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DECAY OF SOLUTIONS FOR A PLATE EQUATION WITH
p-LAPLACIAN AND MEMORY TERM

WENJUN LIU, GANG LI, LINGHUI HONG

Abstract. In this note we show that the assumption on the memory term g
in Andrade [1] can be modified to be g′(t) ≤ −ξ(t)g(t), where ξ(t) satisfies

ξ′(t) ≤ 0,

Z +∞

0
ξ(t)dt =∞.

Then we show that rate of decay for the solution is similar to that of the
memory term.

1. Introduction

Consider a bounded domain Ω in RN with smooth boundary Γ = ∂Ω, and study
the solutions to the problem

utt + ∆2u−∆pu +
∫ t

0

g(t− s)∆u(s)ds−∆ut + f(u) = 0 in Ω× R+, (1.1)

u = ∆u = 0 on Γ× R+, (1.2)

u(·, 0) = u0, ut(·, 0) = u1 in Ω, (1.3)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator.
This problem without the memory term models elastoplastic flows. We refer to

[1] for a motivation and references concerning the study of problem (1.1)-(1.3). We
will us the following assumptions:

(A1) The memory kernel g has typical properties

g(0) > 0, l = 1− µ1

∫ ∞

0

g(s)ds > 0, (1.4)

where µ1 > 0 is the embedding constant for ‖∇u‖2
2 ≤ µ1‖∆u‖2

2. There
exists a constant k1 > 0 such that

g′(t) ≤ −k1g(t), ∀ t ≥ 0. (1.5)

(A2) The forcing term f satisfies

f(0) = 0, |f(u)− f(v)| ≤ k2(1 + |u|ρ + |v|ρ)|u− v|, ∀u, v ∈ R, (1.6)

0 ≤ f̂(u) ≤ f(u)u, ∀ u ∈ R, (1.7)
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where k2 is a positive constant, f̂(z) =
∫ z

0
f(s)ds, and

0 < ρ ≤ 4
N − 4

if N ≥ 5 and ρ > 0 if 1 ≤ N ≤ 4.

(A3) The constant p satisfies

2 ≤ p ≤ 2N − 2
N − 2

if N ≥ 3 and p ≥ 2 if N = 1, 2. (1.8)

Theorem 1.1 ([1, Theorem 2.1]). Assume that (A1)–(A3) hold.
(i) If the initial data (u0, u1) ∈ (H2(Ω)∩H1

0 (Ω))×L2(Ω), then problem (1.1)-
(1.3) has a unique weak solution

u ∈ C(R+;H2(Ω) ∩H1
0 (Ω)) ∩ C1(R+;L2(Ω)).

(ii) If the initial data (u0, u1) ∈ H3
Γ(Ω)×H1

0 (Ω), where

H3
Γ(Ω) = {u ∈ H3(Ω)|u = ∆u = 0on Γ},

then problem (1.1)-(1.3) has a unique strong solution satisfying

u ∈ L∞(R+;H3
Γ(Ω)), ut ∈ L∞(R+;H1

0 (Ω)), utt ∈ L2(0, T ;H−1(Ω)).

(iii) In both cases, the energy E(t) of problem (1.1)-(1.3) satisfies the decay rate

E(t) ≤ CE(0)e−γt, t ≥ 0,

for some C, γ > 0, where

E(t) =
1
2
‖ut(t)‖2

2 +
1
2
‖∆u(t)‖2

2 +
1
p
‖∇u(t)‖p

p +
∫

Ω

f̂(u(t))dx. (1.9)

In this note, we shall extend the above exponential rate of decay to the general
case, which is similar to that of g. We use the following assumption which is weaker
than (1.5).

(A4) There exists a positive differentiable function ξ(t) such that

g′(t) ≤ −ξ(t)g(t), ∀t ≥ 0,

and ξ(t) satisfies

ξ′(t) ≤ 0, ∀ t > 0,

∫ +∞

0

ξ(t)dt = ∞.

Then, we can prove the following main result.

Theorem 1.2. Assume that (A2)–(A4) and (1.4) hold. If the initial data (u0, u1) ∈
(H2(Ω) ∩ H1

0 (Ω)) × L2(Ω) or (u0, u1) ∈ H3
Γ(Ω) × H1

0 (Ω), then the energy E(t) of
problem (1.1)-(1.3) satisfies the inequality

E(t) ≤ KE(0)e−k
R t
0 ξ(s)ds, t ≥ 0, (1.10)

for some K, k > 0.

Remark 1.3. We note that a similar decay rate was given in [5, Theorem 3.5].
However, unlike [5, (G2)] and [6, (A1)], we do not use the condition of | ξ

′(t)
ξ(t) | ≤ k

here.

Remark 1.4. For ξ(t) ≡ k1, (1.10) recaptures the exponential decay rate in [1,
Theorem 2.1]. For ξ(t) = a(1 + t)−1, we can get polynomial decay rate, which is nt
addressed in [1].
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2. Proof of Theorem 1.2

Let us first prove the decay property for the strong solution u of problem (1.1)-
(1.3). We modify the perturbed energy method in [1] by using the idea of [4, 5].

Assume that condition (A4) holds and define the modified energy, as in [1],

F (t) =
1
2
‖ut(t)‖2

2 +
1
2
‖∆u(t)‖2

2 +
1
p
‖∇u(t)‖p

p +
∫

Ω

f̂(u(t))dx

− 1
2

( ∫ t

0

g(s)ds
)
‖∇u(t)‖2

2 +
1
2
(g ◦ ∇u)(t),

where

(g ◦ ∇u)(t) =
∫ t

0

g(t− s)‖∇u(t)−∇u(s)‖2
2ds.

Then we obtain

E(t) ≤ 1
l
F (t),

and F (t) is decreasing because

F ′(t) = −‖∇ut(t)‖2
2 +

1
2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u(t)‖2

2

≤ −‖∇ut(t)‖2
2 −

1
2
ξ(t)(g ◦ ∇u)(t) ≤ 0.

(2.1)

Let

Ψ(t) =
∫

Ω

ut(t)u(t)dx

and

Fε(t) = F (t) + εΨ(t), ∀ ε > 0.

To obtain the decay result, we use the following lemmas which are of crucial im-
portance in the proof.

Lemma 2.1 ([1, Lemma 4.1]). There exists C1 > 0 such that

|Fε(t)− F (t)| ≤ εC1F (t), ∀t ≥ 0, ∀ ε > 0.

Lemma 2.2 ([1, (27) in Lemma 4.2]). There exist positive constants C2, C3 such
that

Ψ′(t) ≤ −F (t) + C2‖∇ut(t)‖2
2 + C3(g ◦ ∇u)(t). (2.2)

Now, we conclude the proof of the decay property. Let

ε0 = min
{ 1

2C1
,

1
C2

}
.

It follows from Lemma 2.1 that, for ε < ε0,

1
2
F (t) ≤ Fε(t) ≤

3
2
F (t), t ≥ 0. (2.3)
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By the definition of Fε(t), (2.1) and (2.2), we obtain

ξ(t)F ′
ε(t) = ξ(t)F ′(t) + εξ(t)Ψ′(t)

≤ −ξ(t)‖∇ut(t)‖2
2 −

ξ2(t)
2

(g ◦ ∇u)(t)− εξ(t)F (t)

+ εC2ξ(t)‖∇ut(t)‖2
2 + εC3ξ(t)(g ◦ ∇u)(t)

≤ −(1− εC2)ξ(t)‖∇ut(t)‖2
2 − εξ(t)F (t) + εC3ξ(t)(g ◦ ∇u)(t)

≤ −εξ(t)F (t) + εC3ξ(t)(g ◦ ∇u)(t)

≤ −εξ(t)F (t)− 2εC3F
′(t).

(2.4)

We set
L(t) = ξ(t)Fε(t) + 2εC3F (t).

Then, L(t) is equivalent to F (t). In fact, we have

L(t) ≤ ξ(0)Fε(t) + 2εC3F (t) ≤
(3

2
ξ(0) + 2εC3

)
F (t)

and
L(t) ≥ 1

2
ξ(t)F (t) + 2εC3F (t) ≥ 2εC3F (t).

Since F (t) ≥ lE(t) ≥ 0 and ξ′(t) ≤ 0, from (2.3) and (2.4) we obtain

L′(t) = ξ′(t)Fε(t) + ξ(t)F ′
ε(t) + 2εC3F

′(t)

≤ ξ(t)F ′
ε(t) + 2εC3F

′(t)

≤ −εξ(t)F (t) ≤ −εkξ(t)L(t),

(2.5)

where we have used (2.4) and k is a positive constant.
A simple integration of (2.5) leads to

L(t) ≤ L(0)e−k
R t
0 ξ(s)ds, ∀ t ≥ 0. (2.6)

This proves the decay property for strong solutions in H3
Γ(Ω).

The result can be extended to weak solutions by standard density arguments, as
in Cavalcanti et al. [2, 3].
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