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NON-EXISTENCE OF GLOBAL SOLUTIONS TO GENERALIZED
DISSIPATIVE KLEIN-GORDON EQUATIONS WITH POSITIVE
ENERGY

MAXIM OLEGOVICH KORPUSOV

ABSTRACT. In this article the initial-boundary-value problem for generalized
dissipative high-order equation of Klein-Gordon type is considered. We con-
tinue our study of nonlinear hyperbolic equations and systems with arbitrary
positive energy. The modified concavity method by Levine is used for proving
blow-up of solutions.

1. INTRODUCTION

We consider the initial-boundary-value problem
uge + prug + Ahy(x, Au) — div(he(z, [Vu|)Vu) + div(hs(z, |Vu|)Vu) =0, (1.1)

0
ulgn = %bg =0, u(z,0)=uo(x), u'(x,0)=ui(z), p=>0, (1.2)

in a bounded domain Q C R with smooth boundary 92 € C*? for § € (0, 1].

Finite time blow-up of solutions of generalized Klein-Gordon equation have been
studied by many authors; see for example [2] [3, 6, [4 24, [5] 16]. In these ref-
erences, the authors considere problems either for negative energy or for weaker
conditions than a condition of negative initial energy (see [I6, 23]). Other authors
have assumed a condition of positive energy under other two conditions on the ini-
tial functions. However, the mentioned authors have not studied the compatibility
of these conditions, which is come times hard to understand. Finally these condi-
tions for any fixed ug and sufficiently large u; are not compatible. These authors
have used the classic concavity Levine’s method. In this paper we use a modified
method, developed in [I], that provide two conditions for which their compatibility
is easily checked.

Let us remember that there are five well-known methods for studying a blow-
up phenomena. The first method is the concavity method developed by Levine
[13, M4, 19, 20, 22, [15]. The second method is the test functions developed by
Pokhozhaev, Mitidieri and Zhang [I7, I8, [7, 25]. And the third method based
on different criterion of comparison and was developed by Samarskii, Galaktionov,
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Kurdyumov, Mikhailov [8, 21I]. The forth method based of positive averageswas
developed by Keller and Glassey [12] [T0]. The fifth method, for nonlinear damping,
was developed by by Georgiev and Todorova [9].

2. MAIN DIFFERENTIAL INEQUALITY

Consider the important differential inequality
PP — (P 4+ 4P D+ 32 >0, a>1,3>0,v>0, (2.1)

where ®(t) € C)([0,T]), ®(t) > 0, ®(0) > 0. Dividing both sides (2.1)) by &+,

we obtain ,

D'\ P’
<7> +’Y@ +ﬂ¢’_a > 0.

(I)a
Therefore,
L(qﬂ—a)” + L (@) 4+ 85 > 0. (2.2)
11—« l1-«a -
By definition, putZ(t) = ®!7%(¢). Then, from (2.2)) we obtain
7"+ 47— Bla—1)Z™ <0, o1 = af - (2.3)
Also by definition, put Y () = ¢?*Z(t); hence from (2.3)) we obtain
Y — Y — Bla—1)e Y™ <0, §=—1 - (2.4)
o —
It is easily shown that the following chain of equalities holds:
vy — (q;l—ae’Yt)’ — (I)—a(a — 1)e’Yt [ _ (I)/(t) + ﬁ@(ﬁ)] (2.5)
Take the initial condition
3'(0) > ﬁ@(@); (2.6)

then there exists to > 0 such that
o'(t) > %(I)(t) for t € [0, to). (2.7)
Combining ([2.7)) and , we obtain
Y'(t) <0 for te]0,tp).
Since —yY”(t) > 0, for ¢ € [0, 19), it follows from (2.4) that

V"~ Bla—1)e Y <0, §= %1 for ¢ € [0,tg). (2.8)
Now multiplying both sides by Y, we obtain
YY" — Bla—1)e YOy’ >0, 6= %1 for t € [0,%o). (2.9)
Let us remark that
ety y’ = %[e—“ylm] +oeT Y —aqe Yy,
Thus we have
Yy = +1a1 %[e*‘”Y”al] + ﬁae*‘”yl*al. (2.10)

Combining ([2.10]) with (2.9)), we obtain

—-1)d — 1)
Y'Y — fla—1) )—[e_‘stYHal] _ Bla=1) e Otylter >0 fort € [0,t),
14+ay dt 1+ oy
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clearly, from this inequality we obtain

Bla=1)d, _
VY'Y > 0 for t € [0,). 2.11
Sl 120 fort[0.t0) (211)
Integrating the above expression,
208(a — 1)?
(Y')? > A% + Wl sy > A% (2.12)
200 — 1
where
206(a—1)?
a2 = (v/(0)? - 220 D yivan ). (2.13)
200 —1
We assume the condition
A? > 0.

The reader will have no difficulty in showing that this condition is equivalent to the
condition

20

A% = (a — 1)2072(0)[(¥(0) — ——d(0))® — o . 2.14
(0= 1282 (0)[(#'(0) - —=B(0)" ~ 5= B(0)] > 0. (214)
Therefore, the condition A2 > 0 and the following condition are equivalent.
2 23
'(0) - —— @ ®(0). 2.1
(#(0) - —2(0) > 5 2(0) (215)

Thus, combining (2.12)) and (2.14)), we obtain
V() < —A < 0= (tg) > ﬁ@(to).

But now we have that Y”(¢o) < 0. Therefore, using this algorithm of “continue in
time”, we obtain

Y'(t) <0 forallte[0,T).
This implies that

Y|>A>0=Y'(t)<-A=Y(#) <Y(0) - At =

t/(a—1)
1—a —t[pl—o — <
= O17(t) < e DT ¥(0) — At] = D(t) > (1= (0) — Af]i/@—D

The result is the following theorem.
Theorem 2.1. Suppose ®(t) € C([0,T)), satisfies inequality [2.1)) and
Y
o’ — 2.1
0) > (), (216)

26
200 — 1
where ®(t) >0, ®(0) > 0, then the time T > 0 can not be arbitrarily large, but the
following inequality holds

(®'(0) — — 1<1>(0))2 > 3(0) (2.17)

o —

T <Ty <®0)A71,

A% = (a—1)%072%(0)[(2'(0) — az 1<I>(0))2 - zjf 1<I>(0)],

where limsup,;p ®(t) = +00.
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3. CONDITIONS

We begin with conditions on the functions hy(z, s), ha(z, s), and hs(z, s).
Conditions on hq(z,s):

(H1.1) hy(z,s): Q x R! — R! is a Caratheodory function;
(H1.2) for almost all = € Q the function hi(z,s) € C(R') and a “growth condi-
tions” take place

|hi(x,8)] < e+ 02|5|”1_17 |hys(x,8)| <1+ 02|s\p1_2 for p; > 2; (3.1)

(H1.3) for any v(z) € W2 () there exist the inequalities
0< / hi(x, Av(z))Av(z) dz < 6, / Hy(z, Av(x)) dx, (3.2)
Q Q

where 6; > 0 and Hy(z,s) = [; do hi(z,0);
conditions on hy(z, s):

(H2.1) ha(z,s): Q2 xRL — RL is a Caratheodory function;
(H2.2) for almost all # € Q the function ho(z,s) € CD(RL) and we suppose the
following inequalities

0 < ho(x,8) < c3+cas??™ 2, |hh(x,8)s| < 3 +cgsP?™2  for py > 2; (3.3)

(H2.3) for any v(z) € Wi*?(Q) an inequality holds
og/hﬂ%nmmvm%mgea/¢ug@4vm for 6, >0,  (3.4)
Q Q

where Hy(z,s) = [, do he(z,0)0.
Conditions on h3(z, s):
(H3.1) hs(z,s): Q x R} — RL is a Caratheodory function;
(H3.2) for almost all « € Q the function hs(z, s) € CH(RL) and

0 < ha(z,5) < c5 +csP 2, |hhy(w,8)s| < cs5 + s 2, p3 > 2 (3.5)
(H3.3) for all v(z) € WP*(Q2) we assume that

/mwwmwwwz%/mmwwm for B > 2, (3.6)
Q Q

where Hs(z,s) = [, do hs(z,0)0.
We define

* Np/(pr)v fOI‘N>p;
b +00, for N < p.

It can easily be checked that from the conditions on the functions hq(z, s), ha(z, s),
and h3(z, s) we have

Ahy(z, Av) - WP (Q) — W™2P1(Q),  ph = pi/(p1 — 1),
div(ha(z,|Vo|) Vo) : WP (Q) — WHP2(Q),  py = pa/(p2 — 1),
div(hs(z, |[Vo|) Vo) : WP (Q) — WIPs(Q),  ps = ps/(ps — 1),

and this operators are continuous in the corresponding topologies.
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Definition 3.1. A strong generalized solution of (1.1, is a function u(x)(t)
in the class

u(z)(t) € CA([0, T W™ (Q)), T >0,
for some large s > 0, if the following condition hold:

/Qu”(x)(t)w(x) dzr + u/ﬁu’(x)(t)w(x) dz + /Q hi(z, Au)Aw(z) dz

(3.7)
+ /Q ho(z, |Vu|)(Vu, Vw) dx — /Q hs(z,|Vu|)(Vu, Vw)dx =0, t€][0,T]
for all w(x) € WP (Q); and
u(x)(0) = up(x) € WP (Q), o/ (2)(0) = uy(x) € L2(R). (3.8)

4. BLOW-UP OF SOLUTIONS

Assume that there is a weak solution u(z)(t) in the class C®?) ([0, T]; W' (Q))
for some T > 0. Let us put w = u(z)(t) in equation (3.7)), then we obtain the first
energy equality

1d*® d®
S oA J—|—/ hi(z, Au)Audx —|—/ ha(z, |Vu|)|Vu|? dz
2d2 " 2 dt o
(4.1)
- / o (@, | V) Vul? da,
Q
where we denote
O(t) = / lul?de, J(t) = / |u'|? dax.
Q Q
Let us put w = v'(z)(t) in (3.7)), we obtain the second energy equality
d
( J+ | Hi(z,Au)dx + Hg(x,|Vu|)dJ;) + ud
dt Q Q
(4.2)
= @/QHg(l} [Vul) de
Furthermore, integrating (4.2)) over time, we obtain the inequality
fJ—|—/ Hi(z, Au)dx +/ Hy(z,|Vul|) de — / Hs(z,|Vul)d (4.3)
where
1
0) = 5/ |u1\2da:+/ Hy(x, Aug) dx
Q @ (4.4)

+/Hg(a:,|Vu0|)dx—/Hg(x,|Vu0|)da;
Q Q

By (4.3) we obtain the inequality

%J+03/Hl(x7Au)dﬂc+93/ Hj(x,|Vul) dz — 03E(0)
Q Q

§93/ Hs(z,|Vul) dx
Q

combining this with the condition (H3.3), we obtain

6
—3J+93/H1(x7Au)dm+93/ Hj(x,|Vul) dz — 03E(0)
Q
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< / h (e, [V)) [Vul? da.
Q

Using the above inequality and (4.1)), we obtain

1d%® 2
st I [ e s suds+ [ bV Vu? do
2dt2 2 dt a ) (4.5)

6
> §3J+93/Hl(m,Au)dx—l—Gg/Hg(x,\VuDdx—GgE(O).
Q Q

Now taking into account the conditions (H3.1) and (H3.2), from (4.5) we obtain

1d?d dd
som B o [ B A de s 6y [ o Vude
2d 2 dt o o (4.6)

> 02—3,] + 03 A Hi(x, Au) dz + 05 /Q Hy(z,|Vul) de — 63 E(0).
Under the conditions 63 > 6, 83 > 05 using the inequalities
/ Hy(z,Au)dz >0, / Hs(z,|Vul)dz > 0,
from , we obtaigil "
S—— + - — +03E(0) > (1+ %)J(t). (4.7)

Using the Cauchy-Bunyakovsky-Schwarz inequality, it is easily shown the differen-
tial inequality
(@) < 4J®. (4.8)
Combining (4.7) and (4.8)), we obtain the important differential inequality
1 0
PP — o (1+ 53’)(@')2 + u®9 + 205 E(0)® > 0. (4.9)
Comparing this differential inequality with (2.1)), we obtain that

1 0
a=§(1—|—53)>1 for 63 > 2,

B=20,5(0), y=p 2

20— 1
We assume the following conditions

Y Ap
8 (0)7 a—1 93—2

4p
03 — 2
Ap

(@’(0) - 937_2@(0))2 > 8E(0)2(0), (4.11)

1
E(O)£§/Q|u1|2dx+/QH1(x,Auo)dx

+ [ Hao[Vual)ds ~ [ Hi(e, [Vuo])do >0,
Q Q

Under conditions (4.10)—(4.12)), the time T" > 0 of existence of u(z)(t) is bounded
from above

'(0) > ®(0) > 0, (4.10)

(4.12)

T S @(2—93)/4(0)14—17
03 — 2
4

Yo -mr20) [ (0) - - 0(0)) "~ sE0)2(0)].

2: —
4= i -2
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at the same time
edut/(0s—2)

[@2-0:)/4(0) — At]4/(0:-2)

o(t) > (4.13)

where
d'(0) = 2/ uy(z)up(x) dz, @(0) :/ luo|? du.
Q Q
Therefore, our main result of is the following theorem.

Theorem 4.1. Assume all conditions on hi, hs and hz hold. Under the following
conditions
4p

5 ®0)+ (8E(0)®(0))*2 >0, E(0) >0, (4.14)
y—

' (0) >

03 > 01, 03> 0, (4.15)
there exists the estimation from above for the time of solution existence T,
Ty < Too = DC70)/4(0) A7,

i. e., we have that limsup,,p, ®(t) = +oo, where
®(0) :/ luo|® dz,  ®'(0) :2/ urug dz,
Q Q
1
E(0) = 7/ |u1\2d:v+/H1(x,Auo)dx
2 Ja Q

+ [ Hatw,[Vual)d ~ [ Ha(e, Vo] do
0 Q

95’%2)2@*1*93/2(0> [(2(0) - 9345 52(0)° = 8E(0)2(0)].

Remark 4.2. Now we shall see that all conditions (4.14)) are compatible for enough
small p > 0. Indeed, first we shall choose ug € W5*(2) enough large to satisfy
the inequality

/ Hy(, [Vuo|) do
Q

AQE(

9 (4.16)
> / Hy(z, Aup) d:lc—i—/ Hy(x, |Vugl) dz + 7/ lug|? da.

Q Q 03 —2 Jo
Secondly we fix up and choose u; = Aug for A > 2u/(63 — 2). In this case we have

4 2
03 —2 03 —2

Finally we choose A > 2u/(03 — 2) enough large to satisfy the inequality

2
E(O):)\i/ |u0|2dl‘+/H1(1‘7Au0)d:p
2 Ja Q

'(0) B(0) = 2()\ - )@(o) > 0. (4.17)

+/ Hg(x,|Vuo|)dx—/H3(x, Vuo|) da > 0.
Q Q

Under condition (4.17)), inequality (4.14]) is equivalent to

(@'(0) - 934f 2<I>(0))2 > 8E(0)®(0), (4.18)
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by our substitution we obtain from the left and right side of this inequality

(@’(0) _ e @(0))2 = 4()\ - 27“)2&(0)

05 — 2 05 — 2
B s —2 " (63— 2)2 ’
and
8E(0)®(0) = 4\2d2(0) + 89(0) [ / H, (z, Aug) dz
@ (4.20)
+/ Hy(a, |Vuo|) da / Hy(z, [Vuo|) da
Q Q
Combining (4.18)) with (4.19)) and (4.20)), we obtain that
oy 4u 2 (e 16pA 16p® N .o
(cp 0~ 57 2@(0)) - (4>\ R e 2)2)c1> (0) > 8E(0)®(0)
= 4)%®2(0) +8<I>(0)[/ H,(z, Aug) dz (4.21)
Q
+/ Hy(z, |Vug|) dz — / Hs(z, |Vug|) dx],
Q Q
Now it is not hard to prove that
2p° 2
Hs(z, [Vuol) dz + ———5 [ |uo|"dz
@ (05 =2)* Jo (4.22)

2uA
> =1 /|u0|2dx+/Hl(:mAuo)da?—&—/Hg(m,|Vu0|)dx.
03 —2 Ja 0 )

Moreover, we choose

1 65— 2.1
Ai,u for pu € (0, ( 5 )3,

and if g4 = 0, then A > 0 and large enough. We see that all foregoing conditions are
satisfied for small enough p > 0. Now combining this large enough A and (4.22)),
we obtain the inequality

/H(m [Vu |)dx+2u2/ luo|? dx
g e (03 —2)2 Jo "

2 /|u0|2dm+/Hl(x,Auo)dx—i—/H2($,|Vuo|)dx.
03—2 9] Q Q

Obviously, this inequality holds by (4.16)). Therefore, we have to prove (4.16) for
some functions on hq(x,s), ho(x,s), and hs(x,s). At the same time we check the

condition (4.15). Suppose

hi(z,s) = |s|P*™%s, ho(x,s) = sP272  hy(x,s) = sP* 2
where p3 > p1 > 2, p3 > p2 > 2. Then

p1 b3
Hl(I,S) = |S| ) HQ(IVS) = ° ) H3(I75) = ‘5‘ )
P1 P2 b3

and 03 = p3 > 01 = p; > 2, 03 = p3 > 0 = ps. Therefore, first note that the
condition ([.15) holds, and further note that for large enough ug(z) € Wa* (2) the
condition 4.16: also holds.

>
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