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BOUNDS AND COMPACTNESS FOR SOLUTIONS OF
SECOND-ORDER ELLIPTIC EQUATIONS

CARLOS C. ARANDA

Dedicated to my mother Gregoria Ynes Zalazar

Abstract. In this article, we establish some connections between Sobolev
spaces and nonlinear singular elliptic problems, to obtain bounds and com-
pactness results for solutions of second-order elliptic equations.

1. Introduction and results

The main purpose of this paper is to develop some connections between Sobolev
spaces and nonlinear singular elliptic problems to obtain bounds and compactness
results for solutions of second-order elliptic equations, where the structure of the
imbedding is nonlinear. The theory of singular nonlinear elliptic problems is fairly
well developed. (See for example [2, 6, 7, 9, 10, 11, 12] for a survey and bibliogra-
phy.) In [15] it is stated that

During the past half century, linear second order elliptic equations
on bounded regions have been studied, if not exhaustively, at least
with reasonable completeness and the fundamental questions con-
cerning them have received rather simple solutions. In the works
of Giraud and Schauder in the thirties, it was shown that the ba-
sic boundary value problems are solvable for such equations under
the assumption of sufficient smoothness of the coefficients and of
the boundary of the region. Then, there were interpreted from
the standpoint of functional analysis. This approach was initiated
by the article [8] of Friedrichs in 1934 on semibounded extensions
of symmetric elliptic operators. This article and further studies
of Friedrichs, Mikhlin, Vishik, and others during the late forties
showed that the solution of the classical boundary-value problems
for elliptic equations (we are only speaking of second order equa-
tions) was equivalent to solving equations of the form x + Ax = f ,
for a completely continuous operator A in certain Hilbert spaces
constructed from the quadratic form of the principal symmetric
part of a differential operator.
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For a review of the state of the art on this topic, see [3, 4, 5, 14, 16, 17].

Theorem 1.1 ([13, Theorem 7.26]). Let Ω be a C0,1 domain in RN . Then

(i) if kp < N , the space W k,p(Ω) is continuously imbedded in Lp∗(Ω), p∗ =
Np

N−kp , and compactly imbedded in Lq(Ω) for any q < p∗.
(ii) if 0 ≤ m < k − N

p < m + 1, the space W k,p is continuously imbedded in
Cm,α(Ω), α = k − N

p − m, and compactly imbedded in Cm,β(Ω) for any
β < α

Theorem 1.2 ([13, Theorem 6.6]). Let Ω be a C2,α domain in RN and let u ∈
C2,α(Ω) be a solutions of the equation

Lu ≡
N∑

i,j=1

aijuxi,xj +
N∑

i=1

biuxi + cu = f (1.1)

where f ∈ Cα(Ω) and the coefficients of L satisfy, for positive constants λ, Λ,

N∑
i,j=1

aijξiξj ≥ λ|ξ|2 for all x ∈ Ω, ξ ∈ RN ,

|ai,j |0,α;Ω, |bi|0,α;Ω, |c|0,α;Ω ≤ Λ .

Let ϕ ∈ C2,α(Ω), and suppose u = ϕ on ∂Ω. Then

|u|2,α;Ω ≤ C{|u|0,Ω + |ϕ|2,α;Ω + |f |0,α;Ω} (1.2)

where C = C(n, α, λ,Λ).

Our main concern is related to a quotation from [15]:

We pose the following question: To what classes Ls(Ω) must the
functions ai, bi, c, fi and f belong in order that all generalized so-
lutions u(x) of the equations

Lu ≡
n∑

i=1

∂

∂xi
[aij(x)uxj

+ ai(x)u] +
n∑

i=1

bi(x)uxi
+ a(x)u = f −

n∑
i=1

∂fi

∂xi
(1.3)

in W 1,2(Ω) be bounded functions? To ascertain the necessary con-
ditions, we again take the function u = log | log r| and regard it in
the sphere r ≤ R < 1 as a solution of any one of the following
equations

∆u = F (r), ∆u− ∂

∂xi

( xi

r2 log r

)
= 0,

∆u− F (r)
log | log r|

u = 0, ∆u− ∂

∂xi

( xiu

r2 log r log | log r|

)
= 0

where F (r) has the same meaning as above. It is easy to see that
in these functions f, a ∈ L

N
2 (KR) and fi, ai ∈ LN (KR). Therefore

these last conditions does not ensures boundedness of the general-
ized solutions. Therefore the requirements ‖ai, bi, fi‖Lq(Ω) ≤ µ <
∞ ‖a, f‖

L
q
2 (Ω)

≤ µ < ∞; q > N are necessary.
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We introduce now the equation

− Lu = g(u), in Ω, u = 0 on Ω, (1.4)

where Ω is a bounded smooth domain in RN , N ≥ 3, c ≤ 0 in Ω and g : (0,∞) →
(0,∞) is non-increasing locally Hölder continuous function singular at the origin.
It is well known that problem 1.4 in the case L = ∆ and g(u) = u−γ has a unique
classical bounded solution u for all γ > 0. This solution u belongs to the Sobolev

space H1
0 (Ω) if and only if 0 < γ < 3. Moreover γ > 1 implies C0ϕ

− 2γs
1+γ

1 ≤
u−sγ ≤ C1ϕ

− 2γs
1+γ

1 where ϕ1 is the principal eigenfunction of the laplacian operator
(−∆ϕ1 = λ1ϕ, in Ω, ϕ1 = 0 on ∂Ω) [2, 11]. Therefore u−γ not belong to any
Ls(Ω), s ≥ 1 for γ > 1 because

∫
Ω

ϕ−r
1 dx < ∞ for r ≥ 0 if and only if 0 ≤ r < 1.

Nevertheless, we have an unexpected nonlinear compact imbedding:

Theorem 1.3 (Aranda-Godoy [2]). Let P be the positive cone in L∞(Ω). Let
Sε : P → P be the solution operator for the problem

−∆u = g(u) + w in Ω, u = ε on ∂Ω, (1.5)

gives Sε(w) = u where ε ≥ 0. Then Sε : P → P is a continuous, non decreasing
and compact map with Sε0(w) ≤ Sε1(w) for ε0 < ε1.

The derivations of our results are very elementary using a Schauder approach.
We set

Cα,g,+
loc (Ω) = {f ∈ Cα

loc(Ω)|0 ≤ f ≤ g(u) where u solves 1.4}

Our main result follows.

Theorem 1.4. Let Ω be a bounded smooth domain in RN , N ≥ 3. Then the
equation

− Lv = f in Ω, v = 0 on ∂Ω, (1.6)

where f ∈ Cα,g,+
loc (Ω) has a unique solution v ∈ Cα

loc(Ω) ∩ C0(Ω) ∩ C2(Ω) with
0 ≤ v ≤ u in Ω and u solves equation 1.4.

Our imbedding theorem is as follows.

Theorem 1.5. Let P be the cone of positive functions in C0(Ω). Let S : Cα,g,+
loc (Ω) →

P the solution operator of problem 1.6 gives S(f) = v. Then S is continuous and
compact. Moreover gm ≤ gm+j implies Cα,gm,+

loc (Ω) ⊂ Cα,gm+j ,+
loc (Ω).

Finally our last result is the infinite tower property.

Theorem 1.6. Let us consider the equation

−∆um = gm(um) in BR(0), uε,m = ε on ∂BR(0), (1.7)

where gm : (0,∞) → (0,∞) is non increasing locally Hölder continuous func-
tion singular at the origin with the properties gm(s) = g(s) for all s ≥ 1 and
limm→∞ gm(s) = ∞ for all s ∈ (0, 1), m = 1, . . . ,∞. Then there exists δ > 0 and
u∞ such that limm→∞ um = u∞ where −∆u∞ = limm→∞ gm(um) = ∞ on the
annulus A(R− δ,R). Therefore the tower

Cα,g1,+
loc (Ω) ⊂ · · · ⊂ Cα,gm,+

loc (Ω) ⊂ · · · ⊂ Cα,gm+j ,+
loc (Ω) ⊂ · · ·

actually goes to infinite on the annulus A(R− δ,R).
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2. Auxiliary results

Let us consider the problem

− Lum = gm(um) in Ω, um = 0 on ∂Ω, (2.1)

where gm+j ≥ gm, are non-increasing locally Hölder continuous functions on (0,∞)
and singular at zero.

Lemma 2.1. Let um be a solution of (2.1). Then um+j ≥ um.

Proof. Suppose that there exists x0 ∈ Ω such that um(x0) > um+j(x0). We define
Ων = {x ∈ Ω|ν + um(x) > um+j(x)}. Then Ων 6= ∅ for all ν ≥ 0. Moreover
gm(um(x) + ν) ≤ gm+j(um(x) + ν) < gm+j(um+j(x)) for all x ∈ Ων . Setting

Ωτ = {x ∈ Ω|um(x) > τ + um+j(x)},
we deduce that Ωτ 6= ∅ and Ωτ ⊂ Ων for τ small enough. Moreover, gm(um(x)) ≤
gm+j(um(x)) ≤ gm+j(um+j(x)) for all x ∈ Ωτ . Therefore

−Lum ≤ −L(um+j + τ) in Ωτ , um = um+j + τ on ∂Ωτ .

and we obtain um ≤ um+j + τ in Ωτ [13, Theorem 3.3], a contradiction. �

Lemma 2.2. Let um be a solution of (2.1). Then gm+j(um+j(x)) ≥ gm(um(x)).

Proof. Suppose that there exists x0 ∈ Ω such that gm(um(x0)) > gm+j(um+j(x0)).
Then there exists Ω̂ ⊂ Ω such that

−Lum ≥ −Lum+j in Ω̂, um = um+j on ∂Ω̂.

We infer that um ≥ um+j in Ω̂ [13, Theorem 3.3]. Therefore, gm(um(x)) ≤
gm(um+j(x)) ≤ gm+j(um+j(x)) for all x ∈ Ω̂. A contradiction. �

Proof of Theorem 1.4. For any f ∈ Cα,g,+
loc (Ω), we have fk = min(k, f) ∈ Cα(Ω).

Therefore there exist a unique solution vk ∈ C2,α(Ω) of the problem

− Lvk = fk in Ω, vk = 0 on ∂Ω (2.2)

Using [13, Corollary 6.3], we obtain

d|Dvk|0;Ω′ + d2|D2vk|0;Ω′ + d2+α[D2vk]α;Ω′ ≤ C(|vk|0;Ω′′ + |fk|0,α;Ω′′)

where Ω′ ⊂ Ω′′ ⊂ Ω, d = dist(Ω′, ∂Ω′′) and C is independent of k. Moreover vk ≤ u,
it follows that vk → v in C2

loc(Ω) ∩ C0(Ω) were v solves equation 1.6. �

Proof of Theorem 1.5. This theorem is a direct consequence of the proof of Theo-
rem 1.4 and Lemmas 2.1 and 2.2 . �

Proof of Theorem 1.6. This theorem is a direct consequence of [1]. �
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