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MULTIPLE POSITIVE SOLUTIONS FOR A THIRD-ORDER
THREE-POINT BVP WITH SIGN-CHANGING GREEN’S
FUNCTION

JIAN-PING SUN, JUAN ZHAO

ABSTRACT. This article concerns the third-order three-point boundary-value
problem

u () = f(t,ut), telo,1],
u’'(0) = u(1) = v/ () = 0.
Although the corresponding Green’s function is sign-changing, we still obtain

the existence of at least 2m — 1 positive solutions for arbitrary positive integer
m under suitable conditions on f.

1. INTRODUCTION

Third-order differential equations arise from a variety of areas of applied math-
ematics and physics, e.g., in the deflection of a curved beam having a constant or
varying cross section, a three-layer beam, electromagnetic waves or gravity driven
flows and so on [5].

Recently, the existence of single or multiple positive solutions to some third-
order three-point boundary-value problems (BVPs for short) has received much
attention from many authors. For example, in 1998, by using the Leggett-Williams
fixed point theorem, Anderson [2] proved the existence of at least three positive
solutions to the problem

—z"'(t) + f(2(t)) =0, telo,1],
z(0) = 2'(t2) = 2" (1) =0,

where t5 € [5,1). In 2003, Anderson [I] obtained some existence results of positive
solutions for the problem

2(t) = f(t,x(t)), t; <t<ts,
z(ty) = 2'(t2) =0, ~ya(ts) + 02" (t3) = 0.

The main tools used were the Guo-Krasnosel’skii and Leggett-Williams fixed point
theorems. In 2005, Sun [I3] studied the existence of single and multiple positive
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solutions for the singular BVP
u"'(t) — Xa(®)F(t,u(t)) =0, te(0,1),
u(0) = u'(n) = u"(1) =0,

where € [3,1), A was a positive parameter and a(t) was a nonnegative continuous
function defined on (0,1). His main tool was the Guo-Krasnosel’skii fixed point
theorem. In 2008, by using the Guo-Krasnosel’skii fixed point theorem, Guo, Sun
and Zhao [6] obtained the existence of at least one positive solution for the problem

W (8) + h(0) fu(t) =0, ¢ € (0,1),
u(0) = w'(0) =0, (1) = o/ (n),

where 0 < < 1 and 1 < a < 1/5. For more results concerning the existence of
positive solutions to third-order three-point BVPs, one can refer to [3|, 4, [0l 10, 12,
14].

It is necessary to point out that all the above-mentioned works are achieved
when the corresponding Green’s functions are positive, which is a very important
condition. A natural question is that whether we can obtain the existence of positive
solutions to some third-order three-point BVPs when the corresponding Green’s
functions are sign-changing. It is worth mentioning that Palamides and Smyrlis [8]
discussed the existence of at least one positive solution to the singular third-order
three-point BVP with an indefinitely signed Green’s function

u"(t) = a(t)f(t,ut), te(0,1),
17

u(0) = (1) =w'()) =0, e (5,1)
Their technique was a combination of the Guo-Krasnosel’skii fixed point theorem

and properties of the corresponding vector field. The following equality
1

1

max / G(t,s)a(s)f(s,u(s))ds = max G(t, s)a(s)f(s,u(s))ds (1.1)

tel0,1] Jo o t€[0,1]

played an important role in the process of their proof. Unfortunately, the equality

(1.1) is not right. For a counterexample, one can refer to our paper [LT].
Motivated greatly by the above-mentioned works, in this paper we study the

following third-order three-point BVP

u(t) = f(t,u(t), te0,1],

w'(0) = u(1) = u’(n) =0, (1.2)

where f € C([0,1] x [0, +00), [0,+00)) and i € (3,1). Although the corresponding
Green’s function is sign-changing, we still obtain the existence of at least 2m — 1
positive solutions for arbitrary positive integer m under suitable conditions on f.
In the remainder of this section, we state some fundamental concepts and the
Leggett-Williams fixed point theorem [7].
Let E be a real Banach space with cone P. A map o : P — (—o00,+00) is said
to be a concave functional if

o(tr+ (1 —t)y) > to(z) + (1 —t)o(y)

for all z,y € P and t € [0,1]. Let a and b be two numbers with 0 < a < b and ¢ be
a nonnegative continuous concave functional on P. We define the following convex
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sets
P,={zx e P:|z|| <a},
P(o,a,b) ={zx € P:a<o(x), ||z|| <b}.

Theorem 1.1 (Leggett-Williams fixed point theorem). Let A : P, — P, be com-
pletely continuous and o be a nonnegative continuous concave functional on P such
that o(x) < ||| for all x € P.. Suppose that there exist 0 < d < a < b < ¢ such
that

(i) {z € P(0,a,b) : o(x) > a} # 0 and o(Az) > a for x € P(o,a,b);
(i) [[Az| <d for ||z < d;
(i) o(Az) > a for x € P(o,a,c) with || Az| > b.
Then A has at least three fized points x1, 2, x3 in P, satisfying

lzi|l < d, a <o(x2), ||z3]| > d, o(zs) < a.

2. PRELIMINARIES

In this article, we assume that Banach space E = C]0,1] is equipped with the
norm [|ul| = maxyefo,) [u(t)].
For any y € E, we consider the BVP
um(t) = y(t)v te [07 1},

u'(0) = u(1) = u"(n) = 0. (2.1)

After a simple computation, we obtain the following expression of Green’s function
G(t, s) of the BVP (2.1): for s > n,

Gt ) S0 g<t<s<,
yS) =
% 0<s<t<l1

and for s < 7,

—t2—s%42s
Clt.s) = s 0<t<s<],
—st+s, 0<s<t<I.

Obviously, G(t,s) > 0 for 0 < s < n, and G(t,s) <0 for n < s < 1. Moreover, for
521,
max{G(t,s):t € [0,1]} =G(1,5) =0

and for s < 7,
2

max{G(t,s) : t € [0,1]} = G(0,s) = —% +s.

To obtain the existence of positive solutions for , we need to construct a
suitable cone in E. Let u be a solution of (L.2). Then it is easy to verify that
u(t) > 0 for ¢ € [0,1] provided that u/(1) < 0. In fact, since f is nonnegative, we
know that v’ (¢t) > 0 for ¢ € [0, 1], which together with u”(n) = 0 implies that

v’ (t) <0 fort€[0,n] and u”(t) >0 fort e [n,1]. (2.2)
In view of (2.2) and w'(0) = 0, we have
w'(t) <0forte[0,n] and u'(t) <u/(1) for t € [n,1]. (2.3)
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If w/(1) <0, then it follows from (2.3) that «/(¢) < 0 for ¢ € [0, 1], which together
with u(1) = 0 implies that u(¢) > 0 for ¢ € [0, 1]. Therefore, we define a cone in E
as follows:

P = {y € E : y(t) is nonnegative and decreasing on [0, 1]}.

Lemma 2.1 ([I1]). Let y € P and u(t) = fol G(t,s)y(s)ds, t € [0,1]. Then u € P
and u is the unique solution of (2.1). Moreover, u satisfies

mi t) > 0*
te[li%ﬁ]u()_ [[ull,

where 0 € (3,n) and 0% = (n—0)/n.

3. MAIN RESULTS
In the remainder of this paper, we assume that f : [0,1] x [0, +00) — [0, +00) is
continuous and satisfies the following two conditions:
(D1) For each = € [0, +00), the mapping t — f(¢,z) is decreasing;
(D2) For each t € [0, 1], the mapping x — f(t,x) is increasing.
Let

P= P: mi t) > 6* .
{ue teg{{;ﬁ]U( ) > 0% [Jull}

Then it is easy to check that P is a cone in E. Now, we define an operator A on P
by
1
(a)(t) = [ Gle.s)f(sulo)ds, e 0.1,
0

Obviously, if u is a fixed point of A in P, then w is a nonnegative solution of (|1.2)).
For convenience, we denote

n 52 0
H, = - — d Hy = i G(t, s)ds.
= [ rsas = i [ Gl

Theorem 3.1. Assume that there exist numbers d,a and c with0 <d <a < g <c
such that

d

f(tau) < =, te [0,77], u € [Ovd}, (31)
H,y

Fltu) > H% tel—0,0), ue [a,;i*], (3.2)

ftu) < <=, te[0,n), uelo,d (33)
Hy

Then (1.2) has at least three positive solutions u, v and w satisfying
lull <d, a< min v(t), d<|w|, min w(t)<a.
te[1-6,0] te[1-6,6]

Proof. For u € P, we define

= i t).
o) = o 0

It is easy to check that o is a nonnegative continuous concave functional on P with
o(u) < ||lu|| for w € P and that A: P — P is completely continuous.
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We first assert that if there exists a positive number r such that f(t,u) < 4 for
t € [0,n] and u € [0,7], then A : P, — P,. Indeed, if u € P,, then

||Au| = max]/o G(t,8)f(s,u(s))ds

telo,1
1

< ; tren[gui G(t,s)f(s,u(s))ds

n

= max_ G(t, s)f(s,u(s))ds+/ max G(t, s)f(s,u(s))ds

o0 t€[0,1] telo,1]

:/0 (=5 + 8)f (s, u(s)ds

ro (" s
—_ —_—— d = N
< Hl/o ( 5 + s)ds = r;

that is, Au € P,. o
__Hence, we have shown that if (3.1) and (3.3 hold, then A maps P into P; and
P, into ..

Next, we assert that {u € P(0,a,4) : o(u) > a} # 0 and o(Au) > a for all
u € P(o,a,4). In fact, the constant functio {u € P(o,a,4) :

o(u) > a}.

On the one hand, for u € P(0,a, 4+), we have

a
< = i < < < — .
a<o(u) te[r?i%,e]u(t) <wu(t) < Jul|l < o (3.4)

forallt € [1—6,6].
Also, for any u € P and t € [1 — 6, 6], we have

1-6

0

G(t,s)f(s,u(s))ds + /077 G(t,8)f(s,u(s))ds —|—/ G(t,s)f(s,u(s))ds

1-0 1 (1 _ 8)2
> /0 (1 —t)sf(s,u(s))ds — /n 5 f(s,u(s))ds
1-0 1 _5)2
> o)l [ - osis— [0S ay

1-6 1] _ )2
= o)l [ -nsas— [ 05 as
(1-t)(1- 9)2 (1-0)>

= s a2 o
L-6)1—62 (1-6)

> fnu =00 L
M3

Fmul) B2 5 0

which together with (3.2]) and (3.4)) implies

o(Au) = min /Gts (5, u(s))ds

te[1-6,0]
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0
> min / G(t,s)f(s,u(s))ds

Tte[1-6,0] J1_g

(2
a
— i G(t,s)ds =
> T i, Ol =

for u € P(0,a, ).

Finally, we verify that if u € P(0,a,c) and ||Au|| > a/0* , then o(Au) > a. To
see this, we suppose that u € P(o,a,c) and ||Au| > a/6*. Then it follows from
Au € P that

Au) = i Au)(t) > 0*||Aul| > a.
o(Aw) = i (Aw)(®) > 0| Au] > a

To sum up, all the hypotheses of the Leggett-Williams fixed point theorem are
satisfied. Therefore, A has at least three fixed points; that is, (1.2]) has at least
three positive solutions u, v and w satisfying

lul| <d, a< min w(t), d<]uw|, min _ w(t) < a.
te[1-6,0] te[1-6,6]

)

O

Theorem 3.2. Let m be an arbitrary positive integer. Assume that there exist
numbers di (1 <i<m)anda; (1 <j<m—1)with0 <d; <a; <@ <dy <
az < % < < dm—l <am-1< 04757:1 < dm such that

fltu) < o, tef0a ueldl 1<i<m, (35)

1

Fltou) > te[1-6,0), uela;, L], 1<j<m—1 (3.6)
Hy 0*

Then (L.2) has at least 2m — 1 positive solutions in Py .

Proof. We use induction on m. First, for m = 1, we know from that A :
Pj, — Py, Then it follows from Schauder fixed point theorem that has at
least one positive solution in Py, .

Next, we assume that this conclusion holds for m = k. To show that this
conclusion also holds for m = k + 1, we suppose that there exist numbers d; (1 <
i<k+1l)anda; (1<j<k)withO<di<a1 <@ <da<aa<@B<--<dp<
ap < g% < dg41 such that

d; ,

fltu) < T tel0,n], uel0,d;], 1 <i<k+1, (3.7)
1

F(t,u) > ZTJQ tel—0,6], uc [aj,%}, 1<j<k. (3.8)

By assumption, (1.2 has at least 2k — 1 positive solutions u; (i =1,2,...,2k — 1)
in Py, . At the same time, it follows from Theorem (3.7) and (3.8) that (1.2)

has at least three positive solutions u,v and w in Py, , such that

lul| < dg, ax < min o(t), di<]|wl, min  w(t) < ag.
te[1—6,0] te[1—6,0]

s - Y

Obviously, v and w are different from u; (i =1,2,...,2k — 1). Therefore, (1.2) has
at least 2k 4- 1 positive solutions in Py, ,,, which shows that this conclusion also
holds for m =k + 1. d
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Example 3.3. We consider the BVP

whi

u(t) = f(t,u(t), te0,1],

3.9
W(0) = u()) =u'(5) =0, (39)
o (1—t)(u+1)32, (t,u) €[0,1] x [0,1],
Ftow) — 4 (=012 =) 4 (1) € [0,1)x 1,2,
TN 1401 - 1), (t,u) € [0,1] x [2,20],
6174(1 —t), (t,u) € [0,1] x [20, +00)

Let # = 3/5. Then 6* = 1/10. A simple calculation shows that H; = 14/81 and

Hy

= 1/25. If we choose d = 1, a = 2, ¢ = 1068, then all the conditions of Theorem

are satisfied. Therefore, it follows from Theorem [3.1]that (3.9) has at least three
positive solutions.
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