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GREEN’S FUNCTIONAL FOR SECOND-ORDER LINEAR
DIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS

KAMİL ORUÇOĞLU, KEMAL ÖZEN

Abstract. In this work, we present a new constructive technique which is
based on Green’s functional concept. According to this technique, a linear
completely nonhomogeneous nonlocal problem for a second-order ordinary dif-
ferential equation is reduced to one and only one integral equation in order to
identify the Green’s solution. The coefficients of the equation are assumed to
be generally variable nonsmooth functions satisfying some general properties
such as p-integrability and boundedness. A system of three integro-algebraic
equations called the special adjoint system is obtained for this problem. A
solution of this special adjoint system is Green’s functional which enables us
to determine the Green’s function and the Green’s solution for the problem.
Some illustrative applications and comparisons are provided with some known
results.

1. Introduction

Green functions of linear boundary-value problems for ordinary differential equa-
tions with smooth coefficients have been investigated in detail in several studies
[10, 13, 16, 17, 18]. In this work, a linear nonlocal problem is studied for a second-
order differential equation. The coefficients of the equation are assumed to be gener-
ally nonsmooth functions satisfying some general properties such as p-integrability
and boundedness. The operator of this equation, in general, does not have a formal
adjoint operator, or any extension of the traditional type for this operator exists
only on a space of distributions [7, 16]. In addition, the considered problem does
not have a meaningful traditional type adjoint problem, even for simple cases of
a differential equation and nonlocal conditions. Due to these facts, some serious
difficulties arise in the application of the classical methods for such a problem.
As can be seen from [10], similar difficulties arise even for classical type bound-
ary value problems if the coefficients of the differential equation are, for example,
continuous nonsmooth functions. For this reason, a Green’s functional approach is
introduced for the investigation of the considered problem. This approach is based
on [1, 2, 3, 4, 14] and on some methods of functional analysis. The main idea of this
approach is related to the usage of a new concept of the adjoint problem named
adjoint system. Such an adjoint system includes three integro-algebraic equations

2000 Mathematics Subject Classification. 34A30, 34B05, 34B10, 34B27, 45A05.
Key words and phrases. Green’s function; nonlocal boundary conditions;
nonsmooth coefficient; adjoint problem.
c©2012 Texas State University - San Marcos.
Submitted February 23, 2012. Published July 19, 2012.

1
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with an unknown element (f2(ξ), f1, f0) in which f2(ξ) is a function, and fj for
j = 0, 1 are real numbers. One of these equations is an integral equation with
respect to f2(ξ) and generally includes fj as parameters. The other two equation
can be considered as a system of algebraic equations with respect to f0 and f1,
and they may include some integral functionals defined on f2(ξ). The form of the
adjoint system depends on the operators of the equation and the conditions. The
role of the adjoint system is similar to that of the adjoint operator equation in the
general theory of the linear operator equations in Banach spaces [5, 8, 10]. The
integral representation of the solution is obtained by a concept of the Green func-
tional which is introduced as a special solution f(x) = (f2(ξ, x), f1(x), f0(x)) of
the corresponding adjoint system having a special free term depending on x as a
parameter. The first component f2(ξ, x) of Green functional f(x) is corresponded
to Green’s function for the problem. The other two components fj(x) for j = 0, 1
correspond to the unit effects of the conditions. If the homogeneous problem has
a nontrivial solution, then the Green functional does not exist. In summary, this
approach is principally different from the classical methods used for constructing
Green functions[17].

2. Statement of the problem

Let R be the set of real numbers. Let G = (x0, x1) be a bounded open interval
in R. Let Lp(G) with 1 ≤ p <∞ be the space of p-integrable functions on G. Let
L∞(G) be the space of measurable and essentially bounded functions on G, and let
W

(2)
p (G) with 1 ≤ p ≤ ∞ be the space of all functions u = u(x) ∈ Lp(G) having

derivatives dku/dxk ∈ Lp(G), where k = 1, 2. The norm on the space W (2)
p (G) is

defined as

‖u‖
W

(2)
p (G)

=
2∑

k=0

‖d
ku

dxk
‖Lp(G) .

We consider the second-order boundary value problem

(V2u)(x) ≡ u′′(x) +A1(x)u′(x) +A0(x)u(x) = z2(x), x ∈ G, (2.1)

subject to the nonlocal boundary conditions

V1u ≡ a1u(x0) + b1u
′(x0) +

∫ x1

x0

g1(ξ)u′′(ξ)dξ = z1,

V0u ≡ a0u(x0) + b0u
′(x0) +

∫ x1

x0

g0(ξ)u′′(ξ)dξ = z0,

(2.2)

which are more general conditions than the ones in [4]. We investigate a solution
to the problem in the space Wp = W

(2)
p (G). Furthermore, we assume that the

following conditions are satisfied: Ai ∈ Lp(G) and gi ∈ Lq(G) for i = 0, 1 are given
functions; ai, bi for i = 0, 1 are given real numbers; z2 ∈ Lp(G) is a given function
and zi for i = 0, 1 are given real numbers.

Problem (2.1)-(2.2) is a linear completely nonhomogeneous problem which can
be considered as an operator equation:

V u = z, (2.3)

with the linear operator V = (V2, V1, V0) and z = (z2(x), z1, z0).
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The assumptions considered above guarantee that V is bounded from Wp to the
Banach space Ep ≡ Lp(G)× R× R consisting of element z = (z2(x), z1, z0) with

‖z‖Ep = ‖z2‖Lp(G) + |z1|+ |z0|, 1 ≤ p ≤ ∞.

If, for a given z ∈ Ep, the problem (2.1)-(2.2) has a unique solution u ∈ Wp

with ‖u‖Wp ≤ c0‖z‖Ep , then this problem is called a well-posed problem, where
c0 is a constant independent of z. Problem (2.1)-(2.2) is well-posed if and only if
V : Wp → Ep is a (linear) homeomorphism.

3. Adjoint space of the solution space

Problem (2.1)-(2.2) is investigated by means of a new concept of the adjoint
problem. This concept is introduced in the papers [2, 3] by the adjoint operator V ∗

of V . Some isomorphic decompositions of the space Wp of solutions and its adjoint
space W ∗

p are employed. Any function u ∈Wp can be represented as

u(x) = u(α) + u′(α)(x− α) +
∫ x

α

(x− ξ)u′′(ξ)dξ (3.1)

where α is a given point in G which is the set of closure points for G. Furthermore,
the trace or value operators D0u = u(γ), D1u = u′(γ) are bounded and surjective
from Wp onto R for a given point γ of G. In addition, the values u(α), u′(α) and
the derivative u′′(x) are unrelated elements of the function u ∈ Wp such that for
any real numbers ν0, ν1 and any function ν2 ∈ Lp(G), there exists one and only one
u ∈Wp such that u(α) = ν0, u

′(α) = ν1 and u′′(x) = ν2(x). Therefore, there exists
a linear homeomorphism between Wp and Ep. In other words, the space Wp has
the isomorphic decomposition Wp = Lp(G)× R× R.

Theorem 3.1 ([4]). If 1 ≤ p < ∞, then any linear bounded functional F ∈ W ∗
p

can be represented as

F (u) =
∫ x1

x0

u′′(x)ϕ2(x)dx+ u′(x0)ϕ1 + u(x0)ϕ0 (3.2)

with a unique element ϕ = (ϕ2(x), ϕ1, ϕ0) ∈ Eq where p + q = pq. Any linear
bounded functional F ∈W ∗

∞ can be represented as

F (u) =
∫ x1

x0

u′′(x)dϕ2 + u′(x0)ϕ1 + u(x0)ϕ0 (3.3)

with a unique element ϕ = (ϕ2(e), ϕ1, ϕ0) ∈ Ê1 = (BA(
∑
, µ))× R× R where µ is

the Lebesgue measure on R,
∑

is σ-algebra of the µ-measurable subsets e ⊂ G and
BA(

∑
, µ) is the space of all bounded additive functions ϕ2(e) defined on

∑
with

ϕ2(e) = 0 when µ(e) = 0 [8]. The inverse is also valid; that is, if ϕ ∈ Eq, then
(3.2) is bounded on Wp for 1 ≤ p < ∞ and p + q = pq. If ϕ ∈ Ê1, then (3.3) is
bounded on W∞.

Proof. [4] The operator Nu ≡ (u′′(x), u′(x0), u(x0)) : Wp → Ep is bounded and has
a bounded inverse N−1 represented by

u(x) = (N−1h)(x) ≡
∫ x

x0

(x− ξ)h2(ξ)dξ + h1(x− x0) + h0,

h = (h2(x), h1, h0) ∈ Ep.

(3.4)
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The kernel kerN of N is trivial and the image ImN of N is equal to Ep. Hence,
there exists a bounded adjoint operator N∗ : E∗p → W ∗

p with kerN∗ = {0} and
ImN∗ = W ∗

p . In other words, for a given F ∈ W ∗
p there exists a unique ψ ∈ E∗p

such that
F = N∗ψ or F (u) = ψ(Nu), u ∈Wp. (3.5)

If 1 ≤ p < ∞, then E∗p = Eq in the sense of an isomorphism [8]. Therefore, the
functional ψ can be represented by

ψ(h) =
∫ x1

x0

ϕ2(x)h2(x)dx+ ϕ1h1 + ϕ0h0, h ∈ Ep, (3.6)

with a unique element ϕ = (ϕ2(x), ϕ1, ϕ0) ∈ Eq. By expressions (3.5) and (3.6), any
F ∈ W ∗

p can uniquely be represented by (3.2). For a given ϕ ∈ Eq, the functional
F represented by (3.2) is bounded on Wp. Hence, (3.2) is a general form for the
functional F ∈W ∗

p .
The proof is complete due to that the case p = ∞ can also be shown [4]. �

Theorem 3.1 guarantees that W ∗
p = Eq for all 1 ≤ p <∞, and W ∗

∞ = E∗∞ = Ê1.
The space E1 can also be considered as a subspace of the space Ê1 (see [3, 4]).

4. Adjoint operator and adjoint system of the integro-algebraic
equations

Investigating an explicit form for the adjoint operator V ∗ of V is taken into
consideration in this section. To this end, any f = (f2(x), f1, f0) ∈ Eq is taken as
a linear bounded functional on Ep and also

f(V u) ≡
∫ x1

x0

f2(x)(V2u)(x)dx+ f1(V1u) + f0(V0u), u ∈Wp, (4.1)

can be assumed. By substituting expressions (2.1) and (2.2), and expression (3.1)
(for α = x0) of u ∈Wp into (4.1), we have

f(V u) ≡
∫ x1

x0

f2(x)[u′′(x) +A1(x){u′(x0) +
∫ x

x0

u′′(ξ)dξ}

+A0(x){u(x0) + u′(x0)(x− x0) +
∫ x

x0

(x− ξ)u′′(ξ)dξ}]dx

+ f1{a1u(x0) + b1u
′(x0) +

∫ x1

x0

g1(ξ)u′′(ξ)dξ}

+ f0{a0u(x0) + b0u
′(x0) +

∫ x1

x0

g0(ξ)u′′(ξ)dξ}.

(4.2)

After some calculations, we can obtain

f(V u) ≡
∫ x1

x0

f2(x)(V2u)(x)dx+
1∑

i=0

fi(Viu)

=
∫ x1

x0

(w2f)(ξ)u′′(ξ)dξ + (w1f)u′(x0) + (w0f)u(x0)

≡ (wf)(u), ∀f ∈ Eq, ∀u ∈Wp, 1 ≤ p ≤ ∞

(4.3)
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where

(w2f)(ξ) = f2(ξ) + f1g1(ξ) + f0g0(ξ) +
∫ x1

ξ

f2(s){A1(s) +A0(s)(s− ξ)}ds,

w1f = b1f1 + b0f0 +
∫ x1

x0

f2(s){A1(s) +A0(s)(s− x0)}ds

w0f = a1f1 + a0f0 +
∫ x1

x0

f2(s)A0(s)ds.

(4.4)

The operators w2, w1, w0 are linear and bounded from the space Eq of the triples
f = (f2(x), f1, f0) into the spaces Lq(G),R,R respectively. Therefore, the operator
w = (w2, w1, w0) : Eq → Eq represented by wf = (w2f, w1f, w0f) is linear and
bounded. By (4.3) and Theorem 3.1, the operator w is an adjoint operator for the
operator V when 1 ≤ p <∞, in other words, V ∗ = w. When p = ∞, w : E1 → E1

is bounded; in this case, the operator w is the restriction of the adjoint operator
V ∗ : E∗∞ →W ∗

∞ of V onto E1 ⊂ E∗∞.
Equation (2.3) can be transformed into the following equivalent equation

V Sh = z, (4.5)

with an unknown h = (h2, h1, h0) ∈ Ep by the transformation u = Sh where
S = N−1. If u = Sh, then u′′(x) = h2(x), u′(x0) = h1, u(x0) = h0. Hence,
equation (4.3) can be rewritten as

f(V Sh) ≡
∫ x1

x0

f2(x)(V2Sh)(x)dx+
1∑

i=0

fi(ViSh)

=
∫ x1

x0

(w2f)(ξ)h2(ξ)dξ + (w1f)h1 + (w0f)h0

≡ (wf)(h), ∀f ∈ Eq, ∀h ∈ Ep, 1 ≤ p ≤ ∞.

(4.6)

Therefore, one of the operators V S and w becomes an adjoint operator for the
other one. Consequently, the equation

wf = ϕ, (4.7)

with an unknown function f = (f2(x), f1, f0) ∈ Eq and a given function ϕ =
(ϕ2(x), ϕ1, ϕ0) ∈ Eq can be considered as an adjoint equation of (4.5)(or of (2.3))
for all 1 ≤ p ≤ ∞. Equation (4.7) can be written in explicit form as the system of
equations

(w2f)(ξ) = ϕ2(ξ), ξ ∈ G,
w1f = ϕ1,

w0f = ϕ0.

(4.8)

By the expressions (4.4), the first equation in (4.8) is an integral equation for f2(ξ)
and includes f1 and f0 as parameters; on the other hand, the other equations in
(4.8) constitute a system of two algebraic equations for the unknowns f1 and f0
and they include some integral functionals defined on f2(ξ). In other words, (4.8)
is a system of three integro-algebraic equations. This system called the adjoint
system for (4.5)(or (2.3)) is constructed by using (4.3) which is actually a formula
of integration by parts in a nonclassical form. The traditional type of an adjoint
problem is defined by the classical Green’s formula of integration by parts [17],
therefore, has a sense only for some restricted class of problems.
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5. Solvability conditions for completely nonhomogeneous problem

The operator Q = w − Iq is considered where Iq is the identity operator on Eq;
i.e., Iqf = f for all f ∈ Eq. This operator can also be defined as Q = (Q2, Q1, Q0)
with

(Q2f)(ξ) = (w2f)(ξ)− f2(ξ), ξ ∈ G,
Qif = wif − fi, i = 0, 1.

(5.1)

By the expressions (4.4) and the conditions imposed on Ai and gi for i = 0, 1,
Qm : Eq → Lq(G) is a compact operator, and also Qi : Eq → R for i = 0, 1 are
compact operators where 1 < p <∞. That is, Q : Eq → Eq is a compact operator,
and therefore has a compact adjoint operator Q∗ : Ep → Ep. Since w = Q + Iq
and V S = Q∗ + Ip, where Ip = I∗q , (4.5) and (4.7) are canonical Fredholm type
equations, and S is a right regularizer of (2.3) [10]. Consequently, we have the
following theorem.

Theorem 5.1 ([4]). If 1 < p <∞, then V u = 0 has either only the trivial solution
or a finite number of linearly independent solutions in Wp:
(1) If V u = 0 has only the trivial solution in Wp, then also wf = 0 has only the
trivial solution in Eq. Then, the operators V : Wp → Ep and w : Eq → Eq become
linear homeomorphisms.
(2) If V u = 0 has m linearly independent solutions u1, u2, . . . , um in Wp, then
wf = 0 also has m linearly independent solutions

f?1? = (f?1?
2 (x), f?1?

1 , f?1?
0 ), . . . , f?m? = (f?m?

2 (x), f?m?
1 , f?m?

0 )

in Eq. In this case, (2.3) and (4.7) have solutions u ∈ Wp and f ∈ Eq for given
z ∈ Ep and ϕ ∈ Eq if and only if the conditions∫ x1

x0

f?i?
2 (ξ)z2(ξ)dξ + f?i?

1 z1 + f?i?
0 z0 = 0, i = 1, 2, . . . ,m, (5.2)

and ∫ x1

x0

ϕ2(ξ)u′′i (ξ)dξ + ϕ1u
′
i(x0) + ϕ0ui(x0) = 0, i = 1, 2, . . . ,m, (5.3)

are satisfied, respectively.

6. Green’s Functional

Consider the following equation given in the form of a functional identity

(wf)(u) = u(x), ∀u ∈Wp, (6.1)

where f = (f2(ξ), f1, f0) ∈ Eq is an unknown triple and x ∈ G is a parameter.
Definition. [4] Suppose that f(x) = (f2(ξ, x), f1(x), f0(x)) ∈ Eq is a triple with
parameter x ∈ G. If f = f(x) is a solution of (6.1) for a given x ∈ G, then f(x) is
called a Green’s functional of V (or of (2.3)).

Due to that the operator IWp,C of the imbedding of Wp into the space C(G)
of continuous functions on G is bounded, the linear functional θ(x) defined by
θ(x)(u) = u(x) is bounded on Wp for a given x ∈ G. On the other hand, (wf)(u) =
(V ∗f)(u). Thus, (6.1) can also be written as [2, 3]

(V ∗f) = θ(x).
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In other words, (6.1) can be considered as a special case of the adjoint equation
V ∗f = ψ for some ψ = θ(x).

By substituting α = x0 into (3.1) and using (4.3), we can rewrite (6.1) as∫ x1

x0

(w2f)(ξ)u′′(ξ)dξ + (w1f)u′(x0) + (w0f)u(x0)

=
∫ x

x0

(x− ξ)u′′(ξ)dξ + u′(x0)(x− x0) + u(x0), ∀f ∈ Eq, ∀u ∈Wp.

(6.2)

The elements u′′(ξ) ∈ Lp(G), u′(x0) ∈ R and u(x0) ∈ R of the function u ∈Wp are
unrelated. Then, we can construct the system

(w2f)(ξ) = (x− ξ)H(x− ξ), ξ ∈ G,
(w1f) = (x− x0),

(w0f) = 1,
(6.3)

where H(x− ξ) is a Heaviside function on R.
Equation (6.1) is equivalent to the system (6.3) which is a special case for the

adjoint system (4.8) when ϕ2(ξ) = (x − ξ)H(x − ξ), ϕ1 = x − x0 and ϕ0 = 1.
Therefore, f(x) is a Green’s functional if and only if f(x) is a solution of system
(6.3) for an arbitrary x ∈ G. For a solution u ∈Wp of (2.3) and a Green’s functional
f(x), we can rewrite (4.3) as∫ x1

x0

f2(ξ, x)z2(ξ)dξ + f1(x)z1 + f0(x)z0

=
∫ x1

x0

(x− ξ)H(x− ξ)u′′(ξ)dξ + u′(x0)(x− x0) + u(x0).
(6.4)

The right hand side of (6.4) is equal to u(x). Therefore, we can state the following
theorem.

Theorem 6.1 ([4]). If (2.3) has at least one Green’s functional f(x), then any
solution u ∈Wp of (2.3) can be represented by

u(x) =
∫ x1

x0

f2(ξ, x)z2(ξ)dξ + f1(x)z1 + f0(x)z0. (6.5)

Additionally, V u = 0 has only the trivial solution.

Since one of the operators V : Wp → Ep and w : Eq → Eq is a homeomorphism,
so is the other, and, there exists a unique Green’s functional, where 1 ≤ p ≤ ∞.
Necessary and sufficient conditions for the existence of a Green’s functional can be
given in the following theorem for 1 < p <∞.

Theorem 6.2 ([4]). If there exists a Green’s functional, then it is unique. Ad-
ditionally, a Green’s functional exists if and only if V u = 0 has only the trivial
solution.

From Theorems 5.1, 6.1, 6.2 can be easily shown.
Remark. If V u = 0 has a nontrivial solution, then a Green’s functional corre-
sponding to V u = z does not exist due to Theorem 6.1. In this case, V u = z
usually has no solution unless z is of a specific type. Therefore, a representation
of the existing solution of V u = z are constructed by a concept of the generalized
Green’s functional [3, 4].
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It must be noted that the proposed Green’s functional approach can also be
employed some classes of nonlinear equations involving linear nonlocal conditions
to transform into the corresponding integral equations and then solve them. The
corresponding integral equations will naturally become of nonlinear type. These
nonlinear integral equations can be solved approximately even if they can not be
solved exactly.

7. Some applications

In this section, some applications to such problems involving nonlocal boundary
conditions are implemented in order to emphasize the preferability of the presented
approach.

Example 7.1. First, we seek for the Green’s solution to the following problem,
which has been considered in [15]:

u′′(x) = −f(x), x ∈ G = (0, 1), (7.1)

u(0) = γ0u
′(ξ0), u(1) = γ1u

′(ξ1), (7.2)

where f(x) ∈ Lp(G), ξ0, ξ1 ∈ G and γ0, γ1 ∈ R. We can rewrite this problem as

(V2u)(x) ≡ u′′(x) = −f(x) = z2(x), x ∈ G = (0, 1),

V1u ≡ u(1)− γ1u
′(ξ1) = 0 = z1,

V0u ≡ u(0)− γ0u
′(ξ0) = 0 = z0.

Thus, we have

a1 = 1, b1 = 1− γ1, g1(ξ) = 1− ξ − γ1H(ξ1 − ξ),

a0 = 1, b0 = −γ0, g0(ξ) = −γ0H(ξ0 − ξ),

and Ai(x) = zi = 0 for i = 0, 1, where H(ξ1 − ξ) and H(ξ0 − ξ) are Heaviside
functions on R.

Consequently, the special adjoint system (6.3) corresponding to this problem can
be constructed in the form

f2(ξ) + f1{1− ξ − γ1H(ξ1 − ξ)} − f0γ0H(ξ0 − ξ) = (x− ξ)H(x− ξ), (7.3)

f1(1− γ1)− f0γ0 = x, (7.4)

f1 + f0 = 1, (7.5)

where ξ ∈ (0, 1). We firstly determine f1 and f0 with using only (7.4) and (7.5)
under the condition ∆1 = 1 − γ1 + γ0 6= 0 in order to solve (7.3)-(7.5). Thus, we
have

f1 =
x+ γ0

∆1
, f0 =

1− γ1 − x

∆1
.

After substituting f1 and f0 into equation (7.3), f2(ξ) becomes

f2(ξ) = (x− ξ)H(x− ξ) +
(1− γ1 − x)

∆1
γ0H(ξ0 − ξ)

− (x+ γ0)
∆1

{1− ξ − γ1H(ξ1 − ξ)}.

Thus, the Green’s functional f(x) = (f2(ξ, x), f1(x), f0(x)) for the problem has
been determined. The first component f2(ξ, x) = f2(ξ) is the Green’s function for
the problem. After substituting ξ = s for notational compatibility, f2(ξ, x) is equal
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to the Green’s function constructed in [15] for the problem. By (6.5) in Theorem
6.1, the representation of the existing solution for the problem can be given as

u(x) =
∫ 1

0

−[(x− ξ)H(x− ξ) +
(1− γ1 − x)

∆1
γ0H(ξ0 − ξ)

− (x+ γ0)
∆1

{1− ξ − γ1H(ξ1 − ξ)}]f(ξ)dξ.

Example 7.2. Next, we construct the Green’s solution to the following problem,
which has been considered in [15]:

u′′(x) = −f(x), x ∈ G = (0, 1), (7.6)

u(0) = γ0

∫ 1

0

(1 + t)u(t)dt, u(1) = γ1

∫ 1

0

u(t)dt, (7.7)

where f(x) ∈ Lp(G) and γ0, γ1 ∈ R. We can rewrite this problem as

(V2u)(x) ≡ u′′(x) = −f(x) = z2(x), x ∈ G = (0, 1),

V1u ≡ u(1)− γ1

∫ 1

0

u(t)dt = 0 = z1,

V0u ≡ u(0)− γ0

∫ 1

0

(1 + t)u(t)dt = 0 = z0.

Then, we have

a1 = 1− γ1, b1 = 1− γ1

2
, g1(ξ) = 1− ξ − γ1(

1
2
− ξ +

ξ2

2
),

a0 = 1− 3
2
γ0, b0 = −5

6
γ0, g0(ξ) = −γ0(

ξ3

6
+
ξ2

2
− 3

2
ξ +

5
6
),

and Ai(x) = zi = 0 for i = 0, 1.
Consequently, the special adjoint system (6.3) corresponding to this problem is

of the form

f2(ξ) + f1{1− ξ − γ1(
1
2
− ξ +

ξ2

2
)}

− f0γ0(
ξ3

6
+
ξ2

2
− 3

2
ξ +

5
6
) = (x− ξ)H(x− ξ),

(7.8)

(1− γ1

2
)f1 −

5
6
γ0f0 = x, (7.9)

(1− γ1)f1 + (1− 3
2
γ0)f0 = 1, (7.10)

where ξ ∈ (0, 1) and, H(x − ξ) is Heaviside function on R. We firstly determine
f1 and f0 with using only (7.9) and (7.10) under the condition ∆2 = (1− γ1

2 )(1−
3
2γ0) + 5

6γ0(1− γ1) 6= 0 in order to solve (7.8)-(7.10). Hence, we have

f1 =
(1− 3

2γ0)x+ 5
6γ0

∆2
, f0 =

1− γ1
2 − x(1− γ1)

∆2
.

After substituting f1 and f0 into equation (7.8), f2(ξ) becomes

f2(ξ) = (x− ξ)H(x− ξ) +
[1− γ1

2 − x(1− γ1)]
∆2

γ0(
ξ3

6
+
ξ2

2
− 3

2
ξ +

5
6
)
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−
[(1− 3

2γ0)x+ 5
6γ0]

∆2
{1− ξ − γ1(

1
2
− ξ +

ξ2

2
)}.

Thus, the Green’s functional f(x) = (f2(ξ, x), f1(x), f0(x)) for the problem has
been determined. The first component f2(ξ, x) = f2(ξ) is the Green’s function for
the problem. After substituting ξ = s for notational compatibility, f2(ξ, x) is equal
to the Green’s function constructed in [15] for the problem. By (6.5) in Theorem
6.1, the representation of the existing solution for the problem can be given as

u(x) =
∫ 1

0

−[(x− ξ)H(x− ξ) +
[1− γ1

2 − x(1− γ1)]
∆2

γ0(
ξ3

6
+
ξ2

2
− 3

2
ξ +

5
6
)

−
[(1− 3

2γ0)x+ 5
6γ0]

∆2
{1− ξ − γ1(

1
2
− ξ +

ξ2

2
)}]f(ξ)dξ.

Example 7.3. Finally, we consider the following problem to reduce an integral
equation by using the Green’s functional concept:

u′′(x) + λu(x) = f(x), x ∈ G = (0, 1), (7.11)

u(0) = α00u(β00) + α01u
′(β01) + γ0

∫ 1

0

u(t)dt, (7.12)

u(1) = α10u(β10) + α11u
′(β11) + γ1

∫ 1

0

u(t)dt, (7.13)

where f(x) ∈ Lp(G), α00, α01, α10, α11, γ0, γ1 ∈ R, β00, β01, β10, β11 ∈ G and, λ is a
constant. We can rewrite this problem as

(V2u)(x) ≡ u′′(x) + λu(x) = f(x) = z2(x), x ∈ G = (0, 1),

V1u ≡ u(1)− α10u(β10)− α11u
′(β11)− γ1

∫ 1

0

u(t)dt = 0 = z1,

V0u ≡ u(0)− α00u(β00)− α01u
′(β01)− γ0

∫ 1

0

u(t)dt = 0 = z0.

Then, we have

a1 = 1− α10 − γ1, b1 = 1− α10β10 − α11 −
γ1

2
,

a0 = 1− α00 − γ0, b0 = −β00 − α01 −
γ0

2
,

g1(ξ) = 1− ξ − α10(β10 − ξ)H(β10 − ξ)− α11H(β11 − ξ)− γ1
(1− ξ)2

2
,

g0(ξ) = −α00(β00 − ξ)H(β00 − ξ)− α01H(β01 − ξ)− γ0
(1− ξ)2

2
,

and A0(x) = λ,A1(x) = z1 = z0 = 0 and, H(·) is Heaviside function on R.
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Consequently, the special adjoint system (6.3) corresponding to this problem is
of the form

f2(ξ) +
∫ 1

ξ

f2(s)λ(s− ξ)ds

+ f1{1− ξ − α10(β10 − ξ)H(β10 − ξ)− α11H(β11 − ξ)− γ1
(1− ξ)2

2
}

+ f0{−α00(β00 − ξ)H(β00 − ξ)− α01H(β01 − ξ)− γ0
(1− ξ)2

2
}

= (x− ξ)H(x− ξ),

(7.14)

(1− α10β10 − α11 −
γ1

2
)f1 + (−β00 − α01 −

γ0

2
)f0 +

∫ 1

0

f2(s)λsds = x, (7.15)

(1− α10 − γ1)f1 + (1− α00 − γ0)f0 +
∫ 1

0

f2(s)λds = 1, (7.16)

where ξ ∈ (0, 1). We denote
∫ 1

0
f2(s)λsds and

∫ 1

0
f2(s)λds by E and F respectively,

and then determine f1 and f0 with using only (7.15) and (7.16) under the condition
∆3 = b1a0 − b0a1 = (1− α10β10 − α11 − γ1

2 )(1− α00 − γ0)− (−β00 − α01 − γ0
2 )(1−

α10 − γ1) 6= 0 in order to solve (7.14)-(7.16). As a result, we have

f1 =
a0(x− E)− b0(1− F )

∆3
, f0 =

b1(1− F )− a1(x− E)
∆3

. (7.17)

After substituting f1 and f0 into (7.14), we have

f2(ξ) +
∫ 1

ξ

f2(s)λ(s− ξ)ds+ {a0(x− E)− b0(1− F )
∆3

}

× {1− ξ − α10(β10 − ξ)H(β10 − ξ)− α11H(β11 − ξ)− γ1
(1− ξ)2

2
}

+ {b1(1− F )− a1(x− E)
∆3

}

× {−α00(β00 − ξ)H(β00 − ξ)− α01H(β01 − ξ)− γ0
(1− ξ)2

2
}

= (x− ξ)H(x− ξ).

(7.18)

As can be seen from the denotations E and F , (7.18) is an integral equation for
f2(ξ). After f2(ξ) is determined by solving this integral equation, and then f1(x)
and f0(x) by (7.17); the Green’s functional f(x) = (f2(ξ, x), f1(x), f0(x)) for the
problem will have been constructed. The first component f2(ξ, x) = f2(ξ) will
become the Green’s function for the problem. Consequently, it must be noticed
that the Green’s function is constructed under the condition ∆3 6= 0 in addition to
the solvability conditions for the problem.
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