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EXISTENCE OF POSITIVE SOLUTIONS TO THREE-POINT
¢-LAPLACIAN BVPS VIA HOMOTOPIC DEFORMATIONS

NADIR BENKACI, ABDELHAMID BENMEZAI, JOHNNY HENDERSON

ABSTRACT. Under suitable conditions and via homotopic deformation, we pro-
vide existence results for a positive solution to the three-point ¢-Laplacian
boundary-value problem

—(app(u)) (z) = b(x) f(z,u(z)), =z € (0,1),
u(0) = au(n), (1) =0,

where ¢ : R — R is an increasing homeomorphism with ¢(0) = 0, b does not
vanish identically, and f is continuous.

1. INTRODUCTION

We are interested in the existence of a positive solution to the three-point
boundary-value problem

—(ag(u')) (z) = b(x) f(2,u(x)), =€ (0,1),
u(0) = au(n), u'(1)=0,

where ¢ : R — R is an increasing homeomorphism with ¢(0) = 0, a,n € [0,1),
a,b € C([0,1],]0,400)), @ > 0 in [0,1], b does not vanish identically, and f :
[0,1] x [0, 4+00) — [0, +00) is continuous.

Because of their physical applications, the study of ¢-Laplacian second-order
differential equations subject to various boundary conditions have received a great
deal of attention during the latter two decades; see [1]-[13], [15]-[18] and references
therein. The differential operator in all of the cited papers, corresponds to the case
where a is identically equal to 1. When seeking a positive solution when the nonlin-
earity positivity is guaranteed, authors are frequently led to using Krasnoselskii’s
compression and expansion of a cone principal to prove existence of a fixed point
for some completely continuous operator T : K — K where K is a cone in some
functional Banach space. For example, if we want use Krasnoselskii’s theorem on
norm compression and expansion of a cone, we may look for 0 < Ry, Ry such that
ITul|l < ||ul| for all w € K NOB(0, Ry) and || Tul| > ||u| for all w € K N 9OB(0, Rz),
where B(0, R) denotes the open ball centered at 0 and having radius R. The re-
alization of the second inequality often requires a special cone left invariant by T;
see the cone considered in [I] and [2] where a is identically equal to 1 and the cone
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K, considered in Section 2 for the case ¢ = ¢,. But a such cone does not exist for
general ¢ and a. To overcome this difficulty we use an homotopy deformation on
the differential operator in , and we obtain existence results.

In this article, ¢ is the inverse function of ¢, and for p > 1, ¢,(z) = |z|P~2x and
"/}p = ¢;1

We will use the following lemmas concerning computations of the fixed point
index, %, for a compact map A : B(0, R) N K — K where K is a cone in a Banach
space FE.

Lemma 1.1. If ||Az|| < ||z|| for all x € OB(0, R) N K, then
i(A,B(O,R)NK,K) =1.
Lemma 1.2. If ||Az|| > ||z|| for all z € 0B(0,R) N K, then
i(A,B(0,R)NK,K) =0.
An elaborate presentation of the fixed point index theory can be found in [I4].
In what follows, we let ¥ be the Banach space of all continuous functions defined

on [0, 1] equipped with its sup-norm, for u € E, |lu|| = sup{|u(t)| : t € [0,1]}. K is
the normal cone of nonnegative functions in E, K = {u € E : u(t) > 0,t € [0, 1]}.

2. RELATED LEMMAS

Let N : E — E be defined for v € E by

Nu(r) = =2 /0 nzp(a(lt) /t 1b(s)¢(u(s))ds)dt+ /0 w(% /f 1b(s)¢(u(s))ds)dt,

F : K — K, the Nemitski operator defined for u € K by Fu(x) = ¥ (f(x,u(z))),
and T = NF.

When ¢ = ¢, with p > 1, ¢, N and T are denoted, respectively, ¢, N, and T},.

It is easy to see that N is completely continuous (by the Ascoli-Arzela theorem),
that F is bounded (maps bounded sets into bounded sets), and that u is a posi-
tive solution to if and only if w is a nontrivial fixed point to the completely
continuous operator T'= N F'.

For p > 1, the set K, = {u € K : u(z) > pp(z)|lu] in [0,1]} is a cone in E where

L [" dt _ [t dt
v =5 | e 7 S
Lemma 2.1. For allp > 1, T,(K) C K,,.

x

Proof. Let u € K, v = T,u and set w = v— pp||v|. We have that v is nondecreasing
on [0,1] and ||| = v(1). Indeed, from (ag,(u’))" = —b(t)f(t,u(t)) < 0, we deduce
that a¢,(u’) is non-increasing in [0, 1]. Furthermore, it follows from /(1) = 0 that
uw' > 0 in [0, 1] and w is nondecreasing on [0, 1], which leads in turn to v(x) > v(0)
on [0,1]. Assume that v(0) < 0. Then we get from v(0) = av(n) that a # 0 and
v(n) = Lv(0) < v(0), which contradicts v is nondecreasing. So, v(z) > v(0) > 0.
Now assume that for some ¢y € (0,1), w(to) < 0 and let ¢, € (0,1) be such that

., T —
w(ty) = trerf(lfll]w(t), w'(t.) = 0.

In this case, there exists ¢1,t2 € (0,1) such that
t <t <ta, w(ty) <w'(ty)=0<w(tz);
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that is,
v'(t1) = pp(t) o]l <0 <v'(t2) = pjy(E2)|[v]-
Since for all z,y, with « # y,
(@p(2) = dp(y)) (& —y) >0,
we obtain
aty)(6p(v'(t1)) = dp(pp(E1)[[0]])) < 0 < alt2)(¢p(v(t2)) — dp(py (t2)l|v]D),

which contradicts (a(¢,(v') —¢p(pp)lv]])) () = —b(t) f(t,u(t)) < 0. This completes
the proof. 0

The proof of the next lemma is immediate, and so we omit it.

Lemma 2.2. Forp > 1, let

=1 [ wp( o [ 90, o0as)a

1-a

/ /b¢ppp))

Then for all v € Ky, | Npul| > c(p)||uH

In the remainder of this section, we will present two results providing fixed point
index calculations in the case where ¢ = ¢,. These are needed for the proofs of the
main results of this paper. Set for p > 1

v(p) = /; 7%(% /tl b(S)(bp(pp(s))ds)dt

Lemma 2.3. Assume that ¢ = ¢, with p > 1 and

. . fz)y :
hmrglcgf (tg%é’rh 6,(7) ) =lo with looébp('Y(P)) > 1

Then there ezists Roo(p) > 0 such that i(T,, B(0, R)NK,K) =0 for all R > R (p).

Proof. 1t follows, from the permanence property of the fixed point index and Lemma

23] that

i(T,, B(0,R) N K,K) =i(T,, B(0,R) N K,, K},).
Let € > 0 be such that (I + €)@, (y(p)) > 1. We deduce from the definition of I
that there exists ro(p) > 0 such that

ft,u) > (lo + €)pp(u) for all (¢,u) € [0,1] x [7" (p), +00).
Thus, we have for all u € K, N B(0,7), with r > R (p) = (re0(p)/pp(3)),
1 1/2 1 !
1Zull = Lu(3) > %(@/ b(s) f (s, u(s))ds)dt = 1p(loc + €)v(p)[Jull = [u]
0 ¢
and by Lemma [1.2] i(T},, B(0,7) N K, K) = 0. O

Lemma 2.4. Assume that ¢ = ¢, with p > 1, and

(tIeI%(i)g] J;Séj))) =lo, with logp(v(p)) > 1.

Then there exists Ry > 0 such that i(T,, B(0,R) N K, K) =0, for all R < Ry.

lim inf
x—0
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Proof. Let € > 0 be such that (lp +€) > ¢,(7v(p)). We deduce from the definition
of Iy that there exists Ro(p) > 0 such that

f(t,u) > (lo +€)gp(u) for all (t,u) € [0,1] x [0, Ro(p)].

As in the proof of Lemma for all w € K, N 0B(0,r) with 0 < r < Ro(p), we
have || Lull > ¢y (lo+€)y(p)[[u]| = [Ju]| and so i(Tp, B(0, R)NK, K) = i(T},, B(0, )N
K, K,) =0. O

3. MAIN RESULTS

In this article, we assume that There exist a, 8 € R with 0 < a < 3 such that

tPp(x) < o(tx) <t%¢(x) forall z >0, t € (0,1). (3.1)
We deduce immediately from (3.1])
tYqp(z) < p(tx) < t/%¢(x) for all >0 and t € (0,1). (3.2)

Let 9", v~ be the functions defined on [0, +00) by

2P <1 B e ifx <1
er(x) = 1o s Y (x) = 1/8
T ifx>1, T if x> 1.

It follows from (3.2)) that, for all ¢ > 0 and x > 0,

DT (O)(x) < p(tr) < T (E)Y(x). (3-3)
Set
o U)o s Y(f(t,w)
17 = imewp (e S5 1 = mane (e, S50,

r— 1“&/On¢+(a(1t) /t1 b(s)ds)dt—l—/olz/ﬁ(a(lt) /tl b(s)ds)dt.

Theorem 3.1. Assume that in addition to (3.1), the following conditions are sat-
isfied: T f° < 1, there exists p > 1 such that

(@)
m op(z) 1, (3-4)
o) < it (i Gy ) = < im0 ) =1 <

Then Problem admits a positive solution.
Proof. Let € > 0 be such that (f° + ¢)I" < 1. There exists 7o > 0 such that
f(s,u) < d((fO+e)u) for all (s,u) € [0,1] x [0,70].
Let w € K N0B(0,r) with 0 < r < rg. We have
ITull = Tu(1)
2 el [ pe0t + utopas)ar
0 t

T l-a (t
1 1
+/0 ¢(a(t)/t b()6((f° + €)u(s))ds ) dt
ST+ @llull < lull.
So, by Lemma[L1] i(T, B(0,7) N K, K) = 1 for all r € (0, ro).



EJDE-2012/126 THREE-POINT LAPLACIAN BVPS VIA HOMOTOPIC DEFORMATIONS 5

Now let us prove that there exists 7o, > Roo(p) such that (T, B(0,7)NK, K) = 0.
Let for 6 € [0,1], ¢pg = 00 + (1 — 0) @y, Y9 = %—1 and consider the equation

u = Tyu, (3.5)
where Ty : K — K is given for u € K by

Tyu(z) a/onw(l /tl b(s)f(s,u(s))ds)dt

T 1-a a(t)

# [ty [ o)

It is clear that u is a positive solution of

—(age(u')) (z) = b(z) f(z,u(z)), =€ (0,1),
w(0) = au(n), u'(1)=0,
if and only if w is a nontrivial fixed point of Ty, that Ty is completely continuous,
that 71 =T and Ty = T),.

To use the homotopy property of the fixed point index, let us prove that there
exists roo > Roo(p) such that (3.5) has no solution in B(0,r«) N K. Assume to
the contrary. Then there exists sequences (6,,) C [0,1], (1) C (Roo(p), +00) and
(un) C K with limr,, = 400, u,, € 0B(0,7,) N K such that

Un, _ T@,Lun
lunll  lunll

It is easy to see that hypothesis (3.4)) implies lim,_, 4
phig(x)/¢p(~x) = 1. Then lim, ;o Yo(z)/Yp(x) = 1. Set ¥g = 9, + 9 and
Ty =T, + Ty, where Tp : K — E is given for u € K by

~ a n 1 1
Tyu(z) = 7/ 3 (7)/ b(s)f(s,u(s))ds)dt
0 a t

e (t

n /0 ’ 54% /t "hs) (s u(s))ds ) dt.

(3.6)

Then (3.6)) becomes

n Fu, Ty u,,
U U ) 6,, W (3.7)

ST |
lunll = N p(llunll) /) Jual
At this stage, we claim that lim,_ o Ty, tn/||tin|| = 0. Indeed, because of Iy, <
[*° < 00, there exists ¢; > 0 such that
Fu, <

—— <.

bp([lunll)
Also, see that lim,_. 1 (|dg(x)|/¢p(z)) = 0 means that for arbitrary e > 0 there
exists ¢, > 0 such that for all z > 0
|09 ()] < evp(z) + ce.

Thus, we have from the definition of Ty that for all z € [0, 1]

Ty, (x) € 1 L 1 . f(s,un(s)) . ce
Fel s s L oG o)
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which implies that

Toun ! e
lim sup [ Tounl <e a / wp(—/ b(s)ds)dt
0 ¢

n—ooo  ||Unl 1—a a(t)

and since € is arbitrary lim,_ o (Ty, tn/|tin]|) = 0.

Set v, = un/||un|| and z, = Ty, un/|tn]. From the compacteness of N, and
the boundness of F'u,/¢p(||unll) it follows that there exists subsequences (6,,)
and (v, ) converging respectively to 6 € [0,1] and v € dB(0,1) N K,, (see that
Uny, — Zny,. = Np(Fun/0p(|lunll)) € Kp). Furthermore, it follows from lo, > ¢(p)
that, for e > 0 with (Ioo —€) > ¢(p), there exists a constant ¢y > 0 such that for all
s€0,1) and u > 0,

f(s,u) > (lo — €)pp(u) — co. (3.8)
Inserting (3.8) into (3.7, we obtain
Fu, Co
Uny — 2ny = Np[ ————) > N, ((loc — € Up, ) — — ).
e = = No(ey) 2 Mo (U = 0 0n) = ty)

Letting n — oo, we get v > N,((loo — €)v), from which follows the contradiction,

L= o]l = [[Np((lee = €)0)[| = ¢(p)loe — )[[v]| = ¢(p)(loc —€) > 1.

Thus there exists roo > Roo(p) such admits no solution in dB(0, 7, )NK and
taking into account that ¢(p) > ~(p), we deduce from the homotopy property of the
fixed point index and Lemma i(T,B(0,700) N K, K) =i(T), B(0,700) N K, K) =
0. At the end by excision and solution properties of the fixed point index, we
deduce that i(T, (B(0,7) \ B(0,7)) N K, K) = —1, where r > 0 is small enough,
and Problem admits a positive solution u with r < ||u|| < 7ec. O

Theorem 3.2. Assume that in addition to (3.1), the following conditions are sat-
isfied: T'f>° < 1, there exists p > 1 such that

o)

. _, 3.9
2—0 ¢p () o
o fw - F2)y o
. . <] =1[" < o0,
o) < bt (e, G 25) =to < oo (s S550) =7 < o0

Then admits a positive solution.

Proof. Let € > 0 be such that (f*° + €)' < 1. There exists C, > 0 such that
f(s,u) < d((fO+e)u+C.) forall (s,x) € [0,1] x [0, +00).

We have for all u € K,
[Tul] = Tu(1)

(%

IN

11—«

/077 ¢($ /t1 b(s)p((f° + e)ul(s) + C’e)ds) dt

/01 ¢($ /t1 b(s)o((f™ + €)u(s) + C’e)ds> dt

+
<T((f" +)lull + Co).

Cﬁl—‘(f0+e)

So, for all u € KN B( T)Withr>m,

0 we have | Tu|| < ||lu||, and by Lemma
i(T,B(0,r)NK,K) = 1.
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Arguing as in the proof of Theorem we prove the existence of rg > 0 small
enough such that (7, B(0,79) N K, K) = 0, and by excision and solution properties
of the fixed point index, we deduce that (T, (B(0,7)\ B(0,70)) N K, K) = 1, and

that (1.1)) admits a positive solution u with 7o < |Ju|| < 7eo. O
Remark 3.3. Theorem (resp. Theorem holds if lim,_, 4 di((:?) =1>0

o 1 o(x) _
(resp. limg— oo sy = > 0).

Remark 3.4. ¢(z) = ¢, (z) + ¢p,(x), where 1 < p1 < po, is a typical case where

(3-1) and (3.4) or (3.9)) are satisfied.
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