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SOLUTIONS OF p(x)-LAPLACIAN EQUATIONS WITH CRITICAL
EXPONENT AND PERTURBATIONS IN RN

XIA ZHANG, YONGQIANG FU

Abstract. Based on the theory of variable exponent Sobolev spaces, we study
a class of p(x)-Laplacian equations in RN involving the critical exponent.

Firstly, we modify the principle of concentration compactness in W 1,p(x)(RN )
and obtain a new type of Sobolev inequalities involving the atoms. Then, by
using variational method, we obtain the existence of weak solutions when the
perturbation is small enough.

1. Introduction

We study the solutions to the problem

− div(|∇u|p(x)−2∇u) + |u|p(x)−2u = |u|p
∗(x)−2u+ h(x), x ∈ RN , (1.1)

where p is Lipschitz continuous on RN and satisfies

1 < p− ≤ p(x) ≤ p+ < N, (1.2)

0 ≤ h(6≡ 0) ∈ Lp′(x)(RN ).
We will study (1.1) in the frame of variable exponent function spaces, the defi-

nitions of which will be given in section 2.
We say that u ∈ W 1,p(x)(RN ) is a weak solution of problem (1.1), if for any

v ∈W 1,p(x)(RN ),∫
RN

(
|∇u|p(x)−2∇u∇v + |u|p(x)−2uv − |u|p

∗(x)−2uv − h(x)v
)
dx = 0.

We can verify that the weak solution for (1.1) coincide with the critical point of
the energy functional on W 1,p(x)(RN ):

ϕ(u) =
∫

RN

(
|∇u|p(x) + |u|p(x)

p(x)
− |u|p∗(x)

p∗(x)
− h(x)u) dx.

If h(x) ≡ 0, it is easy to verify that u = 0 is a trivial solution to (1.1). The
existence of nontrivial weak solutions for a class of p(x)-Laplacian equations without
perturbations was studied in [3, 10, 12, 19] via variational methods. They verified
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the Palais-Smale conditions for the energy functional ϕ and obtained critical points
for ϕ. Moreover, they obtained weak solutions for the p(x)-Laplacian equations.

In [12], we study the following type of p(x)-Laplacian equations with critical
exponent:

− div(|∇u|p(x)−2∇u) + λ|u|p(x)−2u = f(x, u) + h(x)|u|p
∗(x)−2u, x ∈ RN . (1.3)

The difficulty is due to the loss of compactness for the embedding W 1,p(x)(RN ) ↪→
Lp∗(x)(RN ). To prove the Palais-Smale condition for the corresponding energy func-
tional, we assume that the coefficient h(x) of critical part satisfies h(0) = h(∞) = 0.
Then, based on the principle of concentration compactness on W 1,p(x)(RN ) and
symmetric critical point theorem, we obtain infinitely many radial weak solutions
for (1.3).

When p(x) is constant, equations with critical growth have been studied exten-
sively, see for example [2, 5, 14, 21, 22]. The aim of this paper is to use variational
method to show that (1.1) has at least one weak solution if p(x) is function and
h(x) 6≡ 0. Here the difficulty is also caused by the loss of the compactness for the
embedding W 1,p(x)(RN ) ↪→ Lp∗(x)(RN ). In this paper, by using Ekeland’s varia-
tional principle [9], we obtain a Palais-Smale sequence if ‖h‖p′(x) is sufficient small.
We do not expect to prove the Palais-Smale condition for ϕ and will not make
similar assumptions as in [12]. However, based on the principle of concentration
compactness on variable exponent Sobolev space established in [12], we prove that
the weak limit of Palais-Smale sequence is a weak solution for (1.1) (see Theorem
3.3). In order to obtain the main result, we also give a kind of modified Sobolev
inequalities involving the atoms in the concentration-compactness principle (see
Theorem 2.7) .

2. Preliminaries

In the studies of nonlinear problems with variable exponential growth, see for
example [1, 3, 4, 6, 10, 15, 16, 20], variable exponent spaces play an important
role. Since they were thoroughly studied by Kovác̆ik and Rákosńık [13], variable
exponent spaces have been used to model various phenomena. In [17], Růz̆ic̆ka
presented the mathematical theory for the application of variable exponent Sobolev
spaces in electro-rheological fluids. As another application, Chen, Levine and Rao
[7] suggested a model for image restoration based on a variable exponent Laplacian.

For the convenience of the reader, we recall some definitions and basic properties
of variable exponent spaces Lp(x)(Ω) and W 1,p(x)(Ω), where Ω ⊂ RN is a domain.
For a deeper treatment on these spaces, we refer to [8].

Let P(Ω) be the set of all Lebesgue measurable functions p : Ω → [1,∞], we
denote

ρp(x)(u) =
∫

Ω\Ω∞
|u|p(x) dx+ sup

x∈Ω∞

|u(x)|,

where Ω∞ = {x ∈ Ω : p(x) = ∞}.
The variable exponent Lebesgue space Lp(x)(Ω) is the class of all functions u

such that ρp(x)(tu) <∞, for some t > 0. Lp(x)(Ω) is a Banach space equipped with
the norm

‖u‖p(x) = inf{λ > 0 : ρp(x)(
u

λ
) ≤ 1}.
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For any p ∈ P(Ω), we define the conjugate function p′(x) as

p′(x) =


∞, x ∈ Ω1 = {x ∈ Ω : p(x) = 1},
1, x ∈ Ω∞,

p(x)
p(x)−1 , x ∈ Ω \ (Ω1 ∪ Ω∞).

Theorem 2.1. Let p ∈ P(Ω). For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω),∫
Ω

|uv| dx ≤ 2‖u‖p(x)‖v‖p′(x).

For any p ∈ P(Ω), we denote

p+ = sup
x∈Ω

p(x), p− = inf
x∈Ω

p(x)

and denote by p1 � p2 the fact that infx∈Ω (p2(x)− p1(x)) > 0.

Theorem 2.2. Let p ∈ P(Ω) with p+ <∞. For any u ∈ Lp(x)(Ω), we have
(1) if ‖u‖p(x) ≥ 1, then ‖u‖p−

p(x) ≤
∫
Ω
|u|p(x) dx ≤ ‖u‖p+

p(x);
(2) if ‖u‖p(x) < 1, then ‖u‖p+

p(x) ≤
∫
Ω
|u|p(x) dx ≤ ‖u‖p−

p(x).

The variable exponent Sobolev space W 1,p(x)(Ω) is the class of all functions
u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω). W 1,p(x)(Ω) is a Banach space equipped
with the norm

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x).

By W
1,p(x)
0 (Ω) we denote the subspace of W 1,p(x)(Ω) which is the closure of

C∞0 (Ω) with respect to the norm ‖ · ‖1,p(x). Under the condition 1 ≤ p− ≤ p(x) ≤
p+ < ∞, W 1,p(x)(Ω) and W

1,p(x)
0 (Ω) are reflexive. And we denote the dual space

of W 1,p(x)
0 (Ω) by W−1,p′(x)(Ω).

For u ∈W 1,p(x)(Ω), if we define

‖|u‖| = inf{t > 0 :
∫

Ω

|u|p(x) + |∇u|p(x)

tp(x)
dx ≤ 1},

then ‖| · ‖| and ‖ · ‖1,p(x) are equivalent norms on W 1,p(x)(Ω). In fact, we have
1
2
‖u‖1,p(x) ≤ ‖|u‖| ≤ 2‖u‖1,p(x).

Theorem 2.3. For any u ∈W 1,p(x)(Ω), we have
(1) if ‖|u‖| ≥ 1, then ‖|u‖|p− ≤

∫
Ω
(|∇u|p(x) + |u|p(x)) dx ≤ ‖|u‖|p+ ;

(2) if ‖|u‖| < 1, then ‖|u‖|p+ ≤
∫
Ω
(|∇u|p(x) + |u|p(x)) dx ≤ ‖|u‖|p− .

Theorem 2.4. Let Ω be a bounded domain with the cone property. If p ∈ C(Ω̄)
satisfying (1.2) and q is a measurable function defined on Ω with

p(x) ≤ q(x) � p∗(x) ,
Np(x)
N − p(x)

a.e. x ∈ Ω,

then there is a compact embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Theorem 2.5. Let Ω be a domain with the cone property. If p is Lipschitz contin-
uous and satisfies (1.2), q is a measurable function defined on Ω with

p(x) ≤ q(x) ≤ p∗(x) a.e. x ∈ Ω,

then there is a continuous embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).
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In the proof of main results in Section 3, we will use the following principle of
concentration compactness in W 1,p(x)(RN ) established in [12].

Theorem 2.6. Let {un} ⊂W 1,p(x)(RN ) with ‖|un‖| ≤ 1 such that

un → u weakly in W 1,p(x)(RN ),

|∇un|p(x) + |un|p(x) → µ weak-∗ in M(RN ),

|un|p
∗(x) → ν weak-∗ in M(RN ),

as n→∞. Denote

C∗ = sup{
∫

RN

|u|p
∗(x) dx : ‖|u‖| ≤ 1, u ∈W 1,p(x)(RN )}.

Then the limit measures are of the form

µ = |∇u|p(x) + |u|p(x) +
∑
j∈J

µj δxj + µ̃, µ(RN ) ≤ 1,

ν = |u|p
∗(x) +

∑
j∈J

νjδxj , ν(RN ) ≤ C∗,

where J is a countable set, {µj}, {νj} ⊂ [0,∞), {xj} ⊂ RN , µ̃ ∈M(RN ) is a non-
atomic nonnegative measure. The atoms and the regular part satisfy the generalized
Sobolev inequality

ν(RN ) ≤ 2(p+p∗+)/p−C∗max{µ(RN )p∗+/p− , µ(RN )p∗−/p+},

νj ≤ C∗max{µ
p∗+
p−
j , µ

p∗−/p+

j },
(2.1)

where p∗+ = supx∈RN p∗(x), p∗− = infx∈RN p∗(x).

To obtain the main result, we prove the following modified version of Theorem
2.6 in which we give a new form of the inequality (2.1).

Theorem 2.7. Under the hypotheses of Theorem 2.6, for any j ∈ J , the atom xj

satisfies:

νj ≤ C∗µ

p∗(xj)
p(xj)

j , (2.2)

where J and xj are as in Theorem 2.6.

Firstly, we give two lemmas.

Lemma 2.8. Let x ∈ RN . For any δ > 0, there exists k(δ) > 0 independent of x
such that for 0 < r < R with r

R ≤ k(δ), there is a cut-off function ηr
R with ηr

R ≡ 1
in Br(x), ηr

R ≡ 0 outside BR(x), and for any u ∈W 1,p(x)(RN ),∫
BR(x)

(|∇(ηr
Ru)|p(x) + |ηr

Ru|p(x)) dx

≤
∫

BR(x)

(|∇u|p(x) + |u|p(x)) dx+ δmax{‖|u‖|p+ , ‖|u‖p−}.

The above lemma is obtained by a similar discussion to the one in [11, Lemma
3.1].
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Lemma 2.9. Let x ∈ RN , δ > 0 and r
R < k(δ), where k(δ) is from Lemma 2.8.

Then for any u ∈W 1,p(x)(RN ), we have∫
Br(x)

|u|p
∗(x) dx

≤ C∗max
{( ∫

BR(x)

(|∇u|p(x) + |u|p(x)) dx+ δmax{‖|u‖|p+ , ‖|u‖|p−}
)p∗x,R,+/px,R,−

,( ∫
BR(x)

(
|∇u|p(x) + |u|p(x)) dx+ δmax{‖|u‖|p+ , ‖|u‖|p−}

)p∗x,R,−/px,R,+
}
,

where

px,R,− , inf
y∈BR(x)

p(y), px,R,+ , sup
y∈BR(x)

p(y),

p∗x,R,− , inf
y∈BR(x)

p∗(y), p∗x,R,+ , sup
y∈BR(x)

p∗(y).

Proof. Using the cut-off function ηr
R in Lemma 2.8 and the definition of C∗, we

obtain∫
Br(x)

|u|p
∗(x) dx ≤

∫
BR(x)

|uηr
R|p

∗(x) dx

≤ C∗max{‖|uηr
R‖|p

∗
x,R,+ , ‖|uηr

R‖|p
∗
x,R,−}

≤ C∗max
{( ∫

BR(x)

(|∇(uηr
R)|p(x) + |uηr

R|p(x)) dx
)p∗x,R,+/px,R,−

,( ∫
BR(x)

(|∇(uηr
R)|p(x) + |uηr

R|p(x)) dx
)p∗x,R,−/px,R,+

}
.

Then, by Lemma 2.8, we obtain the result. �

Proof of Theorem 2.7. Let x0 ∈ RN . By Lemma 2.9, for any δ > 0, there exists
k(δ) > 0 such that for 0 < r < R with r/R ≤ k(δ),∫

Br(x0)

|un|p
∗(x) dx

≤ C∗max
{( ∫

BR(x0)

(|∇un|p(x) + |un|p(x)) dx

+ δmax{‖|un‖|p+ , ‖|un‖|p−}
)p∗x0,R,+/px0,R,−

,( ∫
BR(x0)

(|∇un|p(x) + |un|p(x)) dx+ δmax{‖|un‖|p+ , ‖|un‖|p−}
)p∗x0,R,−/px0,R,+

}
.

For any 0 < r′ < r, R′ > R. Let η1 ∈ C∞0 (Br(x0)) such that 0 ≤ η1 ≤ 1; η1 ≡ 1
in Br′(x0), η2 ∈ C∞0 (BR′(x0)) such that 0 ≤ η2 ≤ 1; η2 ≡ 1 in BR(x0). We obtain∫

RN

|un|p
∗(x)η1 dx

≤
∫

Br(x0)

|un|p
∗(x) dx

≤ C∗max
{( ∫

BR(x0)

(|∇un|p(x) + |un|p(x)) dx+ δ
)p∗x0,R,+/px0,R,−

,
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BR(x0)

(|∇un|p(x) + |un|p(x)) dx+ δ
)p∗x0,R,−/px0,R,+

}
.

Letting n→∞, we obtain

ν(B̄r′(x0))

≤
∫

RN

η1 dν

≤ C∗max
{( ∫

RN

η2 dµ+ δ
)p∗x0,R,+/px0,R,−

,
( ∫

RN

η2 dµ+ δ
)p∗x0,R,−/px0,R,+

}
.

Thus

ν({x0})
≤ ν(B̄r′(x0))

≤ C∗max
{(
µ(B̄R′(x0)) + δ

)p∗x0,R,+/px0,R,−
,
(
µ(B̄R′(x0)) + δ

)p∗x0,R,−/px0,R,+
}
,

where B̄R′(x0) is the closure of BR′(x0). Let δ → 0, R′ → 0. Thus we have

ν({x0}) ≤ C∗max
{
µ({x0})p∗(x0)/p(x0), µ({x0})p∗(x0)/p(x0)

}
= C∗µ({x0})p∗(x0)/p(x0).

Then, for any j ∈ J , the atom xj satisfies νj ≤ C∗µ
p∗(xj)/p(xj)
j . The proof is

complete. �

3. Main Results

In this section, we prove that (1.1) has at least one nontrivial weak solution
u0 ∈W 1,p(x)(RN ). First, we prove the following preliminary result which will show
that the weak limit of Palais-Smale sequence of ϕ is a weak solution for (1.1) (see
Theorem 3.3).

Throughout this paper, we denote by C universal positive constants unless oth-
erwise specified.

Theorem 3.1. Let {un} be a sequence in W 1,p(x)(RN ) such that un → u weakly
in W 1,p(x)(RN ) and ϕ′(un) → 0 in W−1,p′(x)(RN ), as n → ∞. Then ∇un → ∇u
a.e. in RN , as n→∞. Moreover, ϕ′(u) = 0 .

Proof. Since un → u weakly in W 1,p(x)(RN ), passing to a subsequence, still denoted
by {un}, we may assume that there exist µ, ν ∈ M(RN ) such that |∇un|p(x) +
|un|p(x) → µ and |un|p

∗(x) → ν weakly-∗ in M(RN ), where M(RN ) is the space of
finite nonnegative Borel measures on RN . By Theorems 2.6 and 2.7, there exist
some countable set J , {µj}, {νj} ⊂ (0,∞) and {xj} ⊂ RN such that

µ = |∇u|p(x) + |u|p(x) +
∑
j∈J

µj δxj + µ̃, (3.1)

ν = |u|p
∗(x) +

∑
j∈J

νj δxj , (3.2)

νj ≤ C∗µ
p∗(xj)/p(xj)
j , (3.3)



EJDE-2012/120 SOLUTIONS OF p(x)-LAPLACIAN EQUATIONS 7

where
C∗ = sup

{ ∫
RN

|u|p
∗(x) dx : ‖|u‖| ≤ 1, u ∈W 1,p(x)(RN )

}
,

where µ̃ ∈M(RN ) is a nonatomic positive measure, δxj is the Dirac measure at xj .
In the following, we prove that J is a finite set or empty. In fact, for any ε > 0,

let φ ∈ C∞0 (B2ε(0)) such that 0 ≤ φ ≤ 1, |∇φ| ≤ 2
ε ; φ ≡ 1 on Bε(0). For any j ∈ J ,

{φ(·−xj)un} is bounded on W 1,p(x)(RN ). Then we have 〈ϕ′(un), φ(·−xj)un

〉
→ 0,

as n→∞. Note that

〈ϕ′(un), φ(· − xj)un

〉
=

∫
RN

(
|∇un|p(x)−2∇un∇(unφ(x− xj)) + |un|p(x)φ(x− xj)− |un|p

∗(x)φ(x− xj)

− h(x)unφ(x− xj)
)
dx

=
∫

RN

(
(|∇un|p(x) + |un|p(x))φ(x− xj) + |∇un|p(x)−2∇un∇φ(x− xj) · un

− |un|p
∗(x)φ(x− xj)− h(x)unφ(x− xj)

)
dx.

As un → u in Lp(x)(B2ε(xj)) and h ∈ Lp′(x)(RN ), we obtain∫
RN

h(x)unφ(x− xj) dx→
∫

RN

h(x)uφ(x− xj) dx,

as n→∞. Using (3.1) and (3.2) we obtain

lim
n→∞

∫
RN

|∇un|p(x)−2∇un∇φ(x− xj) · un dx

=
∫

RN

−φ(x− xj) dµ+
∫

RN

h(x)uφ(x− xj) dx+
∫

RN

φ(x− xj) dν.
(3.4)

It is easy to verify that ‖∇φ(x − xj) · un‖p(x) → ‖∇φ(x − xj) · u‖p(x), as n → ∞.
Then

lim
n→∞

|
∫

RN

|∇un|p(x)−2∇un∇φ(x− xj) · un dx|

≤ lim sup
n→∞

∫
RN

|∇un|p(x)−1|∇φ(x− xj) · un| dx

≤ lim sup
n→∞

2‖|∇un‖p(x)−1|p′(x) · ‖∇φ(x− xj) · un‖p(x) ≤ C‖∇φ(x− xj) · u‖p(x).

Note that ∫
RN

|∇φ(x− xj) · u|p(x) dx

=
∫

B2ε(xj)

|∇φ(x− xj) · u|p(x) dx

≤ 2‖|∇φ(x− xj)|p(x)‖
(

p∗(x)
p(x) )′,B2ε(xj)

· ‖|u|p(x)‖ p∗(x)
p(x) ,B2ε(xj)

and∫
B2ε(xj)

(|∇φ(x− xj)|p(x))(
p∗(x)
p(x) )′ dx =

∫
B2ε(xj)

|∇φ|N dx ≤ (
2
ε
)Nmeas(B2ε(xj))

=
4N

N
ωN ,
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where ωN is the surface area of the unit sphere in RN . As
∫

B2ε(xj)
(|u|p(x))

p∗(x)
p(x) dx→

0, as ε→ 0, we obtain ‖∇φ(x− xj) · u‖p(x) → 0, which implies

lim
n→∞

∫
RN

|∇un|p(x)−2∇un∇φ(x− xj) · un dx→ 0,

as ε→ 0. Similarly, we can also get

|
∫

RN

h(x)uφ(x− xj) dx| ≤
∫

B2ε(xj)

|h(x)u| dx→ 0,

as ε→ 0.
Thus, it follows from (3.4) that 0 = −µ({xj}) + ν({xj}); i.e., µj = νj for any

j ∈ J . Using (3.3) we obtain

νj ≤ C∗µ
p∗(xj)/p(xj)
j ,

which implies that νj ≥ (C∗)
p(xj)

p(xj)−p∗(xj) ≥ min{(C∗)−
p−

(p∗−p)+ , (C∗)−
p+

(p∗−p)− } for
any j ∈ J . As ν is finite, J must be a finite set or empty.

Next, we prove that ∇un → ∇u a.e. in RN , as n→∞.
(1) If J is a finite nonempty set, say J = {1, 2, . . . ,m}. Let d = min{d(xi, xj) :

i, j ∈ J with i 6= j}. There exists R0 > 0 such that Bd(xj) ⊂ BR0 for any j ∈ J .
Take 0 < ε < d

4 , B2ε(xi) ∩ B2ε(xj) = ∅ for any i, j ∈ J with i 6= j. Denote
ΩR,ε = {x ∈ BR : d(x, xj) > 2ε for any j ∈ J}.

In the following, we will verify that for any R > R0,∫
ΩR,ε

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u) dx→ 0, as n→∞.

Let ψ ∈ C∞0 (B2R) such that 0 ≤ ψ ≤ 1; ψ ≡ 1 on BR. Define

ψε(x) = ψ(x)−
m∑

j=1

φ(x− xj).

We derive that ψε ∈ C∞0 (B2R) such that 0 ≤ ψε ≤ 1; ψε ≡ 0 on ∪m
j=1Bε(xj) and

ψε ≡ 1 on (RN \ ∪m
j=1B2ε(xj)) ∩BR. Thus

0 ≤
∫

ΩR,ε

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u) dx

≤
∫

B2R

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)ψε dx

= 〈ϕ′(un), unψε〉 − 〈ϕ′(un), uψε〉 −
∫

B2R

|∇u|p(x)−2∇u(∇un −∇u)ψε dx

−
∫

B2R

(
|∇un|p(x)−2∇un∇ψε · un + |un|p(x)ψε − |un|p

∗(x)ψε − h(x)unψε

)
dx

+
∫

B2R

(
|∇un|p(x)−2∇un∇ψε · u+ |un|p(x)−2unuψε

− |un|p
∗(x)−2unuψε − h(x)uψε

)
dx.

Note that

|
∫

B2R

(|∇un|p(x)−2∇un∇ψε · un − |∇un|p(x)−2∇un∇ψε · u) dx|
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≤ C

∫
B2R

|∇un|p(x)−1|un − u| dx

≤ C‖|∇un|p(x)−1‖p′(x)‖un − u‖p(x),B2R
,

which implies∫
B2R

|∇un|p(x)−2∇un∇ψε · un dx−
∫

B2R

|∇un|p(x)−2∇un∇ψε · u dx→ 0,

as n→∞. Similarly, we obtain∫
B2R

|un|p(x)ψε dx−
∫

B2R

|un|p(x)−2unuψε dx→ 0,

and ∫
B2R

h(x)unψε dx−
∫

B2R

h(x)uψε dx→ 0.

As un → u weakly in W 1,p(x)(RN ). Using Theorem 2.4 we obtain un → u in
Lp(x)(B2R), for any R > 0. Passing to a subsequence, still denoted by {un}, a
diagonal process enables us to assume that un → u a.e. in RN , as n → ∞. Thus
|unψε|p

∗(x) → |uψε|p
∗(x) a.e. in RN . As |un − u|p

∗(x) ≤ 2p∗+(|un|p
∗(x) + |u|p∗(x)), by

Fatou’s Lemma, we have∫
RN

2p∗++1|uψε|p
∗(x) dx

=
∫

RN

lim inf
n→∞

(2p∗+ |unψε|p
∗(x) + 2p∗+ |uψε|p

∗(x) − |unψε − uψε|p
∗(x)) dx

≤ lim inf
n→∞

∫
RN

(2p∗+ |unψε|p
∗(x) + 2p∗+ |uψε|p

∗(x) − |unψε − uψε|p
∗(x)) dx

=
∫

RN

2p∗++1|uψε|p
∗(x) dx− lim sup

n→∞

∫
RN

|unψε − uψε|p
∗(x) dx.

Using (3.2), we have
∫

RN |un|p
∗(x)|ψε|p

∗(x) dx→
∫

RN |u|p∗(x)|ψε|p
∗(x) dx, thus∫

RN

|unψε − uψε|p
∗(x) dx→ 0,

as n→∞. Moreover, we derive∫
B2R

|un|p
∗(x)ψε dx−

∫
B2R

|un|p
∗(x)−2unuψε dx→ 0.

Then ∫
ΩR,ε

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u) dx→ 0.

As in the proof of [6, Theorem 3.1], ΩR,ε is divided into two parts:

Ω1
R,ε = {x ∈ ΩR,ε : p(x) < 2}, Ω2

R,ε = {x ∈ ΩR,ε : p(x) ≥ 2}.

On Ω1
R,ε, we obtain∫

Ω1
R,ε

|∇un −∇u|p(x) dx

≤ C

∫
Ω1

R,ε

(
(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)

) p(x)
2
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×
(
|∇un|p(x) + |∇u|p(x)

) 2−p(x)
2 dx

≤ C‖
(
(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)

) p(x)
2 ‖ 2

p(x) , Ω1
R,ε

× ‖(|∇un|p(x) + |∇u|p(x))
2−p(x)

2 ‖ 2
2−p(x) , Ω1

R,ε
.

Note that ∫
Ω1

R,ε

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u) dx

≤
∫

ΩR,ε

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u) dx,

which implies

‖
(
(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)

)p(x)/2‖2/p(x),Ω1
R,ε

→ 0.

As {un} is bounded in W 1,p(x)(RN ), we obtain
∫
Ω1

R,ε
|∇un − ∇u|p(x) dx → 0, as

n→∞.
On Ω2

R,ε, we obtain∫
Ω2

R,ε

|∇un −∇u|p(x) dx

≤ C

∫
Ω2

R,ε

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u) dx→ 0,

as n→∞. Thus, we obtain∫
ΩR,ε

|∇un −∇u|p(x) dx→ 0

for any R > R0, 0 < 2ε < d
2 . Moreover, up to a subsequence, we assume that

∇un → ∇u a.e. in RN .
(2) If J is empty. Let ψ ∈ C∞0 (B2R) such that 0 ≤ ψ ≤ 1; ψ ≡ 1 in BR, we

obtain

0 ≤
∫

BR

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u) dx

≤
∫

B2R

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)ψ dx.

Similarly to (1), we obtain∫
BR

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u) dx→ 0,

as n→∞, which implies ∫
BR

|∇un −∇u|p(x) dx→ 0,

for any R > 0. Thus, we may assume that ∇un → ∇u a.e. in RN .
As {|∇un|p(x)−2∇un} is bounded in (Lp′(x)(RN ))N and |∇un|p(x)−2∇un con-

verges to |∇u|p(x)−2∇u a.e. in RN , we obtain

|∇un|p(x)−2∇un → |∇u|p(x)−2∇u weakly in (Lp′(x)(RN ))N .
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Similarly, we obtain

|un|p(x)−2un → |u|p(x)−2u weakly in Lp′(x)(RN )

and
|un|p

∗(x)−2un → |u|p
∗(x)−2u weakly in L(p∗(x))′(RN ).

Thus, for any v ∈ C∞0 (RN ), we have∫
RN

|∇un|p(x)−2∇un∇v →
∫

RN

|∇u|p(x)−2∇u∇v dx,∫
RN

|un|p(x)−2unv →
∫

RN

|u|p(x)−2uv dx,∫
RN

|un|p
∗(x)−2unv →

∫
RN

|u|p
∗(x)−2uv dx.

Note that

〈ϕ′(un), v〉 =
∫

RN

(
|∇un|p(x)−2∇un∇v+ |un|p(x)−2unv−|un|p

∗(x)−2unv−h(x)v
)
dx

and ϕ′(un) → 0 in W−1,p′(x)(RN ), as n→∞, we obtain

〈ϕ′(u), v〉 =
∫

RN

(
|∇u|p(x)−2∇u∇v + |u|p(x)−2uv − |u|p

∗(x)−2uv − h(x)v
)
dx

= 0.
(3.5)

As p is Lipschitz continuous on RN , it follows that p satisfies the weak Lipschitz
condition [18]. Thus, C∞0 (RN ) is dense on W 1,p(x)(RN ). Using (3.5), we obtain

〈ϕ′(u), v〉 = 0,

for any v ∈W 1,p(x)(RN ); i.e. ϕ′(u) = 0. �

We remark that in the proof of Theorem 3.1, we use the inequality (2.2) in
Theorem 2.7. As p(x) � p∗(x), p∗(x) − p(x) ≥ (p∗ − p)− > 0 for any x ∈ RN .
Then, we avoided the assumption p∗− > p+ and obtained that the set of atoms J is
empty or finite.

Next, using Theorem 3.1 we prove that there exists a critical point for ϕ. The
following result of the variational functional ϕ is required by using Ekeland’s vari-
ational principle.

Lemma 3.2. There exist ρ0 > 0, h0 > 0 such that if ‖h‖p′(x) ≤ h0, we have
ϕ(u) > 0 for any u ∈ {u ∈W 1,p(x)(RN ) : ‖|u‖| = ρ0}.

Proof. For any u ∈W 1,p(x)(RN ), we obtain

ϕ(u) ≥
∫

RN

( |∇u|p(x) + |u|p(x)

p+
− |u|p∗(x)

(p∗)−
− h(x)u

)
dx

=
∫

RN

( |∇u|p(x) + |u|p(x)

2p+
− h(x)u

)
dx

+
∫

RN

( |∇u|p(x) + |u|p(x)

2p+
− |u|p∗(x)

(p∗)−

)
dx.
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As p(x) � p∗(x) and p(x) are Lipschitz continuous on RN , as in the proof of [6,
Theorem 3.1], there exists a sequence of disjoint open N -cubes {Qi}∞i=1 with side
r > 0 such that RN = ∪∞i=1Qi,

pi+ , sup
x∈Qi

p(x) < p∗i− , inf
x∈Qi

p∗(x),

and p∗i− − pi+ > γ , 1
2 infx∈RN (p∗(x)− p(x)), for i = 1, 2, . . . .

By [8, Corollary 8.3.2], there exists r0 = r0(r,N, p+, p−) > 1 independent of
i ∈ N such that for any v ∈ W 1,p(x)(Qi), ‖v‖p∗(x) ≤ r0‖|v‖|. Then, for any
u ∈W 1,p(x)(RN ), we obtain ‖u‖p∗(x),Qi

≤ r0‖|u‖|Qi .
If ‖|u‖| ≤ r−1

0 , then ‖|u‖|Qi ≤ ‖|u‖| ≤ r−1
0 , for any i ∈ N. Thus, ‖u‖p∗(x),Qi

≤ 1.
Using Theorems 2.2 and 2.3 we obtain∫

RN

( |∇u|p(x) + |u|p(x)

2p+
− |u|p∗(x)

(p∗)−

)
dx =

∞∑
i=1

∫
Qi

( |∇u|p(x) + |u|p(x)

2p+
− |u|p∗(x)

(p∗)−

)
dx

≥
∞∑

i=1

(‖|u‖|pi+
Qi

2p+
− r

p∗i−
0

(p∗)−
‖|u‖|(p

∗)i−
Qi

)
≥

∞∑
i=1

‖|u‖|pi+
Qi

2p+

(
1− 2p+

(p∗)−
r

p∗i−
0 ‖|u‖|γQi

)
.

Denote ρ0 = min{r−1
0 , ( 2p+

(p∗)−
r

p∗i−
0 )−1/γ}. If ‖|u‖| ≤ ρ0, then∫

RN

( |∇u|p(x)|+ |u|p(x)

2
− |u|p

∗(x)
)
dx ≥ 0.

We obtain

ϕ(u) ≥ ‖|u‖|p+

2p+
− 2‖h‖p′(x)‖u‖p(x) ≥

‖|u‖|p+

2p+
− C‖h‖p′(x)‖|u‖|. (3.6)

Thus, it suffices to take ‖h‖p′(x) small enough. �

Then, using Ekeland’s variational principle and Lemma 3.2, we obtain a Palais-
Smale sequence for ϕ. Based on Theorem 3.1, we have the following result, which
shows that ϕ has a critical if ‖h‖p′(x) is small. Moreover, we obtain a nontrivial
weak solution for (1.1).

Theorem 3.3. If ‖h‖p′(x) ≤ h0, there exists u0 ∈ {u ∈ W 1,p(x)(RN ) : ‖|u‖| ≤ ρ0}
such that u0 is a weak solution of (1.1), where ρ0, h0 are from Lemma 3.2.

Proof. Denote

c1 = inf{ϕ(u) : u ∈W 1,p(x)(RN ) with ‖|u‖| ≤ ρ0}.
It follows from (3.6) that c1 > −∞. Note that h(x) ≥ 0 and h(x) 6≡ 0, there exists
v ∈ C∞0 (RN ) such that

∫
RN h(x)v dx > 0. Take 0 < s < 1, we obtain

ϕ(sv) =
∫

RN

( |∇sv|p(x) + |sv|p(x)

p(x)
− |sv|p∗(x)

p∗(x)
− h(x)sv

)
dx

≤ sp−

∫
RN

|∇v|p(x) + |v|p(x)

p(x)
dx− s

∫
RN

h(x)v dx.

As p− > 1, we have ‖|sv‖| < ρ0 and ϕ(sv) < 0, when s is sufficiently small. Thus
c1 < 0.
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By Ekeland’s variational principle, there exists {un} ⊂ {u ∈ W 1,p(x)(RN ) :
‖|u‖| ≤ ρ0} such that ϕ(un) → c1 and

ϕ(w) ≥ ϕ(un)− 1
n
‖|w − un‖|, (3.7)

for any w ∈W 1,p(x)(RN ) with ‖|w‖| ≤ ρ0.
Since c1 < 0, we assume that ϕ(un) < 0. It follows from Lemma 3.2 that

‖|un‖| < ρ0. Using (3.7), we obtain ϕ′(un) → 0 in W−1,p′(x)(RN ), as n → ∞. As
{un} is bounded in W 1,p(x)(RN ), we assume that un → u0 weakly in W 1,p(x)(RN ),
then ‖|u0‖| ≤ ρ0. By Theorem 3.1, we obtain ϕ′(u0) = 0. �
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