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STURM-LIOUVILLE EIGENVALUE CHARACTERIZATIONS

PAUL B. BAILEY, ANTON ZETTL

Abstract. We study the relationship between the eigenvalues of separated
self-adjoint boundary conditions and coupled self-adjoint conditions. Given an
arbitrary real coupled boundary condition determined by a coupling matrix
K we construct a one parameter family of separated conditions and show
that all the eigenvalues for K and −K are extrema of the eigencurves of this
family. This characterization makes it possible to use the well known Prüfer
transformation which has been used very successfully, both theoretically and
numerically, for separated conditions, also in the coupled case. In particular,
this characterization makes it possible to compute the eigenvalues for any
real coupled self-adjoint boundary condition using any code which works for
separated conditions.

1. Introduction

We study regular self-adjoint Sturm-Liouville problems:

−(py′)′ + qy = λwy on J = (a, b), −∞ < a < b <∞, (1.1)

AY (a) +BY (b) = 0, A,B ∈M2(C), Y =
[
y
py′

]
. (1.2)

Here the coefficients satisfy the regularity conditions
1
p
, q, w ∈ L(J,R), p > 0, w > 0 a.e. on J, λ ∈ C; (1.3)

and the boundary conditions satisfy the well known self-adjointness condition

det(A : B) = 2 and AEA∗ = BEB∗, E =
[
0 −1
1 0

]
, A,B ∈M2(C), (1.4)

where M2(C) denotes the 2× 2 matrices over the complex numbers C.
It is well known that, given (1.1), the conditions (1.2) are well defined and they

are categorized into two disjoint mutually exclusive classes: separated and coupled.
The separated conditions have the well known canonical representation:

cos(α)y(a)− sin(α)(py′)(a) = 0, α ∈ [0, π),

cos(β)y(b)− sin(β)(py′)(b) = 0, β ∈ (0, π].
(1.5)
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Also known, but not as well known [5], is the canonical form of the coupled self-
adjoint conditions

Y (b) = eiγKY (a), −π < γ ≤ π, K ∈M2(R), det(K) = 1, (1.6)

where M2(R) denotes the 2× 2 matrices over the reals R.
The matrices K ∈ M2(R) satisfying det(K) = 1 are known as the special linear

group of order two over the reals and are denoted by SL2(R). Note that K ∈
SL2(R) if and only if −K ∈ SL2(R). When γ = 0 the self-adjoint condition (1.6) is
real; its spectrum is denoted by σ(K) = {λn(K) : n ∈ N0 = {0, 1, 2, 3, . . . }} and we
refer to the λn(K) as the eigenvalues for K. When γ ∈ (0, π) ∪ (−π, 0) then (1.6)
is a complex self-adjoint coupled boundary condition; its spectrum is denoted by
σ(K, γ) = {λn(K, γ) : n ∈ N0 = {0, 1, 2, 3, . . . }} and the eigenvalues λn(K, γ) are
referred to as the eigenvalues for (K, γ). The spectrum of the separated conditions
(1.5) is denoted by σ(α, β) = {λn(α, β) : n ∈ N0}. Let N = {1, 2, 3, . . . }.

For separated conditions there is a well known and powerful tool based on the
Prüfer transformation for studying properties of eigenvalues and eigenfunctions; for
example to prove that the n-th eigenfunction has exactly n zeros in the open domain
interval (a, b). In 1966 Bailey [1] showed that this transformation can be used to
compute the eigenvalues of separated conditions very effectively and efficiently. The
nth eigenvalue can be computed without any prior knowledge of the previous or
subsequent eigenvalues.

To the best of our knowledge, the only general purpose code available for the
computation of the eigenvalues for coupled conditions (1.2) is the Bailey, Everitt,
Zettl code SLEIGN2 [2]. The algorithm used in [2] is based on inequalities found by
Eastham, Kong, Wu and Zettl [5]. These inequalities locate the coupled eigenvalues
uniquely between two separated ones. The Prüfer transformation is then used to
compute the separated eigenvalues followed by a search mechanism to compute the
coupled eigenvalue within the bounds given by the separated ones.

In this paper, given any K ∈ M2(R), we construct a one parameter family of
separated conditions and prove that the extrema of this family are eigenvalues for
K or −K and all eigenvalues for K and −K can be obtained in this way. Given the
index, n, for any eigenvalue of K we determine the appropriate separated boundary
condition and determine which eigenvalue of this separated condition is equal to
the coupled one with this index n. Thus we show that the information obtained
for separated conditions - which have been studied much more extensively than
coupled ones (in the direct theory and even more so in the inverse theory where
little is known for coupled conditions) and have a history and voluminous literature
dating back more than 170 years - can be applied to any real coupled condition. If
λn is a simple eigenvalue for K, the number of its zeros in the open domain interval
is determined exactly by this characterization. Furthermore, our characterization
can be used to compute the eigenvalues for any K ∈ SL2(R) using any code which
works for separated conditions.

In stark contrast to the above mentioned results about the close relationships
between the eigenvalues λn(K) and λn(α, β) we also show that no eigenvalue of the
constructed family of separated conditions determined by K or −K is an eigenvalue
λn(K, γ) when γ 6= 0.

There is a voluminous literature on applications of Sturm-Liouville problems in
Applied Mathematics, Science, Engineering and other fields. A description of this
literature is well outside the scope of this paper. See the book [9] for an extensive
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list of references and as a general reference for known results, also see [8], [6] and
[3]. An example of a more recent reference is the paper of Ren and Chang [7] where
knowledge of the dependence of eigenvalues on the boundary conditions is applied
to the study of crystals.

The organization of this paper is as follows. For the convenience of the reader
we review some basic results used below in Section 2. The Algorithm is presented
in Section 3. Section 4 contains theorems used in the proof of the Algorithm given
in Section 5. We believe these theorems are of independent interest.

2. Basic Review

In (1.2) if det(A) = 0 then det(B) = 0 by (1.4), the boundary conditions are
separated and can be taken to have the form

A1y(a) +A2(py′)(a) = 0, A1, A2 ∈ R, (A1, A2) 6= (0, 0), (2.1)

B1y(b) +B2(py′)(b) = 0, B1, B2 ∈ R, (B1, B2) 6= (0, 0), (2.2)

where R denotes the real numbers.

Remark 2.1. The different parameterizations for α and β in (1.5) are for con-
venience in stating results and in using the Prüfer transformation. These play an
important role below. As mentioned above, this transformation is a well known
and powerful tool, in Pure and Applied Mathematics, for proving the existence
of eigenvalues, studying their properties, and for their numerical computation, see
[8, 6, 3, 2]. There is no comparable tool for coupled conditions. Until the publica-
tion of [4] the standard method of proving the existence of eigenvalues for coupled
problems was to construct the Green’s function, use it as a kernel to define an
integral operator, then show that this operator is self-adjoint in an appropriate
Hilbert space and use operator theory [3, 6]. In contrast, the proof using the Prüfer
transformation is elementary [3, 9]. An elementary proof for the existence of the
eigenvalues for coupled conditions was first established in [5, 4]; this forms the basis
for one of the algorithms used in the SLEIGN2 code [2] to compute the eigenvalues
for all coupled (real and complex) conditions (as well as for singular conditions,
separated or coupled, real or complex). Another consequence of the study of the
relationships between the eigenvalues for different boundary conditions is that the
continuous and discontinuous dependence of the n-th eigenvalue on the boundary
conditions is now completely understood. All discontinuities are finite jumps when
n ∈ N and are infinite jumps when n = 0. The ‘jump sets’ - the sets of boundary
conditions where the eigenvalues have jump discontinuities - are now completely
known; see [5, 9].

The next theorem summarizes known results, including some relatively recent
ones, on the dependence of the eigenvalues on the boundary conditions for a fixed
equation.

Theorem 2.2 (Eigenvalue Properties). Let (1.1) to (1.6) hold. Let K = (kij) ∈
SL2(R), α ∈ [0, π), β ∈ (0, π]. Then

(a) (1) The spectrum σ(α, β) of the boundary value problem determined by the
separated conditions (1.5) is real, simple, countably infinite with no finite accumu-
lation point, bounded below and not bounded above. Let σ(α, β) = {λn(α, β) : n ∈
N0 = {0, 1, 2, 3, . . . }}. Then the eigenvalues λn(α, β) can be ordered to satisfy

−∞ < λ0(α, β) < λ1(α, β) < λ2(α, β) < λ3(α, β) < . . . (2.3)
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For each n ∈ N0 the eigenvalue function λn(α, β) is jointly continuous in α, β for
α ∈ [0, π), β ∈ (0, π]. For fixed β ∈ (0, π], λn(α, β) is a differentiable function of
α ∈ [0, π), and for fixed α ∈ [0, π), λn(α, β) is a differentiable function of β ∈ (0, π].
The eigenfunctions are unique up to constant multiples and λn(α, β) has exactly n
zeros in the open domain interval.

(2) Assume that γ = 0.The spectrum σ(K) of the boundary value problem de-
termined by the coupled conditions (1.6) is real, countably infinite with no finite
accumulation point, bounded below and not bounded above. Let σ(K) = {λn(K) :
n ∈ N0}. Each eigenvalue λn(K) may be simple or double and the eigenvalues can
be ordered to satisfy

−∞ < λ0(K) ≤ λ1(K) ≤ λ2(K) ≤ λ3(K) ≤ . . . (2.4)

where equality cannot occur in two consecutive terms.
(3) If γ 6= 0, then the spectrum σ(K, γ) of (1.6), denoted by σ(K, γ) = {λn(K, γ) :

n ∈ N0}, is real, simple, countably infinite with no finite accumulation point,
bounded below and not bounded above and can be ordered to satisfy

−∞ < λ0(K, γ) < λ1(K, γ) < λ2(K, γ) < λ3(K, γ) < . . . (2.5)

Furthermore, for each n ∈ N0, λn(K, γ) = λn(K,−γ), and if yn is an eigen-
function of λn(K, γ) then its conjugate yn is an eigenfunction of λn(K,−γ). (Note
that every eigenvalue λn(K, γ) is simple, n = 0, 1, 2, 3, . . . ).

(b) Let υn, νn, n ∈ N0 denote the eigenvalues of the special separated boundary
conditions

y(a) = 0, k22y(b)− k12(py′)(b) = 0; (2.6)

(py′)(a) = 0, k21y(b)− k11(py′)(b) = 0; (2.7)

respectively. Note that (k22, k12) 6= (0, 0) 6= (k21, k11) since det(K) = 1 so each of
these is a self-adjoint boundary condition.

• Suppose k12 < 0 and k11 ≤ 0. Then λ0(K) is simple, λ0(K) < λ0(−K) and
the following inequalities hold for −π < γ < 0 and 0 < γ < π

λ0(K) < λ0(K, γ) < λ0(−K) < {υ0, ν0}
≤ λ1(−K) < λ1(K, γ) < λ1(K) < {υ1, ν1}
≤ λ2(K) < λ2(K, γ) < λ2(−K) < {υ2, ν2}
≤ λ3(−K) < λ3(K, γ) < λ3(K) < {υ3, ν3} ≤ . . .

(2.8)

• Suppose k12 ≤ 0 and k11 > 0. Then λ0(K) is simple, λ0(K) < λ0(−K) and
the following inequalities hold for −π < γ < 0 and 0 < γ < π

ν0 ≤ λ0(K) < λ0(K, γ) < λ0(−K) < {υ0, ν1}
≤ λ1(−K) < λ1(K, γ) < λ1(K) < {υ1, ν2}
≤ λ2(K) < λ2(K, γ) < λ2(−K) < {υ2, ν3}
≤ λ3(−K) < λ3(K, γ) < λ3(K) < {υ3, ν4} ≤ . . .

(2.9)

If neither of the above two cases holds for K then one of them must hold for −K.
Here the notation {υn, νm} is used to indicate either υn or νm but no comparison
is made between υn and νm.
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• Furthermore, for 0 < γ < δ < π we have

λ0(K, δ) < λ0(K, γ) < λ1(K, γ) < λ1(K, δ) < λ2(K, δ)

< λ2(K, γ) < λ3(K, γ) < λ3(K, δ) < . . .
(2.10)

For a proof, or references to proofs, of the above theorem, see the book [9].

Remark 2.3. We comment on Theorem 2.2 (a)(1) and Remark 2.1. There is
no contradiction between Theorem 2.2 (a)(1) and Remark 2.1 because the jump
discontinuities occur when α or β are outside the normalization intervals [0, π) and
(0, π], respectively.

Remark 2.4. We comment on the inequalities (2.8) and (2.9). By (2.9),

νn ≤ λn(K) < νn+1, n ∈ N0,

when k12 ≤ 0 and k11 > 0 or k12 ≥ 0 and k11 < 0. By (2.8)

νn ≤ λn+1(K) < νn+1, n ∈ N0,

when k12 < 0 and k11 ≤ 0 or k12 > 0 and k11 ≥ 0. Thus for each K ∈ SL2(R),
λn(K) is uniquely located between two consecutive separated eigenvalues νj for any
n ∈ N. In addition ν0 ≤ λ0(K) < ν1 when k12 ≤ 0 and k11 > 0 or k12 ≥ 0 and
k11 < 0. Also λ0(K) < ν0 when k12 < 0 and k11 ≤ 0 or k12 > 0 and k11 ≥ 0 but, in
this case, λ0(K) has no lower bound in terms of the νj . In Section 4 below we will
establish a lower bound for this case in terms of a family of separated boundary
conditions. In all cases where the eigenvalue λn(K) has been uniquely located in an
interval [νn, νn+1], the Prüfer transformation can be used to compute the lower and
upper bounds νn and νn+1. Then a zero finder algorithm can be used to find λn(K)
as the unique zero of the characteristic function D(λ) in the interval [νn, νn+1].
Such a method is used by the code SLEIGN2 [2]. Our algorithm, given in the
next section, uses the constructed separated family rather than the characteristic
function D(λ).

Remark 2.5. In this remark we comment on what happens when the normalization
conditions α ∈ [0, π) and β ∈ (0, π] are violated. For fixed β ∈ (0, π] as α →
0−, λn(α, β) has an infinite jump discontinuity when n = 0 and a finite jump
discontinuity when n ∈ N. Similarly, for fixed α ∈ [0, π), as β → π+, λn(α, β) has
an infinite jump discontinuity when n = 0 and a finite jump discontinuity when
n ∈ N. In each case where λn(α, β) has a jump discontinuity the eigenvalue can
be embedded in a ‘continuous eigenvalue branch’ which is defined by two indices n
and n+1; in other words the eigencurves from the left and right of the point where
the jump occurs ‘match up’ continuously when one of the indices n is changed to
n+1. Furthermore, the resulting matched eigencurve determined by two consecutive
indices is not only continuous but also differentiable everywhere including at the
matched point.

Remark 2.6. If k12 6= 0, then each eigenvalue λn(K) is a continuous function of
K = (kij) ∈ SL2(R). If k12 = 0, then λn(K) may have a jump discontinuity;
this jump is infinite when n = 0 and finite when n ∈ N. Thus the ‘jump sets’ of
boundary conditions consist of the separated conditions when either y(a) = 0 or
y(b) = 0 and the (real or complex) coupled conditions when k12 = 0.
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3. The New Algorithm

As mentioned above, for each K ∈ SL2(R) all eigenvalues for K and −K can be
found from the eigenvalues of a related family of separated conditions constructed
from K. In this section we define this separated family and present the Algorithm.

Definition 3.1 (α-family of K). Let K = (kij) ∈ SL2(R). For each α ∈ [0, π)
consider the separated boundary condition

y(a) cosα− (py′)(a) sinα = 0,

y(b)(k21 sinα+ k22 cosα)− (py′)(b)(k11 sinα+ k12 cosα) = 0.
(3.1)

Define α∗ ∈ [0, π) by

α∗ =

{
arctan(−k12/k11) if k11 6= 0,
π/2 if k11 = 0.

(3.2)

Note that α∗ = 0 when k12 = 0 since k11 6= 0 in this case.

Remark 3.2. Note that condition (3.1) for −K is equivalent to (3.1) for K. Since
K ∈ SL2(R), (ki1, ki2) 6= (0, 0) 6= (k1i, k2i), i = 1, 2 and (3.1) is a self-adjoint
boundary condition for each α ∈ [0, π). When α = 0 (3.1)) reduces to y(a) =
0 = y(b)k22 − (py′)(b)k12; when α = π/2 (3.1) is equivalent with (py′)(a) = 0 =
y(b)k21−(py′)(b)k11. When α = π/2 and k11 = 0 (3.1) becomes (py′)(a) = 0 = y(b).

Definition 3.3. Let K = (kij) ∈ SL2(R). For each α ∈ [0, π) let

{µn(α) : n ∈ N0} (3.3)

denote the eigenvalues of (3.1). (See Figure 1 below.)

It is these eigenvalues {µn(α) : n ∈ N0} which determine all eigenvalues for
K and for −K for each K ∈ SL2(R). The next theorem defines the continuous
eigenvalue curves whose maxima and minima are the eigenvalues for K and −K.

Theorem 3.4. Let K = (kij) ∈ SL2(R).
(1) Suppose k12 6= 0 and α∗ is defined by (3.2). Then α∗ ∈ (0, π). For each

n ∈ N0 define the eigencurves Rn and Ln as follows:

Rn(α) = µn(α), α∗ ≤ α < π; (3.4)

Ln(α) = µn(α), 0 ≤ α < α∗. (3.5)

Then Rn(α) is continuous on [α∗, π) and Ln(α) is continuous on [0, α∗).
(2) Suppose k12 = 0. Define Rn by

Rn(α) = µn(α), 0 ≤ α < π. (3.6)

Then Rn(α) is continuous on [0, π). (There is no Ln in this case.)

The proof of the above theorem follows from Theorem 2.2 part (a)(1). The selec-
tion process for the eigenvalues for K and −K is given by the following algorithm:

Algorithm 3.5. Let K ∈ SL2(R).
• If, for some n ∈ N, λn(K) = λn+1(K), then µn(α) = λn(K) for all α ∈ [0, π).
(1) Assume k12 = 0 and k11 > 0. Then λ0(K) is simple and
(a)

λ0(K) = maxR0(α), 0 ≤ α < π. (3.7)
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(b) If n is even, then

λn(K) = maxRn(α), 0 ≤ α < π. (3.8)

(c) If n is odd, then

λn(K) = minRn+1(α), 0 ≤ α < π. (3.9)

(2) Assume k12 = 0 and k11 < 0. (Note that if k12 = 0 then k11 6= 0 since
det(K) = 1.) Then

(a)
λ0(K) = minR1(α), 0 ≤ α < π. (3.10)

(b) If n is even, then

λn(K) = minRn+1(α), 0 ≤ α < π. (3.11)

(c) If n is odd, then

λn(K) = maxRn(α), 0 ≤ α < π. (3.12)

(3) Assume k12 < 0. Then

(a)
λ0(K) = maxR0(α), α∗ ≤ α < π. (3.13)

(b) If n is even, then

λn(K) = maxRn(α), α∗ ≤ α < π. (3.14)

(c) If n is odd, then

λn(K) = minLn(α), 0 ≤ α < α∗. (3.15)

(4) Assume k12 > 0. Then

(a)
λ0(K) = minL0(α), 0 ≤ α < α∗. (3.16)

(b) If n is even, then

λn(K) = minLn(α), 0 ≤ α < α∗. (3.17)

(c) If n is odd, then

λn(K) = maxRn(α), α∗ ≤ α < π. (3.18)

For the proof of the above statements, see Section 5 below. Except for the case
when k12 < 0 and n = 0, the inequalities given by Theorem (2.2) locate each
eigenvalue λn(K), n ∈ N0 uniquely between two consecutive eigenvalues of the
separated conditions (2.7). The next Corollary fills this gap.

Corllary 3.6. Assume that k12 > 0. Then for any α ∈ [α∗, π) we have that

λ0(K) ≤ µ0(α). (3.19)

In particular, for any ε > 0, µ0(α)− ε is a lower bound of λ0(K).

The proof follows from part (3)(a) of Algorithm 3.5.
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4. Another family of separated boundary conditions

In this section we study another family of separated boundary conditions gen-
erated by a coupling matrix K. This family and its relationship to the α-family
(3.1) is used in the proof of the Algorithm and, we believe, is of independent in-
terest. But first we recall the characterization of the eigenvalues by means of the
characteristic function.

For any λ ∈ C define two linearly independent solutions, ϕ(x, λ), ψ(x, λ), of the
differential equation (1.1) by the initial conditions

ϕ(a, λ) = 0, (pϕ′)(a, λ) = 1,

ψ(a, λ) = 1, (pψ′)(a, λ) = 0.
(4.1)

Then any solution y(x, λ) of (1.1) can be expressed in the form

y(x, λ) = y(a, λ)ψ(x, λ) + (py′)(a, λ)ϕ(x, λ),

(py′)(x, λ) = y(a, λ)(pψ′)(x, λ) + (py′)(a, λ)(pϕ′)(x, λ),
(4.2)

for all x ∈ [a, b] and all λ ∈ C. In particular we have

y(b, λ) = y(a, λ)ψ(b, λ) + (py′)(a, λ)ϕ(b, λ),

(py′)(b, λ) = y(a, λ)(pψ′)(b, λ) + (py′)(a, λ)(pϕ′)(b, λ),
(4.3)

and two basic results follow:

Theorem 4.1. Let λ ∈ C. The differential equation (1.1) has a non-trivial solution
satisfying the separated boundary conditions (2.1), (2.2) if, and only if,

δ(λ) := −A1B2(pϕ′)(b, λ) +A2B1ψ(b, λ) +A2B2(pψ′)(b, λ)−A1B1ϕ(b, λ) = 0.
(4.4)

Proof. Substitute (4.2) in (2.1), (2.2) getting two equations in y(a, λ) and (py′)(a, λ),
which must be consistent. This condition is (4.4). �

Theorem 4.2. Let K ∈ SL2(R), λ ∈ C, −π < γ ≤ π. The differential equation
(1.1) has a non-trivial solution satisfying the coupled boundary conditions (1.6) if,
and only if,

D(λ) = k11(pϕ′)(b, λ)− k21ϕ(b, λ) + k22ψ(b, λ)− k12(pψ′)(b, λ) = 2 cos γ. (4.5)

Proof. Proceed as in the proof of Theorem 4.1 using the coupled boundary condi-
tions (1.6), see [9] for details. (See Figure 2 below.) �

Now we define a family of separated boundary conditions in terms of r ∈ R ∪
{±∞} as follows:

Given K ∈ SL2(R), for each r ∈ R consider the boundary conditions

y(a)− r(py′)(a) = 0,

(k21r + k22)y(b)− (k11r + k12)(py′)(b) = 0;
(4.6)

and the conditions

(py′)(a) = 0 = k21y(b)− k11(py′)(b) = 0. (4.7)

Condition (4.7) corresponds to r = ±∞; its eigenvalues are denoted by νn =
λn(±∞), n ∈ N0. Here it is important to keep in mind that conditions (4.6) for
all r ∈ R and condition (4.7) together form one family of separated conditions
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generated by K, we refer to this family as the r-family of K. Next we study this
family.

Notation. Let σ(r) = {λn(r), n ∈ N0} denote the eigenvalues of the r-family with
νn = λn(±∞) corresponding to r ±∞.

The next lemma discusses the continuity properties of the eigenvalues of the
r-family.

Lemma 4.3. For a fixed n ∈ N0 the eigenvalue function λn(r) is a continuous
function of r ∈ R except in the following three cases:

(1) as r → 0−.
(2) when k12 = 0 and r = 0 (note that r22 6= 0 in this case).
(3) when k11 6= 0 and r = −k12/k11.

The above lemma follows from Theorem (2.2). Next for eachK = (kij) ∈ SL2(R)
we construct a family of separated boundary conditions associated with K. Let
r ∈ R ∪ {±∞} and let

R =
rk11 + k12

rk21 + k22
. (4.8)

Note that:
(1) Not both of k11, k12 or k21, k22 can be 0 since det(K) = 1.
(2) If k12 = 0 then k11 6= 0 and R = 0 if and only if r = 0.
(3) If k21 6= 0 and r = −k22/k21, then R is undefined.
(4) If k21 = 0 then k22 6= 0 and R is well defined for all r ∈ R.

The next theorem relates the eigenvalues of K and −K with those of the r-family
of K.

Theorem 4.4. Let K ∈ SL2(R) and let D(λ) be defined by (4.5). If λ is an
eigenvalue of any member of the r-family of K, then D2(λ)− 4 ≥ 0; i.e., D(λ) ≥ 2
or D(λ) ≤ −2.

Proof. We first prove the case when r ∈ R. If λ is such an eigenvalue, then its
boundary condition is of the form (2.1), (2.2) with

A1 = 1, A2 = −r, B1 = 1, B2 = −R. (4.9)

Substituting into (4.4) gives a quadratic in r,

Ar2 +Br + C = 0, (4.10)

where
A = k21ψ(b, λ)− k11(pψ′)(b, λ),

B = k21ϕ(b, λ) + k22ψ(b, λ)− k11(pψ′)(b, λ)− k12(pϕ′)(b, λ),

C = k22ϕ(b, λ)− k12(pϕ′)(b, λ).

(4.11)

Since λ is an eigenvalue for some fixed number r, the left hand side of (4.10) must
vanish. Hence

4A2
{
(r +

B

2A
)2 − B2 − 4AC

4A2

}
= 0, (4.12)

or

4A2(r +
B

2A
)2 = B2 − 4AC. (4.13)
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A direct computation shows that B2 − 4AC = D2(λ)− 4. Therefore,

4A2(r +
B

2A
)2 = D2(λ)− 4. (4.14)

Since r, A,B,C are real it follows that

D2(λ) ≥ 4 and D(λ) ≥ 2 or D(λ) ≤ −2. (4.15)

This concludes the proof for r ∈ R.
For r = ±∞ the member of the r-family is (4.7) whose eigenvalues are νn,

n ∈ N0. The conclusion (4.15) for νn, n ∈ N0 was established in [3], see also [5, pp.
80-84]. This concludes the proof. �

Although the next result is a Corollary of Theorem 4.4 and other known results,
we state it here as a theorem because we think it is surprising and provides a stark
contrast with the Algorithm.

Theorem 4.5. Let K ∈ SL2(R). Let σ(r) for r ∈ R ∪ {±∞} and σ(K, γ) for
γ ∈ (−π, 0) ∪ (0, π) be defined as above. Then no eigenvalue of any member of any
r-family is an eigenvalue in σ(K, γ) for any γ ∈ (−π, 0) ∪ (0, π). More explicitly

σ(r) ∩ σ(K, γ) = ∅, (4.16)

for all r ∈ R ∪ {±∞} and all γ ∈ (−π, 0) ∪ (0, π).

Proof. If λ is an eigenvalue in σ(K, γ) for any γ ∈ (−π, 0) ∪ (0, π) then |D(λ)| < 2
by (4.5) and the conclusion follows from Theorem 4.4. �

Theorem 4.6. Let K ∈ SL2(R). If λ′n(r0) = 0 for some n ∈ N0 and some
r0 ∈ R ∪ {±∞}, then λn(r0) is an eigenvalue of either K or −K.

Proof. Suppose λ = λn(r) satisfies (4.10). Each term of this equation is a function
of r, so we differentiate the left-hand side of the equation with respect to r and
obtain

2Ar +B +
{
r2
∂A

∂λ
+ r

∂B

∂λ
+ C

∂C

∂λ

}dλ
dr

= 0 at λ = λn(r). (4.17)

By assumption λ′n(r0) = 0. Hence (4.17) reduces to

2Ar0 +B = 0 at λn(r0). (4.18)

This equation together with (4.13) yields B2−4AC = 0. This implies that D2(λ)−
4 = 0, which means that λ is an eigenvalue for either K or −K. �

Remark 4.7. In other words, Theorem 4.6 says that the eigenvalues for K and
−K are the extrema of the continuous eigencurves Ln(α) and Rn(α) defined above.
The Algorithm states explicitly, for any K and any n, which extremum is equal to
λn(K).

Next we study the relationship of the α and r families with each other. Let
r ∈ R ∪ {±∞} be determined by

tan(α) = r, α ∈ [0, π), (4.19)

here r = ±∞ when α = π/2.
Let R be given by (4.8). Now define β = β(α) = β(α(r)) by

tan(β) = R, β ∈ (0, π], (4.20)

and observe that
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(1) β = π/2 when k21 6= 0 and r = −k22/k12,
(2) β = π if and only if k12 = 0 and r = 0.
(3) By (4.20) β = π/2 corresponds to R = ±∞.

By (4.19) α = π/2 corresponds to r = ±∞.

5. Proof of the Algorithm

Basically the proof is obtained by combining Theorems 4.5 and 4.4 with the
known inequalities given by Theorem 2.2.

Proof of Algorithm 3.5. First consider the special case: k12 = 0. Then α∗ = 0.
If k11 > 0, from Theorem 2.2 the interval [λn−1(K), λn(K)] for even n contains
νn = υn(π/2) and the function υn(α) is continuous at α = π/2. By Theorem 4.4,
υn(α) cannot move outside the interval [λn−1(K), λn(K)] as α varies continuously
away from α = π/2 since υn(α) > λn(K) or υn(α) < λn−1(K) would contradict
D2(υn(α)) − 4 ≥ 0. Therefore λn−1(K) ≤ υn(α) ≤ λn(K) for all α ∈ [0, π). If
λn−1(K) = λn(K) then υn(α) = λn(K) for all α ∈ [0, π).

If λn−1(K) < λn(K) then the continuous function υn(α) has a maximum and
a minimum in the compact interval [λn−1(K), λn(K)] as α varies in [0, π). If the
maximum is not λn(K) then it occurs in the interior of this interval and by Theorem
4.5 λn(K) = max{υn(α) : α ∈ [0, π)}. Similarly λn−1(K) = min{υn(α) : α ∈
[0, π)}. The proof for k12 = 0 and k11 < 0 is similar.

When k12 6= 0 then 0 < α∗. In this case the proof is also similar to the above
proof but with one important difference: The interval [0, π) in the above argument
is replaced by the two intervals [0, α∗) and [α∗, π). This is due to the fact that the
function υn(α) has a jump discontinuity at α∗ - see part (1) of Theorem 2.2 for a
discussion of jump discontinuities of eigencurves for separated boundary conditions.
This discontinuity is due to the fact that tan(β) = 0 when α = α∗ and hence (recall
the normaliztion for β in (1.5)) β = π when α = α∗. See part (1) of Theorem 2.2
for a discussion of jump discontinuities. Although this discussion is for the case
when β is fixed as α varies it extends readily to our situation here where β is a
continuous function of α. In fact the results mentioned in part (1) of Theorem 2.2
have far reaching extensions, see [9, Sections 3.4, 3.5, 3.6]. �

Lemma 5.1. In each of these three cases, there is an infinite jump discontinuity
when n = 0 and a finite jump discontinuity when n > 0.

In Figure 1 are plotted some of the eigenvalues of an α-family when n = 0, 1, 2, 3
and the element k12 of the matrix K is not zero. As appears in the figure, the
eigenvalues corresponding to each index n lie along two distinct continuous curves;
one on [0, α∗) and the other on [α∗, π).

Figure 2 depicts a typical characteristic function D(λ). When the parameter
γ = 0 (or π), then D(λ) = 2 if, and only if, λ is an eigenvalue for the problem
with coupled boundary conditions defined by a matrix K; D(λ) = −2 when λ is an
eigenvalue of the problems defined by −K. Thus to compute eigenvalues of such
coupled boundary condition problems one simply computes the values of functions
ϕ(x, λ), ψ(x, λ) at x = b, evaluates D(λ), and searches for values of λ for which
D(λ) = 2.

The coupled boundary condition problem to which both Figure 1 and Figure
2 refer consists of the differential equation having p(x) = 1, q(x) = (5/16)/x2,
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Figure 1. Eigenvalues of an α-family
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Figure 2. Characteristic function D(λ)

w(x) = 1 on the interval (0.1, 1.0), subject to boundary condition (1.6). The first
few eigenvalues corresponding to the matrix K = (kij),

k11 = 1.0576, k12 = −1.5125, k21 = −0.2270, k22 = 1.2701,

have been computed to be

λ0 = 2.7933, λ1 = 22.1285, λ2 = 53.5645, λ3 = 119.9029;

while the eigenvalues for matrix −K are

λ0 = 4.6599, λ1 = 17.5508, λ2 = 59.1740, λ3 = 114.0604.
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Remark 5.2. The essential point of this paper is that the intersections of the func-
tion D(λ) with the horizontal lines at +2 and −2, as depicted in Figure 2, which are
the eigenvalues for K and −K, correspond precisely with the local extrema of the
continuous eigencurves Rn(α) and Ln(α) of the related α-family in an appropriate
α interval, as in Figure 1.
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