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MULTIPLE SYMMETRIC SOLUTIONS FOR A SINGULAR
SEMILINEAR ELLIPTIC PROBLEM WITH CRITICAL

EXPONENT

ALFREDO CANO, ERIC HERNÁNDEZ-MARTÍNEZ

Abstract. Let be Γ a closed subgroup of O(N). We consider the semilinear
elliptic problem

−∆u−
b(x)

|x|2
u− a(x)u = f(x)|u|2

∗−2u in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain, N ≥ 4. We establish the
multiplicity of symmetric positive solutions, nodal solutions, and solutions

which are Γ invariant but are not eΓ invariant, where Γ ⊂ eΓ ⊂ O(N).

1. Introduction

We consider the singular semilinear elliptic problem with critical nonlinearity,

−∆u− b(x)
u

|x|2
− a(x)u = f(x)|u|2

∗−2u in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 4) is a smooth bounded domain, 0 ∈ Ω, 2∗ := 2N
N−2 is the

critical Sobolev exponent, and f , a, b are continuous real function defined on RN ,
f > 0 on Ω, 0 < b(x) < µ := (N−2

2 )2 for all x ∈ Ω, and 0 < maxΩ a(x) < λ1,b where
λ1,b is the first Dirichlet eigenvalue of −∆− b0

|x|2 on Ω with b0 := maxΩ b(x).
Some previous works about this problem, are as follows:
When a(x) = λ, b(x) = 0 and f(x) = 1, problem (1.1) has been studied by many

authors [2, 15, 13, 6, 5]. In [3] the authors proved for b(x) = 0 a multiplicity sign
changing result where a and f are continuous functions. Jannelli [12] investigate
the problem with b(x) = µ ∈ [0, µ− 1], f(x) = 1 and a(x) = λ ∈ (0, λ1) where λ1 is
the first Dirichlet eigenvalue of −∆− µ

|x|2 on Ω and got the existence of nontrivial
positive solution. Cao and Peng [4] proved the existence of a pair of sign changing
solutions for N ≥ 7, b(x) = µ ∈ [0, µ − 4], a(x) = λ ∈ (0, λ1), and f(x) = 1. For
a(x) = λ and b(x) = µ, Han and Liu [11] proved the existence of one non trivial
solution.
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Guo and Niu [9] proved the existence of a symmetric nodal solution and a positive
solution for a(x) = λ ∈ (0, λ1), where λ1 is the first Dirichlet eigenvalue of −∆− µ

|x|2

on Ω, with b(x) = µ, Ω and f invariant under a subgroup of O(N), this result was
generalized by Guo, Niu, Cui [10] changing the term a(x)u by a function depend
on x and u, both proofs was based on previous work by Smets [16].

2. Statement of results

We write again the partial differential equations to consider

−∆u− b(x)
u

|x|2
− a(x)u = f(x)|u|2

∗−2u in Ω

u = 0 on ∂Ω

u(γx) = u(x) ∀x ∈ Ω, γ ∈ Γ.

(2.1)

In this problem the symmetries are given by Γ a closed subgroup of orthogonal
transformation O(N). We suppose Ω a Γ-invariant smooth bounded domain in RN

such that 0 ∈ Ω, and N ≥ 4. The critical Sobolev exponent is given by 2∗ := 2N
N−2 .

The functions a, b and f are Γ-invariant continuous real valued defined on RN , with
the following additional hypothesis, 0 < a(x) < λ1,b, where λ1,b is the first Dirichlet
eigenvalue of −∆ − b0

|x|2 , where b0 = maxΩ̄ b(x) and 0 < b(x) < µ := (N−2
2 )2. We

note that λ1,b depends of the domain of −∆− b0
|x|2 .

Let Γx := {γx : γ ∈ Γ} be the Γ-orbit of a point x ∈ RN , and #Γx its cardinality,
and denote by X/Γ := {Γx : x ∈ X} the Γ-orbit space of X ⊂ RN with the quotient
topology.

Let us recall that the least energy solutions of

−∆u = |u|2
∗−2u in RN

u → 0 as |x| → ∞
(2.2)

are the instantons given by Aubin and Talenti (see [1, 18].)

Uε,y
0 (x) := C(N)

( ε

ε2 + |x− y|2
)(N−2)/2

, (2.3)

where C(N) = (N(N − 2))(N−2)/4. Is well known that if the domain is not RN ,
there is no minimal energy solutions of (2.2). These solutions are minimizers for

S := min
u∈D1,2(RN )\{0}

∫
RN |∇u|2dx( ∫

RN |u|2∗dx
)2/2∗

,

where D1,2(RN ) is the completion of C∞
c (RN ) with respect to the norm

‖u‖2 :=
∫

RN

|∇u|2dx.

Similarly, for 0 < b(0) < µ, the critical problem

−∆u− b(0)
u

|x|2
= |u|2

∗−2u in RN

u → 0 as |x| → ∞,
(2.4)
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was studied by Terracini [20] and gives the solutions

Ub(0)(x) := Cb(0)(N)
( ε

ε2|x|(
√

µ−
√

µ−b(0))/
√

µ + |x|(
√

µ+
√

µ−b(0))/
√

µ

)(N−2)/2

,

where ε > 0 and Cb(0)(N) = ( 4N(µ−b(0))
N−2 )(N−2)/4. In this case the solutions are

minimizers for

Sb(0) := min
u∈D1,2(RN )\{0}

∫
RN (|∇u|2 − b(0) u2

|x|2 )dx( ∫
RN |u|2∗dx

)2/2∗
.

In the following we denote by

M := {y ∈ Ω :
#Γy

f(y)(N−2)/2
= min

x∈Ω

#Γx

f(x)(N−2)/2
}.

We shall assume that f , a, and b satisfy:

(F1) f(x) > 0 for all x ∈ Ω and f(0) = 1.
(F2) f is locally flat at M ; that is, there exist r > 0, ν > N and A > 0 such that

|f(x)− f(y)| ≤ A|x− y|ν if y ∈ M and |x− y| < r.

(B1) 0 < b(x) < µ for all x ∈ Ω, We denote by b0 := maxΩ b(x).
(A1) If a0 := maxΩ a(x) it must hold 0 < a0 < λ1,b, where λ1,b denote the first

eigenvalue of −∆− b0
|x|2 .

(A2) a(x) > 0 for all x ∈ M .

With the above conditions we define

〈u, v〉a,b :=
∫

Ω

(
∇u · ∇v − b(x)

uv

|x|2
− a(x)uv

)
dx

which is an inner product in H1
0 (Ω) and its induced norm is

‖u‖a,b :=
√
〈u, u〉a,b =

( ∫
Ω

(|∇u|2 − b(x)
u2

|x|2
− a(x)u2)dx

)1/2

.

Using the Hardy inequality,∫
Ω

u2

|x|2
dx ≤ 1

µ

∫
Ω

|∇u|2dx, ∀u ∈ H1
0 (Ω), (2.5)

we will prove the equivalence of the norms ‖u‖a,b and ‖u‖ := ‖u‖0,0 in H1
0 (Ω).

Since λ1,b is the first eigenvalue of −∆− b0
|x|2 on H1

0 (Ω),

∫
Ω

a0|u|2dx ≤ a0

λ1,b

∫
Ω

(
|∇u|2 − b0

u2

|x|2
)
dx. (2.6)
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Therefore,

‖u‖2a,b :=
∫

Ω

(
|∇u|2 − b(x)

u2

|x|2
− a(x)|u|2|Big)dx

≥
∫

Ω

(
|∇u|2 − b0

u2

|x|2
)
dx− a0

λ1,b

∫
Ω

(|∇u|2 − b0
u2

|x|2
)

≥ (1− a0

λ1,b
)
∫

Ω

(
|∇u|2 − b0

u2

|x|2
)
dx, and by (2.5)

≥ (1− a0

λ1,b
)(1− b0

µ
)
∫

Ω

|∇u|2dx

= (1− a0

λ1,b
)(1− b0

µ
)‖u‖2.

(2.7)

The other inequality holds since 0 < a0 < λ1,b, implies a1 = minΩ̄ a(x) ≤ a0 <
λ1,b < λ1 where λ1 denote the first eigenvalue of −∆ on H1

0 (Ω); therefore,

‖u‖2a,b ≤
∫

Ω

(|∇u|2 − a(x)|u|2)dx

≤
∫

Ω

|∇u|2dx− a1

λ1

∫
Ω

|∇u|2dx,

≤ (1− a1

λ1
)
∫

Ω

|∇u|2dx .

If f ∈ C(Ω) and (F1) is satisfied, then the norms

|u|2∗ := (
∫

Ω

|u|2
∗
dx)1/2∗ , and |u|f,2∗ := (

∫
Ω

f(x)|u|2
∗
dx)1/2∗

are equivalent. We denote

`Γf :=
(

min
x∈Ω

#Γx

f(x)(N−2)/2

)
S.

We will use the following non existence assumption.
(A3) The problem

−∆u = f(x)|u|2
∗−2u in Ω

u = 0 on ∂Ω

u(γx) = u(x) ∀x ∈ Ω, γ ∈ Γ

(2.8)

does not have a positive solution u which satisfies ‖u‖2 ≤ `Γf .
If Ω is a smooth starshaped domain is well known that (A3) is satisfied [19].

2.1. Multiplicity of positive solutions. Our next result generalizes the work
of Guo and Niu [9] for problem (2.1) and establishes a relationship between the
topology of the domain and the multiplicity of positive solutions. For δ > 0 let

M−
δ := {y ∈ M : dist(y, ∂Ω) ≥ δ}, Bδ(M) := {z ∈ RN : dist(z,M) ≤ δ}. (2.9)

Theorem 2.1. Let N ≥ 4, (A1), (A2), (B1), (F1), (F2), (A3) and `Γf ≤ S
N/2
b(0) hold.

Given δ, δ′ > 0 there exist λ∗ ∈ (0, λ1,b), µ∗ ∈ (0, µ) such that for all a(x) ∈ (0, λ∗),
b(x) ∈ (0, µ∗) ∀x ∈ Ω the problem (2.1) has at least

cat Bδ(M)/Γ(M−
δ /Γ)
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positive solutions which satisfy

`Γf − δ′ ≤ ‖u‖2a,b < `Γf .

2.2. Multiplicity of nodal solutions. Let G be a closed subgroup of O(N) for
which Ω and f : RN → R are G-invariant. We denote by Γ the kernel of an
epimorphism τ : G → Z/2 := {−1, 1}.

A real valued function u defined in Ω will be called τ -equivariant if

u(gx) = τ(g)u(x) ∀x ∈ Ω, g ∈ G.

In this section we study the problem

−∆u− b(x)
u

|x|2
− a(x)u = f(x)|u|2

∗−2u in Ω

u = 0 on ∂Ω

u(gx) = τ(g)u(x) ∀x ∈ Ω, g ∈ G

(2.10)

If g ∈ Γ then all τ -equivariant functions u satisfy u(gx) = u(x) for all x ∈ Ω;
i.e., are Γ-invariant. If u is a τ -equivariant function and g ∈ τ−1(−1) then u(gx) =
−u(x) for all x ∈ Ω. Thus all non trivial τ -equivariant solution of (2.10) change
sign.

Definition 2.2. A subset X of RN is Γ-connected if it is a Γ-invariant subset X of
RN and if cannot be written as the union of two disjoint open Γ-invariant subsets.
A real valued function u : Ω → R is (Γ, 2)-nodal if the sets

{x ∈ Ω : u(x) > 0} and {x ∈ Ω : u(x) < 0}

are nonempty and Γ-connected.

For each G-invariant subset X of RN , we define

Xτ := {x ∈ X : Gx = Γx}.

Let δ > 0, define

M−
τ,δ := {y ∈ M : dist(y, ∂Ω ∪ Ωτ ) ≥ δ},

and Bδ(M) as in (2.9).
The next theorem is a multiplicity result for τ -equivariant (Γ, 2)-nodal solutions

for (2.1).

Theorem 2.3. Let N ≥ 4, (A1), (A2), (B1), (F1), (F2), (A3), and `Γf ≤ S
N/2
b(0) hold.

If Γ is the kernel of an epimorphism τ : G → Z/2 defined on a closed subgroup G
of O(N) for which Ω and the functions a, b, f are G-invariant. Given δ, δ′ > 0
there exists λ∗ ∈ (0, λ1,b), µ∗ ∈ (0, µ) such that for all a(x) ∈ (0, λ∗), b(x) ∈ (0, µ∗)
for all x ∈ Ω problem (2.1) has at least

cat (Bδ(M)\Bδ(M)τ )/G(M−
τ,δ/G)

pairs ±u of τ -equivariants (Γ, 2)-nodal solutions which satisfy

2`Γf − δ′ ≤ ‖u‖2a,b < 2`Γf .
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2.3. Non symmetric properties for solutions. Let Γ ⊂ Γ̃ ⊂ O(N). Next we
give sufficient conditions for the existence of many solutions which are Γ-invariant
but are not Γ̃-invariant.

Theorem 2.4. Let N ≥ 4, (A1), (A2), (B1), (F1), (F2), (A3), and `Γf ≤ S
N/2
b(0) hold.

Let Γ̃ be a closed subgroup of O(N) containing Γ, for which Ω and the functions a,
b, f are Γ̃-invariant and

min
x∈Ω

#Γx

f(x)
N−2

2

< min
x∈Ω

#Γ̃x

f(x)(N−2)/2
.

Given δ, δ′ > 0 there exist λ∗ ∈ (0, λ1,b), µ∗ ∈ (0, µ) such that for all a(x) ∈ (0, λ∗),
b(x) ∈ (0, µ∗) for all x ∈ Ω problem (2.1) has at least

cat Bδ(M)/Γ(M−
δ /Γ)

positive solutions which are not Γ̃-invariant and satisfy

2`Γf − δ′ ≤ ‖u‖2a,b < 2`Γf .

3. The variational problem

To generalize the notation we introduce a homomorphism τ : G → Z/2 defined
on a closed subgroup G of O(N). Recall the problem (2.10),

−∆u− b(x)
u

|x|2
− a(x)u = f(x)|u|2

∗−2u in Ω

u = 0 on ∂Ω

u(gx) = τ(g)u(x) ∀x ∈ Ω, g ∈ G,

where Ω is a G-invariant bounded smooth subset of RN , and a, b, and f are a
G-invariant continuous functions which satisfy (A1), (A2), (B1), (F1) and (F2).

Let Γ := ker τ . If τ is not an epimorphism then the problems (2.10) and (2.1)
coincide. In the other case we obtain solutions for the problem (2.10) and in
particular are sign changing solutions of (2.1).

The homomorphism τ induces the natural action of G on H1
0 (Ω) given by

(gu)(x) := τ(g)u(g−1x).

Due the symmetries, the solutions are in the fixed point space of the action or the
space of τ -equivariant functions

H1
0 (Ω)τ := {u ∈ H1

0 (Ω) : gu = u ∀g ∈ G}
= {u ∈ H1

0 (Ω) : u(gx) = τ(g)u(x) g ∈ G, ∀x ∈ Ω}.
The fixed point space of the restriction of this action to Γ

H1
0 (Ω)Γ = {u ∈ H1

0 (Ω) : u(gx) = u(x) ∀g ∈ Γ, ∀x ∈ Ω}
are the Γ-invariant functions of H1

0 (Ω). The norms ‖ · ‖a,b, ‖ · ‖ on H1
0 (Ω) and | · |2∗ ,

| · |f,2∗ on L2∗(Ω) are G-invariant with respect to the action induced by τ ; therefore
the functional

Ea,b,f (u) :=
1
2

∫
Ω

(
|∇u|2 − a(x)

u2

|x|2
− b(x)|u|2

)
dx− 1

2∗

∫
Ω

f(x)|u|2
∗
dx

=
1
2
‖u‖2a,b −

1
2∗
|u|2

∗

f,2∗
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is G-invariant, with derivative

DEa,b,f (u)v =
∫

Ω

(
∇u · ∇v − b(x)

uv

|x|2
− a(x)uv

)
dx−

∫
Ω

f(x)|u|2
∗−2uv dx.

By the principle of symmetric criticality [14], the critical points of its restriction to
H1

0 (Ω)τ are the solutions of (2.10), and all non trivial solutions lie on the Nehari
manifold

N τ
a,b,f := {u ∈ H1

0 (Ω)τ : u 6= 0, DEa,b,f (u)u = 0}

= {u ∈ H1
0 (Ω)τ : u 6= 0, ‖u‖2a,b = |u|2

∗

f,2∗}.

which is of class C2 and radially diffeomorphic to the unit sphere in H1
0 (Ω)τ by the

radial projection

πa,b,f : H1
0 (Ω)τ \ {0} → N τ

a,b,f πa,b,f (u) := (
‖u‖2a,b

|u|2∗f,2∗
)(N−2)/4u.

Therefore, the nontrivial solutions of (2.10) are precisely the critical points of the
restriction of Ea,b,f to N τ

a,b,f . If τ ≡ 1 we write NΓ
a,b,f .

An easy computation gives

Ea,b,f (u) =
1
N
‖u‖2a,b =

1
N
|u|2

∗

f,2∗ ∀u ∈ N τ
a,b,f (3.1)

and

Ea,b,f (πa,b,f (u)) =
1
N

(
‖u‖2a,b

|u|2f,2∗
)N/2 ∀u ∈ H1

0 (Ω)τ\{0}.

We define

m(a, b, f) := inf
Na,b,f

Ea,b,f (u) = inf
Na,b,f

1
N
‖u‖2a,b

= inf
u∈H1

0 (Ω)\{0}

1
N

(
‖u‖2a,b

|u|2f,2∗
)N/2.

In the restrictions for the Nehari manifolds we denote by

mΓ(a, b, f) := inf
NΓ

a,b,f

Ea,b,f , mτ (a, b, f) := inf
N τ

a,b,f

Ea,b,f .

3.1. Estimates for the infimum. From the definition of Nehari Manifold and
(3.1) we obtain that mΓ(a, b, f) > 0.

Proposition 3.1. Let a(x) ≤ a′(x) < λ1,b, b(x) ≤ b′(x) < µ̄, for all x ∈ Ω̄, and
f : RN → R, with the conditions above. Then

m(a′, b′, f) ≤ m(a, b, f), mΣ(a′, b′, f) ≤ mΣ(a, b, f),

with Σ = Γ or Σ = τ .

Proof. By definition of ‖ · ‖a,b we obtain ‖u‖2a′,b′ ≤ ‖u‖2a,b. Let u ∈ H1
0 (Ω) \ {0},

then

m(a′, b′, f) ≤ Ea′,b′,f (πa′,b′,f (u))

=
1
N

(‖u‖2a′,b′
|u|2f,2∗

)N/2
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≤ 1
N

(‖u‖2a,b

|u|2f,2∗

)N/2

= Ea,b,f (πa,b,f (u)),

and from this inequality, the conclusion follows. �

We denote by λ1,b the first Dirichlet eigenvalue of −∆− b0
|x|2 in H1

0 (Ω).

Lemma 3.2. With the conditions (a1) and (b), for u ∈ H1
0 (Ω)τ , we obtain

E0,0,f (π0,0,f (u)) ≤
( µ̄

µ̄− b0

)N/2

(
λ1,b

λ1,b − a0
)N/2Ea,b,f (πa,b,f (u)).

Proof. Since

Ea,b,f (πa,b,f (u)) =
1
N

(‖u‖2a,b

|u|2f,2∗

)N/2

=
1
N

(‖u‖N
a,b

|u|Nf,2∗

)
,

by (2.7) we have (
1− a0

λ1,b

)N/2(1− b0

µ

)N/2‖u‖N ≤ ‖u‖N
a,b

then (
1− a0

λ1,b

)N/2(1− b0

µ

)N/2 1
N

‖u‖N

|u|Nf,2∗
≤ Ea,b,f (πa,b,f (u))

so
E0,0,f (π0,0,f (u)) ≤

( µ̄

µ̄− b0

)N/2( λ1,b

λ1,b − a0

)N/2
Ea,b,f (πa,b,f (u)),

which completes the proof. �

Corollary 3.3. mτ (0, 0, f) ≤ ( µ̄
µ̄−b0

)N/2( λ1,b

λ1,b−a0
)N/2mτ (a, b, f).

For the proof of the next lemma we refer the reader to [3].

Lemma 3.4. If Ω ∩ M 6= ∅ then: (a) mΓ(0, 0, f) ≤ 1
N `Γf . (b) If there exists

y ∈ Ω ∩M with Γx 6= Gy, then mτ (0, 0, f) ≤ 2
N `Γf .

3.2. A compactness result.

Definition 3.5. A sequence {un} ⊂ H1
0 (Ω) satisfying

Ea,b,f (un) → c and ∇Ea,b,f (un) → 0.

is called a Palais-Smale sequence for Ea,b,f at c. We say that Ea,b,f satisfies
the Palais-Smale condition (PS)c if every Palais-Smale sequence for Ea,b,f at c
has a convergent subsequence. If {un} ⊂ H1

0 (Ω)τ then {un} is a τ -equivariant
Palais-Smale sequence and Ea,b,f satisfies the τ -equivariant Palais-Smale condi-
tion, (PS)τ

c . If τ ≡ 1 {un} is a Γ-invariant Palais-Smale sequence and Ea,b,f

satisfies the Γ-invariant Palais-Smale condition (PS)Γc .

To describe the τ -equivariant Palais-Smale sequence for Ea,b,f we use the next
theorem proved by Guo and Niu [9]. which is based on results of Struwe [17].

Theorem 3.6. Let (un) be a τ -equivariant Palais-Smale sequence in H1
0 (Ω)τ for

Ea,b,f at c ≥ 0. Then there exist a solution u of (2.10), m, l ∈ N; a closed subgroup
Gi of finite index in G, sequences {yi

n} ⊂ Ω, {ri
n} ⊂ (0,∞), a solution ûi

0 of (2.2)
for i = 1, . . . ,m; and {Rj

n} ⊂ (0,∞), a solution ûj
b of (2.4) for j = 1, . . . , l. Such

that
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(i) Gyi
n

= Gi,
(ii) (ri

n)−1 dist(yi
n, ∂Ω) →∞, yi

n → yi, if n →∞, for i = 1, . . . ,m,
(iii) (ri

n)−1|gyi
n− g′yi

n| → ∞, if n →∞, and [g] 6= [g′] ∈ G/Gi for i = 1, . . . ,m,
(iv) ûi

0(gx) = τ(g)ûi
0(x), ∀x ∈ RN and g ∈ Gi,

(v) ûj
b(gx) = τ(g)ûj

b(x), for all x ∈ RN and g ∈ G, Rj
n → 0 for j = 1, . . . , l,

(vi)

un(x) = u(x) +
m∑

i=1

∑
[g]∈G/Gi

(ri
n)(2−N)/2f(yi)(2−N)/4

× τ(g)ûi
0(g

−1(
x− gyi

n

ri
n

)) +
l∑

j=1

(Rj
n)

2−N
2 ûj

b(
x

Rj
n

) + o(1)

(vii) Ea,b,f (un) → Ea,b,f (u) +
∑m

i=1(
#(G/Gi)

f(yi)(N−2)/2 )E∞
0,0,1(û

i
0) +

∑l
j=1 E∞

0,b(0),1(û
j
b),

as n →∞

Corollary 3.7. Ea,b,f satisfies (PS)τ
c at every value

c < min
{
#(G/Γ)

`Γf
N

,
#(G/Γ)

N
S

N/2
b(0)

}
.

Proof. From the inequality of the value c and the part (vii) of the theorem, we
obtain that m and l are equal to zero. The convergence follows from (vi). �

4. The bariorbit map

In the following we suppose the condition `Γf ≤ S
N/2
b(0) hold and we will assume

the next nonexistence condition.
(NE) The infimum of E0,0,f is not achieved in NΓ

0,0,f .
With these conditions, Corollary 3.7 and Lemma 3.4 imply that

mΓ(0, 0, f) := inf
NΓ

0,0,f

E0,0,f =
(

min
x∈Ω

#Γx

f(x)(N−2)/2

) 1
N

SN/2. (4.1)

Let

M := {y ∈ Ω :
#Γy

f(y)(N−2)/2
= min

x∈Ω

#Γx

f(x)(N−2)/2
}.

For every y ∈ RN , γ ∈ Γ, the isotropy subgroups satisfy Γγy = γΓyγ−1. Therefore
the set of isotropy subgroups of Γ-invariant subsets consists of complete conjugacy
classes. We choose Γi ⊂ Γ, i = 1, ..,m, one in each conjugacy class of an isotropy
subgroup of M . Set

M i := {y ∈ M : Γy = Γi} = {y ∈ M : γy = y ∀γ ∈ Γi},
ΓM i := {γy : γ ∈ Γ, y ∈ M i} = {y ∈ M : (Γy) = (Γi)}.

By definition of M it follows that f is constant on each ΓM i, then we can define

fi := f(ΓM i) ∈ R.

The compactness of M allows us to fix δ0 > 0 such that

|y − γy| ≥ 3δ0 ∀y ∈ M, γ ∈ Γ if γy 6= y,

dist(ΓM i,ΓM j) ≥ 3 ∀i, j = 1, . . . ,m if i 6= j,
(4.2)
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and such that the isotropy subgroup of each point in M i
δ0

:= {z ∈ RN : γz = z∀γ ∈
Γi,dist(z,M i) ≤ δ0} is precisely Γi. Define

Wε,z :=
∑

[g]∈Γ/Γi

f
2−N

4
i Uε,gz if z ∈ M i

δ0
,

where Uε,y := Uε,y
0 is defined by (2.3). For each δ ∈ (0, δ0) define

Mδ := M1
δ ∪ · · · ∪Mm

δ ,

Bδ := {(ε, z) : ε ∈ (0, δ), z ∈ Mδ},
Θδ := {±Wε,z : (ε, z) ∈ Bδ}, Θ0 := Θδ0 .

We mention the next result proved in [3] about the construction of bariorbit maps.

Proposition 4.1. Let δ ∈ (0, δ0), and assume that (NE) holds. There exists η >
mΓ(0, 0, f) with following properties: For each u ∈ NΓ

0,0,f such that E0,0,f (u) ≤ η
we have

inf
W∈Θ0

‖u−W‖ <

√
1
2
NmΓ(0, 0, f),

and there exist precisely one ν ∈ {−1, 1}, one ε ∈ (0, δ0) and one Γ-orbit Γz ⊂ Mδ0

such that
‖u− νWε,z‖ = inf

W∈Θ0
‖u−W‖.

Moreover (ε, z) ∈ Bδ

4.1. Definition of the bariorbit map. Fix δ ∈ (0, δ0) and choose η > mΓ(0, 0, f)
as in Proposition 4.1. Define

Eη
0,0,f := {u ∈ H1

0 (Ω) : E0,0,f (u) ≤ η},

Bδ(M) := {z ∈ RN : dist(z,M) ≤ δ},

and the space of Γ-orbits of Bδ(M) by Bδ(M)/Γ. From Proposition 4.1 we have
the following definition.

Definition 4.2. The bariorbit map βΓ : NΓ
0,0,f ∩ Eη

0,0,f → Bδ(M)/Γ is defined by

βΓ(u) = Γy
def⇐⇒ ‖u±Wε,y‖ = min

W∈Θ0
‖u−W‖.

This map is continuous and Z/2-invariant by the compactness of Mδ. If Γ is
the kernel of an epimorphism τ : G → Z/2, choose gτ ∈ τ−1(−1). Let u ∈ N τ

0,0,f

then u changes sign and u−(x) = −u+(g−1
τ x). Therefore, ‖u+‖2 = ‖u−‖2 and

|u+|2∗f,2∗ = |u−|2∗f,2∗ . So

u ∈ N τ
0,0,f ⇒ u± ∈ N Γ

0,0,f and E0,0,f (u) = 2E0,0,f (u±). (4.3)

Lemma 4.3. E0,0,f does not achieve its infimum at N τ
0,0,f , moreover

mτ (0, 0, f) := inf
N τ

0,0,f

E0,0,f =
(

min
x∈Ω

#Γx

f(x)(N−2)/2

) 2
N

SN/2 = 2mΓ(0, 0, f).

Proof. Suppose that there exists u ∈ N τ
0,0,f such that E0,0,f (u) = mτ (0, 0, f). Then

u+ ∈ N Γ
0,0,f and by Lemma 3.4,

mτ (0, 0, f) ≤
(

min
x∈Ω

#Γx

f(x)(N−2)/2

) 2
N

SN/2.
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Hence

mΓ(0, 0, f) ≤ E0,0,f (u+) =
1
2
mτ (0, 0, f) ≤

(
min
x∈Ω

#Γx

f(x)
N−2

2

) 1
N

SN/2 = mΓ(0, 0, f).

Thus u+ is a minimum of E0,0,f on NΓ
0,0,f , which contradicts (NE). The corollary

3.7 implies

mτ (0, 0, f) =
(

min
x∈Ω

#Γx

f(x)(N−2)/2

) 2
N

SN/2.

�

The property (4.3) implies u± ∈ N Γ
0,0,f ∩ Eη

0,0,f for all u ∈ N τ
0,0,f ∩ E2η

0,0,f , so

‖u+ − νWε,y‖ = min
W∈Θ0

‖u+ −W‖ ⇔ ‖u− + νWε,gτ y‖ = min
W∈Θ0

‖u− −W‖. (4.4)

Therefore,
βΓ(u+) = Γy ⇐⇒ βΓ(u−) = Γ(gτy), (4.5)

and
βΓ(u+) 6= βΓ(u−) ∀u ∈ N τ

0,0,f ∩ E2η
0,0,f . (4.6)

Set Bδ(M)τ := {z ∈ Bδ(M) : Gz = Γz}.

Proposition 4.4. The map

βτ : N τ
0,0,f ∩ E2η

0,0,f → (Bδ(M) \Bδ(M)τ )/Γ, βτ (u) := βΓ(u+),

is well defined, continuous and Z/2-equivariant; i.e., βτ (−u) = Γ(gτy) if and only
if βτ (u) = Γy.

Proof. If u ∈ N τ
0,0,f ∩ E2η

0,0,f and βτ (u) = Γy ∈ Bδ(M)τ/Γ then βΓ(u+) = Γy =
Γ(gτy) = βΓ(u−), this is a contradiction to (4.6). We conclude that βτ (u) 6∈
Bδ(M)τ/Γ. The continuity and Z/2-equivariant properties follows by βΓ ones. �

5. Multiplicity of solutions

5.1. Lusternik-Schnirelmann theory. An involution on a topological space X
is a map %X : X → X, such that %X ◦ %X = idX . Providing X with an involution
amounts to defining an action of Z/2 on X and viceversa. The trivial action is
given by the identity %X = idX , the action of G/Γ ' Z/2 on the orbit space RN/Γ
where G ⊂ O(N) and Γ is the kernel of an epimorphism τ : G → Z/2, and the
antipodal action %(u) = −u on N τ

a,b,f . A map f : X → Y is called Z/2-equivariant
(or a Z/2-map) if %Y ◦ f = f ◦ %X , and two Z/2-maps, f0, f1 : X → Y , are said
to be Z/2-homotopic if there exists a homotopy Θ : X × [0, 1] → Y such that
Θ(x, 0) = f0(x), Θ(x, 1) = f1(x) and Θ(%Xx, t) = %Y Θ(x, t) for every x ∈ X,
t ∈ [0, 1]. A subset A of X is Z/2-equivariant if %Xa ∈ A for every a ∈ A.

Definition 5.1. The Z/2-category of a Z/2-map f : X → Y is the smallest integer
k := Z/2− cat(f) with following properties

(i) There exists a cover of X = X1 ∪ . . .∪Xk by k open Z/2-invariant subsets,
(ii) The restriction f |Xi : Xi → Y is Z/2-homotopic to the composition κi◦αi of

a Z/2-map αi : Xi → {yi, %Y yi}, yi ∈ Y , and the inclusion κi : {yi, %Y yi} ↪→
Y .

If not such covering exists, we define Z/2− cat(f) := ∞.
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If A is a Z/2-invariant subset of X and ι : A ↪→ X is the inclusion we write

Z/2− cat X(A) := Z/2− cat(ι), Z/2− cat X(X) := Z/2− cat(X).

Note that if %x = idX then

Z/2− cat X(A) := cat X(A), Z/2− cat(X) := cat(X),

are the usual Lusternik-Schnirelmann category (see [21, definition 5.4]).

Theorem 5.2. Let φ : M → R be an even functional of class C1, and M a
submanifold of a Hilbert space of class C2, symmetric with respect to the origin.
If φ is bounded below and satisfies (PS)c for each c ≤ d, then φ has at least Z/2-
cat(φd) pairs critical points such that φ(u) ≤ d (see [8]).

5.2. Proof of Theorems. We prove Theorem 2.3; the proof of Theorem 2.1 is
analogous. Recall that if τ is the identity or an epimorphism then #(G/Γ) is 1 or
2.

Proof of Theorem 2.3. By Corollary 3.7, Ea,b,f satisfies (PS)τ
θ for

θ < min
{
#(G/Γ)

`Γf
N

,
#(G/Γ)

N
S

N/2
b(0)

}
.

By Lusternik-Schnirelmann theory Ea,b,f has at least Z/2-cat(N τ
a,b,f ∩Eθ

a,b,f ) pairs
±u of critical points in N τ

a,b,f ∩ Eθ
a,b,f . We are going to estimate this category for

an appropriate value of θ.
Without lost of generality we can assume that δ ∈ (0, δ0), with δ0 as in (4.2).

Let η >
`Γf
N , µ∗ ∈ (0, µ) and λ∗ ∈ (0, λ1,b) such that

(
µ̄

µ̄− µ∗
)N/2(

λ1,b

λ1,b − λ∗
)N/2 = min{2,

Nη

#(G/Γ)`Γf
,

`Γf
`Γf − δ′

}.

By Lemma 3.2, if u ∈ N τ
a,b,f ∩ Eθ

a,b,f , b0 ∈ (0, µ∗), a0 ∈ (0, λ∗) we have

E0,0,f (π0,0,f (u)) ≤ (
µ̄

µ̄− b0
)N/2(

λ1,b

λ1,b − a0
)N/2Ea,b,f (u)

< (
µ̄

µ̄− b0
)N/2(

λ1,b

λ1,b − a0
)N/2#(G/Γ)

`Γf
N

≤ #(G/Γ)η.

Let βτ be the τ -bariorbit function, defined in Proposition 4.4. Hence the com-
position map

βτ ◦ π0,0,f : N τ
a,b,f ∩ Eθ

a,b,f → (Bδ(M) \Bδ(M)τ )/Γ,

is a well defined Z/2-invariant continuous function.
Since N ≥ 4, by [3, Lemma 3 and Proposition 3], using (F2) we can choose ε > 0

small enough and θ := θε < #(G/Γ) `Γf
N such that

Ea,b,f (πa,b,f (wτ
ε,y)) ≤ θ < #(G/Γ)

`Γf
N

, ∀y ∈ M−
δ ,

where wτ
ε,y = wΓ

ε,y − wΓ
ε,gτ y, τ(gτ ) = −1, and

wΓ
ε,y(x) =

∑
[γ]∈Γ/Γy

f(y)
2−N

4 Uε,γy(x)ϕγy(x).
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Thus the map ατ
δ : M−

τ,δ/Γ → N τ
a,b,f ∩ Eθ

a,b,f , defined by

ατ
δ (Γy) := πa,b,f (wτ

ε,y)

is a well defined Z/2-invariant continuous function. Moreover βτ (π0,0,f (ατ
δ (Γy))) =

Γy for all y ∈ M−
τ,δ. Therefore,

Z/2− cat(N τ
a,b,f ∩ Eθ

a,b,f ) ≥ cat ((Bδ(M)\Bδ(M)τ )/Γ)(M−
τ,δ/Γ).

So (2.10) has at least

cat((Bδ(M)\Bδ(M)τ )/G)(M−
τ,δ/G)

pairs ±u solution which satisfy

Ea,b,f (u) < #(G/Γ)
`Γf
N

.

By the choice of λ∗ and µ∗ we have that

(
µ̄

µ̄− µ∗
)N/2(

λ1

λ1 − λ∗
)N/2 ≤

`Γf
`Γf − δ′

,

then

#(G/Γ)
`Γf − δ′

N
≤ (

µ̄− b0

µ̄
)N/2(

λ1 − a0

λ1
)N/2#(G/Γ)

`Γf
N

≤ mτ (a, b, f) ≤ Ea,b,f (u)

=
1
N
‖u‖2a,b < #(G/Γ)

`Γf
N

therefore, #(G/Γ)`Γf − δ′′ ≤ ‖u‖2a,b < #(G/Γ)`Γf . �

Proof of Theorem 2.4. By Theorem 2.1 there exist λ and µ sufficiently close to zero
such that (2.1) has at least cat Bδ(M)/Γ(M−

δ /Γ) positive solutions with Ea,b,f (u) <
`Γf
N .

Observe that `Γf
N < m

eΓ(0, 0, f). Indeed, if m
eΓ(0, 0, f) is not achieved then by

the hypothesis m
eΓ(0, 0, f) = `

eΓ
f

N >
`Γf
N . On the other hand if u ∈ N eΓ

0,0,f ⊂ NΓ
0,0,f

satisfies E0,0,f (u) = m
eΓ(0, 0, f) we obtain

`Γf
N

= mΓ(0, 0, f) < m
eΓ(0, 0, f) = E0,0,f (u).

By Corollary 3.3, there exist λ̂ ∈ (0, λ1) and µ̂ ∈ (0, µ̄) such that for each λ ∈ (0, λ̂)
and µ ∈ (0, µ̂) such that

`Γf
N

< mΓ̃(0, 0, f) ≤ (
λ1

λ1 − λ
)N/2(

µ

µ− µ
)N/2mΓ̃(a, b, f).

Then

Ea,b,f (u) <
`Γf
N

< mΓ̃(a, b, f).

Therefore u is not Γ̃-invariant solution. �
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E-mail address: ebric2001@hotmail.com


	1. Introduction
	2. Statement of results
	2.1. Multiplicity of positive solutions
	2.2. Multiplicity of nodal solutions
	2.3. Non symmetric properties for solutions

	3. The variational problem
	3.1. Estimates for the infimum
	3.2. A compactness result

	4. The bariorbit map
	4.1. Definition of the bariorbit map

	5. Multiplicity of solutions
	5.1. Lusternik-Schnirelmann theory
	5.2. Proof of Theorems
	Acknowledgements

	References

