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SOLUTIONS TO SYSTEMS OF PARTIAL DIFFERENTIAL
EQUATIONS WITH WEIGHTED SELF-REFERENCE AND

HEREDITY

PHAM KY ANH, NGUYEN THI THANH LAN, NGUYEN MINH TUAN

Abstract. This article studies the existence of solutions to systems of non-
linear integro-differential self-referred and heredity equations. We show the
existence of a global solution and the uniqueness of a local solution to a sys-
tem of integro-differential equations with given initial conditions.

1. Introduction

Self-referred and hereditary phenomena play an important role in applied sci-
ences, especially that in studying evolution processes of biology. Mathematically,
these phenomena can be described by the following model: let A : X → R and
B : X → R be two functionals defined on a function space X. Consider the equa-
tion

Au(x, t) = u(Bu(x, t), t), (1.1)
where u = u(x, t), (x, t) ∈ R×[0,+∞) is an unknown function satisfying some initial
data at t = 0, A and B are differential or/and integral operators. For example, if

Bu(x, t) =
∫ t

0

u(x, τ)dτ, (1.2)

then B is called a hereditary operator. As the unknown function u in the right-
hand side of the equation (1.1) depends on itself, equation (1.1) may be called a
self-reference equation.

Some special cases of (1.1) were originally studied by Volterra in the 20 century
(see [9, 10] and references therein). It is noticeable to say that some authors con-
sidered the variable t as the complex one. In the simple case when B is an identity
operator, Eder [4] obtained the existence, uniqueness, analyticity of solutions, and
the analytic dependence of solutions of the real-variable equation

u′(t) = u(u(t)).

Si and Cheng [12] investigated a more general functional-differential equation

u′(t) = u(at+ bu(t)), (1.3)
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where a 6= 1 and b 6= 0 are complex numbers, and u : C → C is the unknown
complex-variable function. In particular, by constructing a convergent power series
solution v(t) of a companion equation of the form

βv′(βt) = v′(t)[v(β2t)− av(βt) + a],

the authors [12] obtained the analytic solution of (1.3) which is of the form

v(βv−1(t))− at

b
.

As a development of (1.3), Cheng, Si, and Wang [23] studied the equation

αt+ βu′(t) = u
(
at+ bu′(t)

)
,

where α and β are complex numbers. The main results of [23] are the existence
theorems for the analytic solutions, and an explicit solution via symmetric methods.

Equations of the form (1.1) attract attention of many authors. More investiga-
tions can be found in [13, 14, 15, 16, 17, 18, 7, 2, 5, 8, 3, 9, 10, 11, 6, 20, 21, 1], and
references therein.

In recent years, Pascali and Miranda obtained many results concerning the self-
referred functional-differential equations [8, 9, 10, 11]. For instance, the authors in
[9] studied the initial-value problem

∂

∂t
u(x, t) = u(

1
t

∫ t

0

u(x, s)ds, t), x ∈ R, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ R.
(1.4)

The authors claimed that under some suitable conditions problem (1.4) has a unique
bounded and continuous solution. Observe that the unknown u in the right-hand
side of (1.4) contains a weighted hereditary operator

(Bu)(t) :=
1
t

∫ t

0

u(x, s)ds.

Motivated by the long list of works on self-referred functional-differential equa-
tions as mentioned above, we study the following system of two partial-differential
equations with self-reference and weighted heredity

∂

∂t
u(x, t) = u

(
f
(
u(x, t)

)
+ v

(1
t

∫ t

0

u(x, s)ds+ ϕ(u(x, t)), t
)
, t

)
∂

∂t
v(x, t) = v

(
g
(
v(x, t)

)
+ u

(1
t

∫ t

0

v(x, s)ds+ ψ(v(x, t)), t
)
, t

)
,

(1.5)

associated with the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), (1.6)

where f, g, ϕ, ψ, u0 and v0 are given functions satisfying some suitable conditions.
This work is devoted to the uniqueness of local solution, and the existence of a
global solution of this problem.
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2. Preliminaries

To study problem (1.5)-(1.6), we reduce it to the following system of two integral
equations

u(x, t) = u0(x) +
∫ t

0

u
(
f
(
u(x, s)

)
+ v

(1
s

∫ s

0

u(x, τ)dτ + ϕ(u(x, s)), s
)
, s

)
ds,

v(x, t) = v0(x) +
∫ t

0

v
(
g
(
v(x, s)

)
+ u

(1
s

∫ s

0

v(x, τ)dτ + ψ(v(x, s)), s
)
, s

)
ds.

(2.1)

Proposition 2.1. If problem (2.1) has a solution (u, v), then the pair of functions
(u, v) solves problem (1.5)-(1.6).

We omit the proof of this proposition, as it is quite simple. Therefore, we shall
investigate problem (2.1) hereafter. We now define the sequences of real functions
{un}n≥1, {vn}n≥1 as follows:

u1(x, t) = u0(x) +
∫ t

0

u0

(
f
(
u0(x)

)
+ v0

(
u0(x) + ϕ

(
u0(x)

)))
ds,

v1(x, t) = v0(x) +
∫ t

0

v0

(
g
(
v0(x)

)
+ u0

(
v0(x) + ψ

(
v0(x)

)))
ds,

un+1(x, t) = u0(x) +
∫ t

0

un

(
f
(
un(x, s)

)
+ vn

(1
s

∫ s

0

un(x, τ)dτ + ϕ
(
un(x, s)

)
, s

)
, s

)
ds,

vn+1(x, t) = v0(x) +
∫ t

0

vn

(
g
(
vn(x, s)

)
+ un

(1
s

∫ s

0

vn(x, τ)dτ + ψ
(
vn(x, s)

)
, s

)
, s

)
ds,

(2.2)

for x ∈ R and t > 0.
We should give the following additional conditions on the functions u0, v0 and

f, g, ϕ, ψ:

(A1) u0 and v0 are bounded and Lipschitz continuous on R.
(A2) f, g, ϕ and ψ are Lipschitz continuous on R.

The functional inequalities in the next lemma are useful for proving the main results.

Lemma 2.2. Assume that the functions u0, v0 and f, g, ϕ, and ψ satisfy conditions
as in (A1)–(A2). For any n ≥ 1 there exist two continuous, non-negative functions
defined on R+, say Mn(t) and Nn(t), such that the following two inequalities hold:

|un+1(x, t)− un+1(y, t)| ≤Mn+1(t)|x− y|, n ∈ N, x, y ∈ R
|vn+1(x, t)− vn+1(y, t)| ≤ Nn+1(t)|x− y|, n ∈ N, x, y ∈ R.

Moreover, there is a positive constant T1 such that the non-negative function se-
quences {Mn(t)}n≥1, {Nn(t)}n≥1 are uniformly bounded on the interval (0, T1];
i.e., there exists a constant G0 > 0 such that 0 < Mn(t), Nn(t) ≤ G0 for every
t ∈ (0, T1], and for any n ≥ 1.
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Proof. For n = 0, we have

|u0(x)− u0(y)| ≤M0|x− y|, |v0(x)− v0(y)| ≤ N0|x− y|
for any x, y ∈ R and for some M0 > 0, N0 > 0. Let P,Q,$, σ > 0 such that

|f(α1)− f(α2)| ≤ P |α1 − α2|, α1, α2 ∈ R
|g(β1)− g(β2)| ≤ Q|β1 − β2|, β1, β2 ∈ R
|ϕ(γ1)− ϕ(γ2)| ≤ $|γ1 − γ2|, γ1, γ2 ∈ R
|ψ(η1)− ψ(η2)| ≤ σ|η1 − η2|, η1, η2 ∈ R.

(2.3)

For n = 1 we have
|u1(x, t)− u1(y, t)| ≤M1(t)|x− y|,

where
M1(t) = M0 + t(M2

0P +M2
0N0 +M2

0N0$),
and

|v1(x, t)− v1(y, t)| ≤ N1(t)|x− y|,
where

N1(t) = N0 + t(N2
0Q+M0N

2
0 +M0N

2
0σ).

For n = 2, we derive

|u2(x, t)− u2(y, t)| ≤M2(t)|x− y|,
where

M2(t) = M0 +
∫ t

0

(
M2

1 (s)P +N1(s)
1
2s

d

ds

( ∫ s

0

M1(τ)dτ
)2

+M2
1 (s)N1(s)$

)
ds,

and
|v2(x, t)− v2(y, t)| ≤ N2(t)|x− y|,

where

N2(t) = N0 +
∫ t

0

(
N2

1 (s)Q+M1(s)
1
2s

d

ds

( ∫ s

0

N1(τ)dτ
)2

+M1(s)N2
1 (s)σ

)
ds.

We can inductively prove that

|un+1(x, t)− un+1(y, t)| ≤Mn+1(t)|x− y|, (2.4)

where

Mn+1(t) = M0 +
∫ t

0

(
M2

n(s)P +Nn(s)
1
2s

d

ds

( ∫ s

0

Mn(τ)dτ
)2

+M2
n(s)Nn(s)$

)
ds,

and
|vn+1(x, t)− vn+1(y, t)| ≤ Nn+1(t)|x− y|, (2.5)

where

Nn+1(t) = N0 +
∫ t

0

(
N2

n(s)Q+Mn(s)
1
2s

d

ds

( ∫ s

0

Nn(τ)dτ
)2

+Mn(s)N2
n(s)σ

)
ds.

Clearly, the functions Mn+1(t) and Nn+1(t) are non-negative and continuous on
R. We shall prove that each one of the function sequences {Mn+1}n≥1(t) and
{Nn+1}n≥1(t) is uniformly bounded on some (0, T1]. Indeed, by choosing constants
K0,H0, and I0 > 0 fulfilling the following conditions

N0 +K0 ≤ H0 M0 +K0 ≤ I0 G0 = max{H0, I0},
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there exists a number T1 > 0 such that

(M2
0P +M2

0N0 +M2
0N0$)t ≤ K0, ∀t ∈ (0, T1]

(N2
0Q+M0N

2
0 +M0N

2
0σ)t ≤ K0, ∀t ∈ (0, T1]

(G2
0P +G3

0 +G3
0$)t ≤ K0,

(G2
0Q+G3

0 +G3
0σ)t ≤ K0.

(2.6)

Then
0 ≤M1(t)−M0 = (M2

0P +M2
0N0 +M2

0N0$)t ≤ K0,

0 ≤ N1(t)−N0 = (N2
0Q+M0N

2
0 +M0N

2
0σ)t ≤ K0.

(2.7)

It follows that
0 ≤M1(t) ≤ K0 +M0 ≤ I0 ≤ G0,

0 ≤ N1(t) ≤ K0 +N0 ≤ H0 ≤ G0.
(2.8)

Similarly,

0 ≤M2(t)−M0 ≤
∫ t

0

(G2
0P +G3

0 +G3
0$)ds = (G2

0P +G3
0 +G3

0$)t ≤ K0,

0 ≤ N2(t)−N0 ≤
∫ t

0

(G2
0Q+G3

0 +G3
0σ)ds = (G2

0Q+G3
0 +G3

0σ)t ≤ K0.

(2.9)

From these inequalities, we have
0 ≤M2(t) ≤M0 +K0 ≤ I0 ≤ G0,

0 ≤ N2(t) ≤ N0 +K0 ≤ H0 ≤ G0.
(2.10)

By induction on n we obtain
0 ≤Mn+1(t) ≤M0 +K0 ≤ G0,

0 ≤ Nn+1(t) ≤ N0 +K0 ≤ G0,
(2.11)

for every t ∈ (0, T1], T1 > 0. The lemma is proved. �

We can see that Lemma 2.2 concerns the properties of the functions {un(x, t)}
and {vn(x, t)}, while Lemma 2.3 concerns the recursive sequences {un+1(x, t) −
un(x, t)} and {vn+1(x, t)− vn(x, t)}.

Lemma 2.3. Assume that the functions u0, v0 and f, g, ϕ, and ψ satisfy conditions
as in (A1)–(A2). For any n ≥ 1 there exist two nonnegative, continuous functions,
say An(t) and Bn(t), satisfying the following two inequalities:

|un+1(x, t)− un(x, t)| ≤ An+1(t), x ∈ R, t ∈ R+,

|vn+1(x, t)− vn(x, t)| ≤ Bn+1(t), x ∈ R, t ∈ R+.

Moreover, there is a positive constant T2 such that the both series with general terms
An(t), and Bn(t) are uniformly convergent on (0, T2].

Proof. We have

|u1(x, t)− u0(x)| ≤ t‖u0‖L∞ := A1(t),

|v1(x, t)− v0(x)| ≤ t‖v0‖L∞ := B1(t).

Similarly,

|u2(x, t)− u1(x, t)| ≤
∫ t

0

(
A1(s)

(
1 +M0P +M0N0$

)
+M0B1(s)
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+M0N0
1
s

∫ s

0

A1(τ)dτ
)
ds := A2(t),

and

|v2(x, t)− v1(x, t)| ≤
∫ t

0

(
B1(s)

(
1 +N0Q+M0N0σ

)
+N0A1(s)

+M0N0
1
s

∫ s

0

B1(τ)dτ
)
ds := B2(t).

By induction on n, we conclude that

|un+1(x, t)− un(x, t)| ≤ An+1(t), (2.12)

where

An+1(t) =
∫ t

0

(
An(s)

(
1 +Mn−1(s)P +Mn−1(s)Nn−1(s)$

)
+Bn(s)Mn−1(s) +Mn−1(s)Nn−1(s)

1
s

∫ s

0

An(τ)dτ
)
ds;

and
|vn+1(x, t)− vn(x, t)| ≤ Bn+1(t), (2.13)

where

Bn+1(t) =
∫ t

0

(
Bn(s)

(
1 +Nn−1(s)Q+Mn−1(s)Nn−1(s)σ

)
+An(s)Nn−1(s) +Mn−1(s)Nn−1(s)

1
s

∫ s

0

Bn(τ)dτ
)
ds.

For a number h ∈ (0, 1/2), we can choose T2 > 0 such that the following two
inequalities hold for any t ∈ (0, T2],

(1 +G0P +G0 +G2
0$ +G2

0)t ≤ h <
1
2
,

(1 +G0Q+G0 +G2
0σ +G2

0)t ≤ h <
1
2
,

(2.14)

By (2.14) and Lemma 2.2,

0 ≤ An+1(t) ≤ (1 +G0P +G2
0$ +G2

0)t‖An‖L∞ +G0t‖Bn‖L∞

≤ h(‖An‖L∞ + ‖Bn‖L∞),
(2.15)

and

0 ≤ Bn+1(t) ≤ (1 +G0Q+G2
0σ +G2

0)t‖Bn‖L∞ +G0t‖An‖L∞

≤ h(‖An‖L∞ + ‖Bn‖L∞).
(2.16)

By induction on n, we obtain

0 ≤ An+1(t), Bn+1(t) ≤ hn
(
‖A1‖∞ + ‖B1‖∞

)
,

for t ∈ (0, T2]. Therefore, the series with general terms An(.) and Bn(.) uniformly
converge on the interval (0, T2]. Lemma 2.3 is proved. �
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Remark 2.4. It is easy to prove inductively that

|un+1(x, t)| ≤ et‖u0‖∞, |vn+1(x, t)| ≤ et‖v0‖∞.
If we consider T such that 0 < T ≤ min{T1, T2}, the functions un(x, t), vn(x, t)
are bounded uniformly with respect to variable x ∈ R, for t ∈ (0, T ]. On the other
hand, due to (2.8) and Lemma 2.2, the functions un(x, t), vn(x, t) are uniformly
Lipschitz continuous with respect to each of the variables x ∈ R and t ∈ (0, T ].

For serving the existence of a global solution to problem (2.1), we propose some
assumptions on the functions u0, v0 and f, g, ϕ, ψ, that are different from (A1)–(A2)
in Lemma 2.3. Namely, assume that

(B1) u0 and v0 are non-negative, non-decreasing, bounded and lower semi-con-
tinuous on R.

(B2) f, g, ϕ and ψ are non-decreasing and lower semi-continuous.

Lemma 2.5. Suppose that the functions u0, v0 and f, g, ϕ and ψ fulfill the condi-
tions as in (B1)–(B2). Then the functions {un(x, t)}n≥1 and {vn(x, t)}n≥1 possess
the following properties:

(C1) un and vn are non-negative.
(C2) un and vn are non-decreasing with respect to each one of variables x ∈

R, t ∈ (0, T ]; more precisely un+1 ≥ un, vn+1 ≥ vn.
(C3) un and vn are lower semi-continuous with respect to x, for every t ∈

(0,+∞).
(C4) un and vn are Lipschitz continuous with respect to t, uniformly bounded

with respect to x ∈ R.

Proof. We have
u1(x, t) ≥ u0(x) ≥ 0, ∀x ∈ R, t ∈ (0,+∞),

v1(x, t) ≥ v0(x) ≥ 0, ∀x ∈ R, t ∈ (0,+∞).
(2.17)

For t1, t2 ∈ (0,+∞), t1 < t2, and for x ∈ R, we have

u1(x, t2) = u0(x) +
∫ t2

0

u0

(
f
(
u0(x)

)
+ v0

(
u0(x) + ϕ

(
u0(x)

))
ds

≥ u0(x) +
∫ t1

0

u0

(
f
(
u0(x)

)
+ v0

(
u0(x) + ϕ

(
u0(x)

)))
ds

= u1(x, t1),

(2.18)

v1(x, t2) = v0(x) +
∫ t2

0

v0

(
g
(
v0(x)

)
+ u0

(
v0(x) + ψ

(
v0(x)

)))
ds

≥ v0(x) +
∫ t1

0

v0

(
g
(
v0(x)

)
+ u0

(
v0(x) + ψ

(
v0(x)

)))
ds

= v1(x, t1).

(2.19)

Similarly, for all x1, x2 ∈ R, x1 < x2, for all t ∈ (0,+∞), we derive

u1(x1, t) = u0(x1) +
∫ t

0

u0

(
f
(
u0(x1)

)
+ v0

(
u0(x1) + ϕ

(
u0(x1)

)))
ds

≤ u0(x2) +
∫ t

0

u0

(
f
(
u0(x2)

)
+ v0

(
u0(x2) + ϕ

(
u0(x2)

)))
ds

= u1(x2, t),

(2.20)
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v1(x1, t) = v0(x1) +
∫ t

0

v0

(
g
(
v0(x1)

)
+ u0

(
v0(x1) + ψ

(
v0(x1)

)))
ds

≤ v0(x2) +
∫ t

0

v0

(
g
(
v0(x2)

)
+ u0

(
v0(x2) + ψ

(
v0(x2)

)))
ds

= v1(x2, t).

(2.21)

Using (2.18)–(2.21), we can prove inductively that

un(x, t2) ≥ un(x, t1), ∀x ∈ R, t2 > t1,

un(x2, t) ≥ un(x1, t), ∀t ∈ (0,+∞), x2 > x1,

vn(x, t2) ≥ vn(x, t1), ∀x ∈ R, t2 > t1,

vn(x2, t) ≥ vn(x1, t), ∀t ∈ (0,+∞), x2 > x1.

(2.22)

Also, we can prove that (see also remark 2.4)

0 ≤ un(x, t) ≤ un+1(x, t) ≤ eT ‖u0‖L∞ ,

0 ≤ vn(x, t) ≤ vn+1(x, t) ≤ eT ‖v0‖L∞ ,
(2.23)

for all x ∈ R, t ∈ (0, T ] and n ∈ N. On the other hand,

|un+1(x, t1)− un+1(x, t2) ≤
∣∣ ∫ t2

t1

‖u0‖L∞e
T ds

∣∣ ≤ ‖u0‖L∞e
T |t2 − t1|, (2.24)

|vn+1(x, t1)− vn+1(x, t2)| ≤
∣∣ ∫ t2

t1

‖v0‖L∞e
T ds

∣∣ ≤ ‖v0‖L∞e
T |t2 − t1|. (2.25)

Relations (2.24) and (2.25) ensure that un and vn satisfy (C4). Since the sequences
(un) and (vn) are non decreasing, above and upper bounded, there exist the limits

u∞(x, t) = lim
n
un(x, t), v∞(x, t) = lim

n
vn(x, t). (2.26)

Since u0, v0, f, g, ϕ and ψ are lower semi-continuous and non-decreasing, the func-
tions f(u0), g(v0), v0

(
u0 + ϕ(u0)

)
, and u0

(
v0 + ψ(v0)

)
are lower semi-continuous

and non-decreasing (see [21, Lemma 3]). Hence, u0

(
f(u0) + v0

(
u0 + ϕ(u0)

))
, and

v0
(
g(v0)+u0

(
v0+ψ(v0)

))
are lower semi-continuous and non-decreasing, too. Thus,

the lower semi-continuity and the decrease of u1(x, t) and v1(x, t) are established.
By induction on n, we can conclude that un(x, t) and vn(x, t) are lower semi-
continuous and non-decreasing. Lemma 2.5 is proved. �

3. Main results

Theorem 3.1 (Uniqueness of local solutions). Assume that the functions f , g,
ϕ, ψ, u0, and v0 satisfy (A1)–(A2). Then there exists a positive constant T? such
that (2.1) has a unique solution on R × (0, T∗] denoted by {u∗, v∗}. Moreover, the
functions u∞, v∞ are Lipschitz continuous and bounded with respect to each of the
variables x ∈ R, and t ∈ (0, T?].

Theorem 3.2 (Existence of global solutions). Assume that f , g, ϕ, ψ, u0 and v0
satisfy (B1)–(B2). There exist two functions u∞, v∞ : R× (0,+∞) → R satisfying
(2.1) for t ∈ (0,+∞). Moreover, these solutions have the properties similar to those
of {un(x, t)}n≥1 and {vn(x, t)}n≥1 as in Lemma 2.5; namely, the functions u∞, v∞
possess the properties (C1)–(C4).
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Proof of Theorem 3.1. Write T∗ := min{T1, T2}. By Lemmas 2.2, and 2.3, the
limits u∞(x, t), v∞(x, t) of the sequences {un(x, t)}n≥1, {vn(x, t)}n≥1 are bounded
on R × (0, T∗], Lipschitz continuous with respect to each of variables, and satisfy
problem (2.1).

Now, suppose that (u?, v?) is another solution of (2.1) on R × (0, T∗] with the
same given data. We have∣∣∣u?

(
f(u?(x, t)) + v?

(1
t

∫ t

0

u?(x, s)ds+ ϕ(u?(x, t)), t
)
, t

)
− u∞

(
f(u∞(x, t)) + v∞

(1
t

∫ t

0

u∞(x, s)ds+ ϕ(u∞(x, t)), t
)
, t

)∣∣∣
≤ ‖u? − u∞‖L∞ +

∣∣∣u∞(
f(u?(x, t)) + v?

(1
t

∫ t

0

u?(x, s)ds+ ϕ(u?(x, t)), t
)
, t

)
− u∞

(
f(u∞(x, t)) + v∞

(1
t

∫ t

0

u∞(x, s)ds+ ϕ(u∞(x, t)), t
)
, t

)∣∣∣
≤ (1 +M∞(t)P +M∞(t)N∞(t) +M∞(t)N∞(t)$)‖u? − u∞‖L∞

+M∞(t)‖v? − v∞‖L∞ .

From the above inequality and Lemma (2.2) we obtain

|u?(x, t)− u∞(x, t)|

≤
(
1 +G0P +G2

0 +G2
0$

)
t‖u? − u∞‖L∞ +G0t‖v? − v∞‖L∞ .

(3.1)

In addition, we have∣∣∣v?

(
g(u?, v?) + u?

(1
t

∫ t

0

v?(x, s)ds+ ψ(v?(x, t)), t
)
, t

)
− v∞

(
g(u∞, v∞) + u∞

(1
t

∫ t

0

v∞(x, s)ds+ ψ(v∞(x, t)), t
)
, t

)∣∣∣
≤

(
1 +N∞(t)Q+M∞(t)N∞(t)σ

)
‖v? − v∞‖L∞ +N∞(t)‖u? − u∞‖L∞ .

(3.2)

By (3.2) and Lemma (2.2), we find

|v?(x, t)− v∞(x, t)|

≤
(
1 +G0Q+G2

0 +G2
0σ

)
t‖v? − v∞‖L∞ +G0t‖u? − u∞‖L∞ .

(3.3)

Combining (3.1) and (3.3), we obtain

|u?(x, t)− u∞(x, t)|

≤
(
1 +G0P +G0 +G2

0 +G2
0$

)
tmax{‖u? − u∞‖L∞ , ‖v? − v∞‖L∞},

(3.4)

and
|v?(x, t)− v∞(x, t)|

≤
(
1 +G0Q+G0 +G2

0 +G2
0σ

)
tmax{‖u? − u∞‖L∞ , ‖v? − v∞‖L∞}.

(3.5)

Taking account of (2.14), (3.4) and (3.5), we have

|u?(x, t)− u∞(x, t)| ≤ hmax{‖u? − u∞‖L∞ , ‖v? − v∞‖L∞},
|v?(x, t)− v∞(x, t)| ≤ hmax{‖u? − u∞‖L∞ , ‖v? − v∞‖L∞},

(3.6)
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for all t ∈ (0, T0], x ∈ R. Finally, we conclude that

max{‖u? − u∞‖L∞ , ‖v? − v∞‖L∞} ≤ hmax{‖u? − u∞‖L∞ , ‖v? − v∞‖L∞}.

The last inequality ensures the uniqueness of the solution. Theorem 3.1 is proved.
�

Proof of Theorem 3.2. Thanks to (2.22) and (2.23), the following two limits exit:

u∞(x, t) = sup
n
un(x, t), v∞(x, t) = sup

n
vn(x, t). (3.7)

We shall prove that u∞(x, t), v∞(x, t) satisfy (2.1). From (3.7) we have

un+1(x, t)− u0(x)

=
∫ t

0

un

(
f
(
un(x, s)

)
+ vn

(1
s

∫ s

0

un(x, τ)dτ + ϕ
(
un(x, s)

)
, s

)
, s

)
ds

≤
∫ t

0

u∞

(
f
(
u∞(x, s)

)
+ v∞

(1
s

∫ s

0

u∞(x, τ)dτ + ϕ
(
u∞(x, s)

)
, s

)
, s

)
ds,

(3.8)

and

vn+1(x, t)− v0(x)

=
∫ t

0

vn

(
g
(
vn(x, s)

)
+ vn

(1
s

∫ s

0

vn(x, τ)dτ + ψ
(
vn(x, s)

)
, s

)
, s

)
ds

≤
∫ t

0

v∞

(
g
(
v∞(x, s)

)
+ u∞

(1
s

∫ s

0

v∞(x, τ)dτ + ψ
(
v∞(x, s)

)
, s

)
, s

)
ds.

(3.9)

As un(x, t), and vn(x, t) are non-decreasing, we have

un+p

(
f
(
un+p(x, t)

)
+ vn+p

(1
t

∫ t

0

un+p(x, s)ds+ ϕ
(
un+p(x, t)

)
, t

)
, t

)
(3.10)

≥ un

(
f
(
un+p(x, t)

)
+ vn+p

(1
t

∫ t

0

un+p(x, s)ds+ ϕ
(
un+p(x, t)

)
, t

)
, t

)
, (3.11)

and

vn+p

(
g
(
vn+p(x, t)

)
+ un+p

(1
t

∫ t

0

vn+p(x, s)ds+ ψ
(
vn+p(x, t)

)
, t

)
, t

)
≥ vn

(
g
(
vn+p(x, t)

)
+ un+p

(1
t

∫ t

0

vn+p(x, s)ds+ ψ
(
vn+p(x, t)

)
, t

)
, t

)
.

(3.12)

From (3.10) and (3.12) we deduce

lim
p→∞

∫ t

0

un+p

(
f
(
un+p(x, s)

)
+ vn+p

(1
s

∫ s

0

un+p(x, τ)dτ + ϕ
(
un+p(x, s)

)
, s

)
, s

)
ds

≥
∫ t

0

un

(
f
(
u∞(x, s)

)
+ v∞

(1
s

∫ s

0

u∞(x, τ)dτ + ϕ
(
u∞(x, s)

)
, s

)
, s

)
ds,

(3.13)
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and

lim
p→∞

∫ t

0

vn+p

(
g
(
vn+p(x, s)

)
+ un+p

(1
s

∫ s

0

vn+p(x, τ)dτ + ψ
(
vn+p(x, s)

)
, s

)
, s

)
ds

≥
∫ t

0

vn

(
g
(
v∞(x, s)

)
+ u∞

(1
s

∫ s

0

v∞(x, τ)dτ + ψ
(
v∞(x, s)

)
, s

)
, s

)
ds.

(3.14)

Hence,

lim
p

[un+p+1(x, t)− u0(x)]

= lim
p

∫ t

0

un+p

(
f
(
un+p(x, s)

)
+ vn+p

(1
s

∫ s

0

un+p(x, τ)dτ + ϕ
(
un+p(x, s)

)
, s

)
, s

)
ds

≥
∫ t

0

un

(
f
(
u∞(x, s)

)
+ v∞

(1
s

∫ s

0

u∞(x, τ)dτ + ϕ
(
u∞(x, s)

)
, s

)
, s

)
ds,

(3.15)

and

lim
p

[vn+p+1(x, t)− v0(x)]

= lim
p

∫ t

0

vn+p

(
g
(
vn+p(x, s)

)
+ un+p

(1
s

∫ s

0

vn+p(x, τ)dτ + ψ
(
vn+p(x, s)

)
, s

)
, s

)
ds

≥
∫ t

0

vn

(
g
(
v∞(x, s)

)
+ u∞

(1
s

∫ s

0

v∞(x, τ)dτ + ψ
(
v∞(x, s)

)
, s

)
, s

)
ds.

(3.16)

By (3.15)-(3.16) we find that

u∞(x, t)− u0(x) ≥
∫ t

0

u∞

(
f
(
u∞(x, s)

)
+ v∞

(1
s

∫ s

0

u∞(x, τ)dτ + ϕ
(
u∞(x, s)

)
, s

)
, s

)
ds,

(3.17)

and

v∞(x, t)− v0(x) ≥
∫ t

0

v∞

(
g
(
v∞(x, s)

)
+ u∞

(1
s

∫ s

0

v∞(x, τ)dτ + ψ
(
v∞(x, s)

)
, s

)
, s

)
ds.

(3.18)

Combining (3.8)-(3.9) and (3.17)-(3.18) we obtain

u∞(x, t)− u0(x) =
∫ t

0

u∞

(
f
(
u∞(x, s)

)
+ v∞

(1
s

∫ s

0

u∞(x, τ)dτ + ϕ
(
u∞(x, s)

)
, s

)
, s

)
ds,

(3.19)
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and

v∞(x, t)− v0(x) =
∫ t

0

v∞

(
v∞(x, s)

)
+ u∞

(1
s

∫ s

0

v∞(x, τ)dτ + ψ
(
v∞(x, s)

)
, s

)
, s

)
ds.

(3.20)

The above equalities imply that (u∞, v∞) is a solution of (2.1).
On the other hand, it is easily seen that u∞, v∞ are Lipschitz continuous in t on

(0,+∞). The proof is complete. �

4. Illustrative Example

Consider the initial-value problem for a system of integro-differential equations
(1.5)-(1.6) with the following data:

u0(x) =

{
1− |x| if |x| ≤ 1
0 otherwise

v0(x) = 1 for all x ∈ R,
f(u) = u, g(v) = v, ϕ(u) = ψ(v) = 0.

We compute the successive approximations as follows:

u1(x, t) = u0(x) +
∫ t

0

u0

(
f(u0(x)) + v0(u0(x) + ϕ(u0(x)))

)
ds

= u0(x) +
∫ t

0

u0(u0(x) + 1)ds = u0(x) +
∫ t

0

0ds = u0(x),

v1(x, t) = v0(x) +
∫ t

0

v0

(
g(v0(x)) + u0(v0(x) + ψ(v0(x)))

)
ds

= 1 +
∫ t

0

1ds = 1 + t.

(4.1)

Similarly, u2(x, t) = u0(x), v2(x, t) = 1 + t+ (t2/2). Suppose that

un(x, t) = u0(x), vn(x, t) =
n∑

i=0

ti

i!
. (4.2)

We can prove inductively that

un+1(x, t) = u0(x), vn+1(x, t) =
n+1∑
i=0

ti

i!
.

Tending n to infinity we obtain

u?(x, t) = u0(x), v?(x, t) = et. (4.3)

In fact, we can choose u0(x) as a nonnegative, Lipschitz continuous function having
a compact support, and v0(x) = c as a constant function. Due to the symmetry of
the system, the functions u0 and v0 are interchangeable.
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Concluding remarks. Mathematically, one can provide acceptable assumptions
on equations, and add suitable restrictions on initial data of problems so that the
solution exists uniquely. Therefore, both the existence and uniqueness of solutions
of self-referred and heredity problems, in general, remain considerable challenges to
attempts at generalization, namely (see also [4, 8, 9, 10, 11]),

(1) The uniqueness/non-uniqueness of global solutions, with also relaxed con-
dition on data.

(2) Structure of the solution set.
(3) Numerical solution for the above mentioned system.

Acknowledgements. This work is partially supported by the Vietnam National
Foundation for Science and Technology Development (NAFOSTED).
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