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MULTIPLE SYMMETRIC SOLUTIONS FOR A SINGULAR
SEMILINEAR ELLIPTIC PROBLEM WITH CRITICAL
EXPONENT

ALFREDO CANO, ERIC HERNANDEZ-MARTINEZ

ABSTRACT. Let be I' a closed subgroup of O(N). We consider the semilinear
elliptic problem

—Au — Mu —a(r)u = f(x)|u|2*_2u in Q,
x
u=0 on 0%,

where Q@ C RV is a smooth bounded domain, N > 4. We establish the
multiplicity of symmetric positive solutions, nodal solutions, and solutions
which are I' invariant but are not I' invariant, where ' C I' C O(N).

1. INTRODUCTION

We consider the singular semilinear elliptic problem with critical nonlinearity,

u .
—Au —b(2)—5 — a(z)u = f(2)|u|* u in Q,
|| (1.1)
u=0 on 01,
where @ C RY (N > 4) is a smooth bounded domain, 0 € Q, 2* := 2 is the

critical Sobolev exponent, and f, a, b are continuous real function defined on RY

f>00nQ,0<b(z) <pm:=(E2)%forallz € Q, and 0 < maxga(z) < Ay, where

A1p is the first Dirichlet eigenvalue of —A — ‘gl% on Q with by := maxg b(x).

Some previous works about this problem, are as follows:

When a(x) = A, b(z) = 0 and f(x) = 1, problem has been studied by many
authors [2, 5] 13, [6, [5]. In [3] the authors proved for b(z) = 0 a multiplicity sign
changing result where a and f are continuous functions. Jannelli [12] investigate
the problem with b(x) = p € [0,z —1], f(z) =1 and a(z) = X € (0, A1) where A; is
the first Dirichlet eigenvalue of —A — # on 2 and got the existence of nontrivial
positive solution. Cao and Peng [4] proved the existence of a pair of sign changing
solutions for N > 7, b(x) = p € [0,71 — 4], a(x) = X € (0,A1), and f(z) = 1. For
a(z) = X and b(z) = p, Han and Liu [II] proved the existence of one non trivial
solution.
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Guo and Niu [9] proved the existence of a symmetric nodal solution and a positive
solution for a(z) = A € (0, A1), where Ay is the first Dirichlet eigenvalue of —A— #
on Q, with b(z) = p, Q and f invariant under a subgroup of O(N), this result was
generalized by Guo, Niu, Cui [10] changing the term a(z)u by a function depend
on z and u, both proofs was based on previous work by Smets [16].

2. STATEMENT OF RESULTS

We write again the partial differential equations to consider

u

—Au — b(z) —a(x)u= f(x)|u* 2u inQ

|[?
u=0 on 00 (2.1)
u(yzr) =u(z) VeeQ, yel.

In this problem the symmetries are given by I' a closed subgroup of orthogonal
transformation O(N). We suppose € a I'-invariant smooth bounded domain in R
such that 0 € 2, and N > 4. The critical Sobolev exponent is given by 2* := %
The functions a, b and f are I'-invariant continuous real valued defined on RY, with
the following additional hypothesis, 0 < a(x) < A1, where A p is the first Dirichlet
eigenvalue of —A — ‘Zﬁ, where by = maxg b(z) and 0 < b(z) < i := (¥52)%. We
note that A; ;, depends of the domain of —A — ﬁ%.

Let Tz := {yx : v € T'} be the I'-orbit of a point x € RN, and #T'« its cardinality,
and denote by X/T := {I'z : z € X} the I'-orbit space of X C RY with the quotient
topology.

Let us recall that the least energy solutions of

—Au=|u*2u inRV

(2.2)
u—0 as|r|— o0
are the instantons given by Aubin and Talenti (see [T [1§].)
(N—2)/2
Us"(a) = C(N) (=5 , 23
0 (IZ’) ( ) €2+|x—y\2 ( )

where C(N) = (N(N — 2))(N=2//4_ Is well known that if the domain is not RN,
there is no minimal energy solutions of (2.2)). These solutions are minimizers for

Jan |Vulda

min YR
WEDVREVO} ( [yl dx)
where D12(R%) is the completion of C°(R¥Y) with respect to the norm
|2 = / Vuldz.
RN

Similarly, for 0 < b(0) < &, the critical problem

—Au — b(O)lx% =|u* 2u in RV

u—0 as |z| — oo,
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was studied by Terracini [20] and gives the solutions

€ >(N—2)/2

Upoy(z) := Cyoy (N
o) (%) o) )<52|x(x/ﬁ—\/u—7b(0))/\/ﬁ+x|(\/ﬁ+\/m)/x/ﬁ

)

where € > 0 and Cy(o)(N) = (%:Z(O)))W‘Q)/‘*. In this case the solutions are
minimizers for

Jex (IV? = b(0) 7 )

S0y = min _
b(0) u€D2(RN)\{0} (fRN ‘u Q*dx)Q/Z

In the following we denote by
#Ly #la

= min

) ™-o ~ Me waa

M:={yeQ:

We shall assume that f, a, and b satisfy:

(F1) f(z) >0 for allz € Q and f(0) = 1.
(F2) f islocally flat at M; that is, there exist » > 0, v > N and A > 0 such that

|f(z) = fy)| < Alz —yl” ifye M and [z —y[ <r

(B1) 0 < b(z) < f for all z € Q, We denote by by := maxg b(z).

(A1) If ap := maxga(x) it must hold 0 < ag < A1y, where Ay denote the first
eigenvalue of —A — ‘2%.

(A2) a(z) > 0 for all x € M.

With the above conditions we define

uv

(U, V)qp = /Q (Vu Vo — b(:c)W - a(x)uv) dz

which is an inner product in Hg () and its induced norm is

2

9 u 9 1/2
el == /(s @) = ( [ (Vul = b(e) o — ate)u )dz)
Using the Hardy inequality,

2 1
/Q|Z|2d:c < ﬁ/Q|Vu|2dx, Vu € HL(Q), (2.5)

we will prove the equivalence of the norms |jullop and |lu = ||ulloo in HI(Q).
Since A1 p is the first eigenvalue of —A — ‘Z% on H}(Q),

2
a u2clx<ﬂ VuQ—bu— dx. 2.6
[l < 2 (19 =0 ) (26)
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Therefore,
w2

a2 = [ (1Vul? = be) 5 — alo)u|Big)ds

/(‘V“'Q‘b% |2)d‘” Alb/('V“'Q"’% 2

_ 9 2 2.7
> (1 Alb (vl - Hz)d:c and by (5) (2.7)
1—— 1—* Vul“d
> (1= 2001 =2) [ [vulie

1— 2 1_7 2
= (1= )= )l

The other inequality holds since 0 < ag < A1, implies a; = ming a(z) < ap <
A1p < A1 where \; denote the first eigenvalue of —A on H{(£2); therefore,

lul2,, < /Q<|Vu|2 ~ a(a)|uf?)dz

§/|Vu|2dx—ﬂ/ |Vul?dz,
17— /\Vu|2d:1:

d (F1) is satisfied, then the norms
= (/ |u|2*dx)1/2*7 and |U|f,2* = (/ f(x)|u|2*dx)1/2*
Q Q

are equivalent. We denote

r._ . #Ix )
O = <£;nel§ 7}6@)(]\[72)/2 S.
We will use the following non existence assumption.

(A3) The problem

If feC(Q) an

—Au= f(@)|[u* 2u inQ
u=0 on 00 (2.8)
u(yr) =u(z) VeeQ, vel
does not have a positive solution u which satisfies [|u/[* < £}
If Q is a smooth starshaped domain is well known that (A3) is satisfied [19].
2.1. Multiplicity of positive solutions. Our next result generalizes the work

of Guo and Niu [9] for problem (2.1) and establishes a relationship between the
topology of the domain and the multiplicity of positive solutions. For § > 0 let

My = {y € M :dist(y,00) > &}, Bs(M) := {z € RN :dist(z, M) <3}. (2.9)
Theorem 2.1. Let N > 4, (A1), (A2), (B1), (F1), (F2), (A3) and ¢} < S;” hold.

Given 0,8’ > 0 there exist \* € (0, A1), p* € (0,) such that for all a( ) e (0 A*),
b(z) € (0,u*) VYa € Q the problem (2.1) has at least

cat g, (ary,r(My /T)
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positive solutions which satisfy
r 2 r
Ef*(slg ||,U’Ha,b<€f'

2.2. Multiplicity of nodal solutions. Let G be a closed subgroup of O(N) for
which Q and f : R — R are G-invariant. We denote by I' the kernel of an
epimorphism 7: G — Z/2 := {-1,1}.

A real valued function u defined in Q will be called T-equivariant if

u(gz) =71(g9)u(z) VreQ, geq.

In this section we study the problem
u

—Au — b(x)W —a(z)u= f(@)|u* 2u inQ

u=0 on 99 (2.10)

u(gr) =7(g)u(r) Ve eQ, geCG
If g € T then all T-equivariant functions u satisfy u(gz) = u(z) for all € Q;
i.e., are [-invariant. If u is a 7-equivariant function and g € 771(—1) then u(gz) =

—u(z) for all z € Q. Thus all non trivial T-equivariant solution of (2.10) change
sign.

Definition 2.2. A subset X of RY is I'-connected if it is a I-invariant subset X of
RN and if cannot be written as the union of two disjoint open I'-invariant subsets.
A real valued function u : Q — R is (T, 2)-nodal if the sets

{reQ:u(r) >0} and {zxe€Q:u(x)<0}
are nonempty and I'-connected.
For each G-invariant subset X of RV, we define
X" ={xre X :Gx =Tz}
Let § > 0, define
M5 = {y € M :dist(y, 00U Q") > §},

T

and Bs(M) as in (2.9)).

The next theorem is a multiplicity result for T-equivariant (T, 2)-nodal solutions

for .

Theorem 2.3. Let N > 4, (A1), (A2), (B1), (F1), (F2), (A3), and (5 < Sy,” hold.
If T is the kernel of an epimorphism 7 : G — Z/2 defined on a closed subgroup G
of O(N) for which Q and the functions a, b, f are G-invariant. Given §,8' > 0
there exists A* € (0, A1), u* € (0,7) such that for all a(x) € (0,A*), b(z) € (0, u*)
for all x € Q problem has at least

cat (g (a)\Bs (M)7) /0 (M 5/G)
pairs tu of T-equivariants (T, 2)-nodal solutions which satisfy

205 = & < |lull2, < 265.
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2.3. Non symmetric properties for solutions. Let I' C I C O(N). Next we
give sufficient conditions for the existence of many solutions which are I'-invariant
but are not [-invariant.

N/2

Theorem 2.4. Let N > 4, (Al), (A2), (B1), (F1), (F2), (A3), and Z? < Sy(o) hold.
Let T be a closed subgroup of O(N) containing T, for which Q0 and the functions a,

b, f are T-invariant and

2l f(z)°  een @D
Given 0,6" > 0 there exist \* € (0, M\1p), p* € (0,0) such that for all a(x) € (0, \*),
b(x) € (0,u*) for all x € Q problem has at least
cat p;(aryr (M /1)
positive solutions which are not [-invariant and satisfy

T ’ 2 T
2€f—5 S ||u|‘a,b<2€f
3. THE VARIATIONAL PROBLEM

To generalize the notation we introduce a homomorphism 7 : G — Z/2 defined
on a closed subgroup G of O(N). Recall the problem (2.10)),

—Au — b(a?)% —a(z)u= f(@)|u* 2u inQ
x
u=0 on 0N
u(gr) =1(g)u(z) VreQ, g€q,
where € is a G-invariant bounded smooth subset of RY, and a, b, and f are a
G-invariant continuous functions which satisfy (A1), (A2), (B1), (F1) and (F2).
Let I := ker 7. If 7 is not an epimorphism then the problems (2.10) and (2.1))
(2.10

coincide. In the other case we obtain solutions for the problem (2.10) and in
particular are sign changing solutions of (2.1).
The homomorphism 7 induces the natural action of G on H}(Q) given by
(gu)(x) := 7(g)u(g™"x).
Due the symmetries, the solutions are in the fixed point space of the action or the
space of T-equivariant functions

Hy(Q) :=={uc H}(Q): gu=uVg € G}
={uc Hy(Q) :ulgz) = 7(g9)u(z) g € G, Yz € Q}.
The fixed point space of the restriction of this action to I'
HY ()" = {u € H}(Q) : u(gz) = u(x) Vg €T, Vo € Q}
are the [-invariant functions of H{(£2). The norms |- ||, || - || on Hg(Q2) and |- |2+,

|| .2« on L?"(Q) are G-invariant with respect to the action induced by 7; therefore
the functional

Fang) = 3 [ (1907~ ate) o~ b)) e = - [ @l d
@02 Jg || 2" Jo
1 1 .
= §||U 3711 - 2**|U|?,2*
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is G-invariant, with derivative

DEqp f(u)v = /

Q

(Vu -Vou — b(ﬂc)ﬂ - a(x)uv) dx — /Q F(@)|ul* ~2uw da.

|2

By the principle of symmetric criticality [14], the critical points of its restriction to
HY(Q)T are the solutions of ([2.10)), and all non trivial solutions lie on the Nehari
manifold

N;bj ={ue€ H&(Q)T cu#0,DE,p (u)u =0}
={ue Hy(Q) :u#0,|u,=|ulfs}

which is of class C? and radially diffeomorphic to the unit sphere in HE ()™ by the
radial projection

2
1 HUH bN(N—2)/4
Tab.f i Ho(2)"\{0} = Ny ¢ Tap () := (|u|23 YN A,
f2*
Therefore, the nontrivial solutions of (2.10) are precisely the critical points of the
restriction of E,p 5 to N7, ;. If 7 = 1 we write N, (.
An easy computation gives

1 1 ;
Eqp,f(u) = N”U i,b = N‘“ﬁ,z* Vu € Ny ¢ (3.1)
and
1 HuHi,b N/2 1 T
Eap,f(Tap,f(u) = N(I 5 ) Vu € Hy(€2)"\{0}.
u|f’2*
We define

m(a,b.f) = nf Eops(w) = jof

a,b,

1
NHUHi,b
1l s

in N( )"
weHF(\{0} N [ulF o

In the restrictions for the Nehari manifolds we denote by

m! (a,b, f) == Ni}}f Eaps, mT(ab, f):= nf Eqp .

a,b,f ab, f

3.1. Estimates for the infimum. From the definition of Nehari Manifold and
(3-1) we obtain that m! (a,b, f) > 0.

Proposition 3.1. Let a(z) < da'(z) < Ay, b(z) < b (2) < fi, for all x € Q, and
f:RY = R, with the conditions above. Then

m(a’ b, f) <m(a,b, f), mT(a,V,f) <m%(a,b,f),
with X =T or X =1.

Proof. By definition of | - [la,s we obtain [[ul|2, ,, < [lull2,. Let u € Hg()\ {0},
then

m(a' 0, f) < Eo v p(Tar g (1))

1 (IIulli/,bI>N/2
N

|U‘?,2*
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1/l N7z
< *( ’ ) = Eap,f(Tap,r(u)),
N |U‘?°,2* /

and from this inequality, the conclusion follows. O

We denote by Ajp the first Dirichlet eigenvalue of —A — ‘Z% in H}(Q).

Lemma 3.2. With the conditions (a1) and (b), for u € H}(Q)7, we obtain

ﬁ N/2 Al b N/2
E, < ( ) 2L \N2g, o .
0,0, (0,0, (u)) < - Mo ao) b,f (Tap,r(w))

Proof. Since

1wl vz 1/l
Ea1b7f(7ra,b,f(u)) = ( ) = ( : )7

N |U|?2 N |“|§f\f2*
by (2.7) we have
ag \N/2 bo\N/2, N N
1—— 1—— U < ||u
(1= 3™ 0= 2™l <
then ]
aop \N/2 boyn/2 1 |u
1-—— 1—- = — < Eup f(map r(u
( )\l,b) ( ﬂ) N ‘ulﬁf\{? = 7b,f( ,b>f( ))
SO - \
o \N/2 1,6 \N/2
E < . E, a )
0,0, (m0,0,7 (u)) < (/2 _— Py ao) b, (Tap, £ (1))
which completes the proof. (I
Corollary 3.3. m" (0,0, f) < (725)N/2 (522 )N (a,b, f).

For the proof of the next lemma we refer the reader to [3].

Lemma 3.4. If QN M # 0 then: (a) m* (0,0, f) < %fl; (b) If there exists
y € QN M with Tz # Gy, then m™ (0,0, f) < %K?

3.2. A compactness result.
Definition 3.5. A sequence {u,} C H}(Q) satisfying
Eop5(un) —c¢ and VEgp5(u,) — 0.

is called a Palais-Smale sequence for Eqp 5 at c. We say that E,p 5 satisfies
the Palais-Smale condition (PS). if every Palais-Smale sequence for Eqp f at c
has a convergent subsequence. If {un,} C HE(Q)" then {u,} is a T-equivariant
Palais-Smale sequence and E,p ¢ satisfies the T-equivariant Palais-Smale condi-
tion, (PS).. If 7 = 1 {u,} is a I'-invariant Palais-Smale sequence and Eqp
satisfies the T-invariant Palais-Smale condition (PS)L.

To describe the 7-equivariant Palais-Smale sequence for E, ; r we use the next
theorem proved by Guo and Niu [9]. which is based on results of Struwe [I7].

Theorem 3.6. Let (u,,) be a T-equivariant Palais-Smale sequence in HE(Q)™ for
Eqp,5 at c > 0. Then there exist a solution u of , m, | € N; a closed subgroup
G' of finite index in G, sequences {y’} C Q, {ri} C (0,00), a solution U} of
fori=1,....,m; and {R}} C (0,00), a solution ﬂi of forj=1,...,1. Such
that
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(i yfl_
(i) (r%)~ 1dlst(yn,8(2)—>oo Yyl =yl ifn— oo, fori=1,...,m,
i

) G,
)

Ellg (ri) gyl — 'yl | — oo, if n — oo, and [g] # [¢'] € G/G* fori=1,...,m,
)
)

G

iv) ah(gz) = 7(g9)uh(x), Yo € RN and g € GY,
ﬂi(goj) =1(9)ul(z), for allz € RN and g € G, R}, — 0 for j=1,...,1,

—~

v
(vi

+Z Z 2 N)/2f( )(2—N)/4
i= 1[g]6G/G1

R gy
X 7'(9)“0(9 1 —)

(=) + o)

mn

. m G/G i l ~7
(Vi) Babg(un) = Ea,p,p(u) + Eiﬂ(%w%,l(%) + o1 B0 @),
as n— oo

Corollary 3.7. E, ;. ¢ satisfies (PS)] at every value

¢ < min {#( G/F f #(G/F)SN/Z}.

N b(0)
Proof. From the inequality of the value ¢ and the part (vii) of the theorem, we
obtain that m and [ are equal to zero. The convergence follows from (vi). O

4. THE BARIORBIT MAP
In the following we suppose the condition ZF < Sé\([é hold and we will assume
the next nonexistence condition.
(NE) The infimum of Eg s is not achieved in N ;.
With these conditions, Corollary [3.7] and Lemma [3.4] imply that

r . _ #FJS 1 N2
Let o o
M::{yeﬁzﬁzmin #le }

)27 ~ g )N
For every y € RV, v € T, the isotropy subgroups satisfy r,, = 7Fy7_1. Therefore
the set of isotropy subgroups of I'-invariant subsets consists of complete conjugacy
classes. We choose I'; C I', ¢ = 1,..,m, one in each conjugacy class of an isotropy
subgroup of M. Set
M ={yeM:T,=T;}={ye M:yy=yVyel},
PM':={y:yel, ye My ={ye M: (T, = ()}
By definition of M it follows that f is constant on each I'M*, then we can define
fi == f(CM%) € R.
The compactness of M allows us to fix o > 0 such that
ly =yl =30 Vye M, yelifyy#y,

S 4.2
dist(TM*,TM7) >3 Vi, j=1,...,mifi# j, (4.2)
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and such that the isotropy subgroup of each point in M g’o ={zcRN :yz2=2Vy €
T;,dist(z, M%) < &} is precisely T';. Define

2—N .
Weei= Y fi © Ueye ifzeMj,
[gleT/T;
where U, ,, := Uy is defined by (2.3). For each 6 € (0,8y) define
Ms =M} U---UM",
Bs :={(g,2) : £ € (0,0), z € My},
Qs := {:l:WE,z : (g, 2) € By}, Op := By,

We mention the next result proved in [3] about the construction of bariorbit maps.

Proposition 4.1. Let 6 € (0,00), and assume that (NE) holds. There exists n >
mY (0,0, f) with following properties: For each u € Nor,mf such that Eyo f(u) <7

we have
1
inf [u— \/ = NmP
Wug@UHu W < 5 mI'(0,0, f),

and there ezist precisely one v € {—1,1}, one e € (0,dq) and one I'-orbit Tz C Ms,
such that
- — inf flu—W]|.
s Wel = ng W]
Moreover (e, z) € Bs

4.1. Definition of the bariorbit map. Fix § € (0,dy) and choose n > m! (0,0, f)
as in Proposition Define

Ejosi={ue Hy () : Eoo,5(u) < n},
Bs(M) = {z € RY : dist(z, M) < 6},

and the space of T'-orbits of Bs(M) by Bs(M)/T'. From Proposition [4.1] we have
the following definition.
Definition 4.2. The bariorbit map 3" : Ny N Ef, , — Bs(M)/T is defined by
T o def o . -
B (w) =Ty < Jux We, || = min fu—Wi|.

This map is continuous and Z/2-invariant by the compactness of M. If T'is
the kernel of an epimorphism 7 : G — Z/2, choose g, € 77}(—1). Let u € Noo.s

then u changes sign and u™ () = —u*(g-'z). Therefore, ||ut||? = |[u~|? and
[ut]3 g = [u"[F,5.. So
u e N(;O,f = ui S N({,O,f and E0707f(u) = 2E070,f(ui). (43)

Lemma 4.3. Ey g ; does not achieve its infimum at N, £, moreover

m7 (0,0, f) := A}(){ffEO,O,f = (fggm

Proof. Suppose that there exists u € N()T,o,f such that Ey o r(u) = m7(0,0, f). Then
ut € NOF)OJ and by Lemma

2
)NSN/Z —2mL (0,0, f).

T . #FJZ 2 N/2
m(&&f)ﬁ(?é%m)ﬁs .
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Hence

1 . #lx L onye
mF(O,O,f) S EO’O’f(uJ’_) = §m (070,f) S (inelg W)NS 2 = mF(O7O7f).

Thus «* is a minimum of Fj ¢ s on Nor,o,fv which contradicts (NE). The corollary

implies

T _ : #la 2 N2

O

The property ([#.3)) implies u* € Noo gD Ef o s forallu e Nj, . N Eg,%yf, S0

Jut — oW, || = Jin [uF =W & [u” +vWe gl = i [u™ = WI. (44)
Therefore,
B (ut) =Ty <= 6" (u") = T(gry), (4.5)
and
BY(ut) # BN (uT) Yue NSy NESh . (4.6)

Set Bs(M)™ :={z € Bs(M) : Gz =T'z}.
Proposition 4.4. The map
BT NGy N Eol s — (Bs(M)\ Bs(M)7)/T, 7 (u) := 5" (u"),

is well defined, continuous and Z/2-equivariant; i.e., 7 (—u) = I'(gry) if and only
if B7(u) =Ty.
Proof. If u € N, (N Eg,%’f and 37 (u) = Ty € Bs(M)7/T then ' (ut) = 'y =

I'(gry) = BY(u™), this is a contradiction to (4.6). We conclude that 7 (u) ¢
Bs(M)7/T. The continuity and Z/2-equivariant properties follows by 8" ones. O

5. MULTIPLICITY OF SOLUTIONS

5.1. Lusternik-Schnirelmann theory. An involution on a topological space X
is a map pox : X — X, such that px o px = idx. Providing X with an involution
amounts to defining an action of Z/2 on X and viceversa. The trivial action is
given by the identity ox = idy, the action of G/T' ~ Z/2 on the orbit space R /T
where G C O(N) and T is the kernel of an epimorphism 7 : G — Z/2, and the
antipodal action o(u) = —u on abf- Amap f: X —Y is called Z/2-equivariant
(or a Z/2-map) if gy o f = f o px, and two Z/2-maps, fo,f1 : X — Y, are said
to be Z/2-homotopic if there exists a homotopy © : X x [0,1] — Y such that
O(x,0) = fo(z), O(x,1) = fi(x) and O(oxz,t) = oy O(x,t) for every x € X,
t €[0,1]. A subset A of X is Z/2-equivariant if pxa € A for every a € A.

Definition 5.1. The Z/2-category of a Z/2-map f : X — Y is the smallest integer
k :=7Z/2 — cat(f) with following properties
(i) There exists a cover of X = X; U...U X}, by k open Z/2-invariant subsets,
(ii) The restriction f |x,: X; — Y is Z/2-homotopic to the composition x;0q; of
aZ/2-map a; : X; — {ys, 0vyi}, yi € Y, and the inclusion «; : {yi, oy y:} —
Y.

If not such covering exists, we define Z/2 — cat(f) := oo.
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If Ais a Z/2-invariant subset of X and ¢ : A — X is the inclusion we write
7/2 —cat x(A) :==7Z/2 — cat(r), Z/2—cat x(X) :=7Z/2 — cat(X).
Note that if p, = idx then
Z/2 — cat x(A) :=cat x(A4), Z/2 — cat(X) := cat(X),
are the usual Lusternik-Schnirelmann category (see [2I, definition 5.4]).
Theorem 5.2. Let ¢ : M — R be an even functional of class C*, and M a
submanifold of a Hilbert space of class C2, symmetric with respect to the origin.

If ¢ is bounded below and satisfies (PS). for each ¢ < d, then ¢ has at least 7./2-
cat(¢p?) pairs critical points such that ¢(u) < d (see [§]).

5.2. Proof of Theorems. We prove Theorem the proof of Theorem is
analogous. Recall that if 7 is the identity or an epimorphism then #(G/I') is 1 or
2.

Proof of Theorem[2.3. By Corollary 3.7} Eq ;5 satisfies (PS)j for

€F #(G/T)

6 < min {#(G/F) / Sur}-

By Lusternik-Schnirelmann theory E, p s has at least Z/2-cat(N7, N Ea p.f) Pairs
+u of critical points in N b1 E b7~ We are going to estimate this category for

an appropriate value of 6.
Without lost of generality we can assume that § € (0,dq), with §p as in (4.2).

I
Let n > %f, w* € (0,f) and A\* € (0, A\1,5) such that

( K N/2( ALp )N/2 Nn EE }
L Ay — A HGT)E =5

By Lemma if ueNJ, ;NES, 1, bo € (0,u%), ag € (0,X*) we have

B \Nj2, ALb\Ny2
E m u)) < E, u
0,0,/ (70,0,¢ (1)) < (ﬁ — bo) (M,b = ao) .1 ()

= min{2,

A

_ T
K \N/2 ALb N/2 GI‘E—f
(GG VPG R

< #(G/Tn.
Let 37 be the 7-bariorbit function, defined in Proposition [4.4f Hence the com-
position map
BT omoo,s : Nipp N Eqyy — (Bs(M)\ Bs(M)")/T,
is a well defined Z/2-invariant continuous function.
Since N > 4, by [3, Lemma 3 and Prop081t10n 3], using (F2) we can choose € > 0

small enough and 0 := 0, < # G/F)W such that

gl“
Eapf(Tap,s(Wl,)) <0< #(G/F)i, vy € My,

r r -
where wl , = w; , —w, 4 ., T(gT) = —1, and

= > fly

[V]er/Ty

Ue yy () ().
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Thus the map af : M_5/T — N7, ;N E}, ;, defined by
a5 (Ty) := map,p(wl,)

is a well defined Z/2-invariant continuous function. Moreover 87 (o0, f(af (T'y))) =
I'y for all y € M_5. Therefore,

Z)2 = cat(NG, s N EQ, 1) > cat (s, (a)nBs(vym)/m) (M 5/T).-

So (2.10) has at least
cat((zs(m)\Bs(M)7) /) (M7.5/G)

pairs tu solution which satisfy

EF
Bap,p(u) < #(G/T) 3.

By the choice of A* and p* we have that

_ A EF
( H )N/2( 1 )N/2 < f
o— p* Al — A* -5
then
A A — ¢
f < M 0\N/2,71 — A0\ N/2 cf
#(G/T)~— = ( a )M N )H#(G/ D)
< mT(av b, f) < Ea,b,f(u)
1 o
= Slull? s < #(G/T) 5
therefore, #(G /)0y — 6" < |lullZ, < #(G/T)L}. O

Proof of Theorem[2.]] By Theorem [2.1] there exist A and p sufficiently close to zero
such that (2.1) has at least cat g, (ar),r(My /T') positive solutions with Eqp r(u) <
el—‘
Wf- N ~ ~

Observe that %f < mb(0,0, f). Indeed, if m'(0,0, f) is not achieved then by
T r -
the hypothesis m!' (0,0, f) = %f > %f. On the other hand if u € N({O,f C Nor,o,f
satisfies Eo,7(u) = m* (0,0, f) we obtain

I =

& =m"(0,0,f) <m"(0,0,f) = Eo.(u).

By Corollary there exist A € (0, A1) and @ € (0, &) such that for each A € (0, X)
and p € (0,f) such that

) -
£ <mh0.0,0) < ( M

N/2ﬁN/21:‘b'
e b

Then
F ~

gf r
Emb,f(u) < ﬁ <m (a, b, f)
Therefore u is not [-invariant solution. O
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