) cos @, h(t)p(t) sind) = 0 leads to
Sin 0.0y, Uy, = h(t) cos 0.0y, un;

then

$in 0 cos 0.0, Un O,y tn = h(t)(cos 0.0,,u,)?
and

h(t) sin 6 cos 0.0, Un Oy tin = (5in 0.0, uy, ).
Consequently,

1 27
I, = §/ (cp’hgo(cos 0.04,u,)? 4 @(hyp) (sin 9.8w2un)2)d9
0

2m
+ / (cp’hgo(cos 0.05,un)* + (he)' (sin 9.8x1un)2)d9
0

1
3 (¢’ hep(cos 0.05,1,)? + p(he) (sin 0.0,, u,)?)do
0

1 2m
=3 / ((p'hgo(cos 0.04,u,)? 4 @(hy)’ (sin 9.6m2un)2)d9
0

2m
+ % / (cp'hgp(cos 0.00,un)* + @(hep) (sin Hﬁxlun)Q)dG
0

1 27
b / {s@’hw(cos&@mun)Q + o(h)' (sin 6.9, u,,)?
0

+ @' hip(cos 0.0,,un)? + o(hy) (sin 9.811un)2}d9

27
= % / [(8xlun)2 + (8$2un)2](<p(h<p)’sin2 0+ o'he cos? 6)db.
0
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So
27
I,=- / |Vun 2 (¢(he) sin? 6 + ¢’ hg cos? 0)dO
0

and

T 2
/ / |V, |?(0(hp) sin 0 + ' hy cos? 0) dt df
1/nJ0

/ h /
= 2/ (gmlamlun + (h‘p) anIQUn)AUndt d.’ﬂl diCQ.
¥

n

Finally, by (3.3)), it follows that
/

h /
—2(Optin, Auy) = 2/ (%xlﬁmlun + (hi) a?g(r“)mun)Aundt dxq dxo

+ / |Vun|?(T, 21, 22) day dzs.
I'r

Now, we continue the proof of Proposition We have

! h !
|/ (%xlamlun + (hi) :chﬁxzun)Aundt dxy das
QTL

/

¢ (he)
< ||Aun||L2(Qn)”;IlamunHL?(Qn) +[[Aunl 22 (@)l ho 2202, Unl|L2(Qn) >

but Lemma [2.4] yields

c)0/ T T
1€ adnnliagn = [ 0 [ () 0w drdor doo
/ Q

T
§/ go’z(t)/ (O, un)2dt day dy
1/n Q

§02/1 (ap(t)go’(t))g/ (Auy,)?dt day day

/n Q
< CQﬁQHAUnHQL?(Qn)a

since (p(t)¢’(t)) < e. Similarly, we have

I (he)’
he

56283@2114"”%2(@") S 0262 HAU‘T’H%?(Q,,)

Then

/ h /

‘ (gxlaxlun + ( 90)

Qn \ ¥ he
Therefore, Lemma [3.8] shows that
/ h /
2(Opthyy, Ay )| > —2 ﬁxlax Uy, + (he) L2904, U, | Au,dt dry doo
QO 1 hs@ 2
Qn

x28x2un>Aundt dxy dzs| < 2C'e||Aun||2L2(Qn).

+/ \Vun|2(T,w1,x2) diCl dSUQ
I'r

> —ACe|| Aun |72,y
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Hence
1£allZ2(q.) = 0eunlliz(q,) + 1 AunllZa(q,) — 2(0etn, Aun)
> [[0punlZe(q,) + (1 = 4Ce) | Aunlliz(q,)-
Then, it is sufficient to choose € such that 1 — 4Ce > 0 to get a constant Ky > 0
independent of n such that
[fnllz2@.) = Kollunllmr2q,.),
and since
[fallz2 @) < If1lL2@n):
there exists a constant K; > 0, independent of n satisfying
[unllmr2q.) < Killfullz2@.) < Kallflliz2@)-
This completes the proof of Proposition [3.6

Passage to the limit. We are now in position to prove the main result of this
work.

Theorem 3.9. Assume that the functions h and ¢ verify the conditions (1.1)),
(1.3) and (3.2)). Then, for T small enough, Problem (L.2)) admits a unique solution
u€ HY(Q).

Proof. Choose a sequence @, n =1,2,..., of truncated conical domains (see sub-
section 3.2) such that @, C Q. Then we have Q,, — @, as n — occ.
Consider the solution u,, € H?(Q,,) of the Cauchy-Dirichlet problem
Ogty, — 331un — 82211” =f inQ,

“"IaQn—rT =0,

where I'r is the part of the boundary of @),, where t = T'. Such a solution u,, exists
by Theorem Let u, the 0-extension of u, to Q. By Proposition we know
that there exists a constant C' such that

2

[nlz2@) + 10tnllz2y + D>, 104,05, 0nllz2(@) < Cllfllz2(Q)-
i,7=0, 1<i+5<2

This means that w,, Oy, 89{15‘%21771 for 1 < i+ j < 2 are bounded functions in
L?(Q). So for a suitable increasing sequence of integers ng, k = 1,2, ..., there exist
functions u,v,v; j, 1 <i+j <2 in L?(Q) such that

Up, — u weakly in L*(Q) as k — oo
O, — v weakly in L?(Q) as k — oo
91 9 A, — v;; weakly in L*(Q) ask — 00, 1 <i+j <2

Clearly, o

v=20m, vi;=0,0 u 1<i+j<2
in the sense of distributions in @ and so in L?(Q). So, u € HY?(Q) and

Oyu — 5‘2171 — 622u =f inQ.

On the other hand, the solution u satisfies the boundary conditions u’ 00-Tp = 0

since u| 0, = Un for all n € N*. This proves the existence of a solution to Problem

2. 0
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4. GLOBAL IN TIME RESULT

Assume that @ satisfies (3.2)). In the case where T is not in the neighborhood of
zero, we set @ = Dy U Dy UI'y, where

I2 x2
Dl:{(t7x17x2)€R350<t<T17OS 1 + 2 <1}
@*(t)  (he)?(t)
Dy ={(t,x1, 1) €eR*: T <t<T, 0< a? n 3 <1
2 = s L1, L2 tAq , <
20 " o2
1’2 x2
FTl :{(T13x17x2)6R32 OS 1 + 2 <1}

e*(Th)  (he)*(Th)
with 77 small enough.
In the sequel, f stands for an arbitrary fixed element of L?(Q) and f; = f ‘ s
1=1,2. /
Theorem applied to the conical domain D1, shows that there exists a unique
solution u; € H%2(D;) of the problem
Opuy — 92wy — 02 ur = fi,  fL € L*(Dy)

o (4.1)

u1 | 8D, —Tr,

Hereafter, we denote the trace uy r,, by ¥ which is in the Sobolev space H YTp)
because uy € HY2(Dy) (see [11]).
Now, consider the following problem in Do,
Ouy — 03 uy — O3 up = fo  fo € L*(Ds)
Ug/ry, =Y (4.2)
u2|8D2—(FT1UFT) =0

We use the following result, which is a consequence of [I1], Theorem 4.3, Vol. 2],

to solve Problem (|4.2)).

Proposition 4.1. Let Q be the cylinder |0, T[xD(0,1), f € L*(Q) and ) € H* (o).
Then, the problem

ou—90tu—02u=finQ
u|’Yo :’l/)

u|70U71
where v = {0} x D(0,1), y1 =]0,T[x9D(0,1), admits a (unique) solution u €
H2(Q).

Remark 4.2. In the application of [I1 Theorem 4.3, Vol.2], we can observe that
there are no compatibility conditions to satisfy because 9,1 is only in L?(7).

Thanks to the transformation
(t,z1,22) = (L,y1,y2) = (L, p(t)21, (he)(t)22),
we deduce the following result.

Proposition 4.3. Problem (4.2) admits a (unique) solution uy € HY2(Dy).
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So, the function u defined by

wyp in Dy
u = ]
Uy in Doy

is the (unique) solution of Problem (|1.2)) for an arbitrary 7. Our second main result
is as follows.

Theorem 4.4. Assume that the functions h and ¢ verify conditions ( ., .
and (3.2). Then, Problem admits a unique solution v € H“*(Q).

Acknowledgments. The author is thankful to Professor B. K. Sadallah (Ecole
Normale Supérieure de Kouba, Algeria) for his help during the preparation of this
work, and to the anonymous referees for their careful reading of a previous version
of the manuscript, which led to a substantial improvement of this manuscript.

REFERENCES

[1] Yu. A. Alkhutov; Lp-Solubility of the Dirichlet problem for the heat equation in non-
cylindrical domains, Sbornik: Mathematics 193:9 (2002), 1243-1279.

[2] Yu. A. Alkhutov; Lp-Estimates of solutions of the Dirichlet problem for the heat equation in
a ball, Journ. Math. Sc., Vol. 142, No.3, (2007), 2021-2032.

[3] V. Besov; The continuation of function in L}? and WI}, Proc. Steklov Inst. Math. 89 (1967),
5-17.

[4] S. P. Degtyarev; The solvability of the first initial-boundary problem for parabolic and de-
generate parabolic equations in domains with a conical point, Sbornik Mathematics 201 (7)
(2010) 999-1028.

[5] P. Grisvard, G. Looss; Problémes auz limites unilatérauz dans des domaines non réguliers,
Journées Equations aux Dérivées Partielles, (1976), 1-26.

[6] P. Grisvard; Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathe-
matics 24, Pitman, Boston, 1985.

[7] A. Kheloufi, R. Labbas, B .K. Sadallah; On the resolution of a parabolic equation in a
nonregular domain of R3, Differ. Equat. Appl. 2 (2) (2010) 251-263.

[8] R. Labbas, A. Medeghri, B.-K. Sadallah; On a parabolic equation in a triangular domain,
Appl. Math. Comput. 130(2002), 511-523.

[9] R.Labbas, A. Medeghri, B.-K. Sadallah; An L? approach for the study of degenerate parabolic
equation, Electron. J. Diff. Equ., vol 2005 (2005), No. 36, 1-20.

[10] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’tseva; Linear and Quasi-Linear Equations
of Parabolic Type, A.M.S., Providence, Rhode Island, 1968.

[11] J. L. Lions, E. Magenes; Probléemes auz Limites Non Homogénes et Applications, 1, 2, Dunod,
Paris, 1968.

[12] B. K. Sadallah; Etude d’un probléme 2m-parabolique dans des domaines plan non rectangu-
laires, Boll. Un. Mat. Ital., (5), 2-B (1983), 51-112.

[13] B. K. Sadallah; Study of a parabolic problem in a conical domain, to appear in Mathematical
Journal of Okayama University.

AREZKI KHELOUFI
DEPARTMENT OF TECHNOLOGY, FACULTY OF TECHNOLOGY, BEJAIA UNIVERSITY, 6000 BEJAIA,
ALGERIA

E-mail address: arezkinet2000@yahoo.fr



	1. Introduction
	2. Preliminaries
	3. Local in time result
	3.1. Case of a truncated domain Q
	3.2. Case of a conical type domain
	Proof of Proposition 3.6
	Passage to the limit

	4. Global in time result
	Acknowledgments

	References

