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BOUNDARY BEHAVIOR OF LARGE SOLUTIONS FOR
SEMILINEAR ELLIPTIC EQUATIONS IN BORDERLINE CASES

ZHIJUN ZHANG

Abstract. In this article, we analyze the boundary behavior of solutions to
the boundary blow-up elliptic problem

∆u = b(x)f(u), u ≥ 0, x ∈ Ω, u|∂Ω = ∞,

where Ω is a bounded domain with smooth boundary in RN , f(u) grows slower
than any up (p > 1) at infinity, and b ∈ Cα(Ω̄) which is non-negative in Ω and
positive near ∂Ω, may be vanishing on the boundary.

1. Introduction

In this article, we consider the boundary behavior of solutions to the boundary
blow-up elliptic problem

∆u = b(x)f(u), u ≥ 0, x ∈ Ω, u|∂Ω = ∞, (1.1)

where the last condition means that u(x) → ∞ as d(x) = dist(x, ∂Ω) → 0, Ω is a
bounded domain with smooth boundary in RN , f satisfies

(F1) f ∈ C[0,∞) ∩ C1(0,∞), f(0) = 0 and f(s) is increasing on (0,∞);
(F2) the Keller-Osserman ([11], [15]) condition

Θ(r) :=
∫ ∞

r

ds√
2F (s)

<∞, ∀r > 0, F (s) =
∫ s

0

f(τ)dτ ;

the function b satisfies

(B1) b ∈ Cα(Ω̄), is non-negative in Ω and positive near ∂Ω.

The model problem (1.1) arises from many branches of mathematics and has gen-
erated a good deal of research, see, for instance, [1]-[3], [5]-[9], [11]-[13], [15]-[18]
and the references therein.

When b ≡ 1 in Ω and f satisfies (F1), it is well-known that (1.1) has one solution
u ∈ C2(Ω) if and only if (F2) holds. Moreover, the blow-up rate of u(x) near ∂Ω
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can be described by (see, e.g., [3] and [8, Theorem 6.8])

Θ(u(x))
d(x)

→ 1 as d(x) → 0. (1.2)

Moreover, if one assumes that

lim inf
r→∞

Θ(λr)
Θ(r)

> 1, ∀λ ∈ (0, 1), (1.3)

then it holds (see [3])
u(x)

φ(d(x))
→ 1 as d(x) → 0, (1.4)

where φ is the inverse of Θ; i.e., φ satisfies∫ ∞

φ(t)

ds√
2F (s)

= t, ∀t > 0. (1.5)

However, there are less results for the boundary behavior of the solution to problem
(1.1) under the condition that

lim
r→∞

Θ(λr)
Θ(r)

= 1, ∀λ ∈ (0, 1). (1.6)

When f satisfies
(A) f is locally Lipschitz continuous and non-negative on [0,∞), and f(s)/s is

increasing on (0, ∞);
(B) f(s) = C2

1s(ln s)
2α +C2s(ln s)2α−1(1 + o(1)) as s→∞ with C1 > 0, α > 1

and C2 ∈ R,
Ĉırstea and Du [5] first showed that problem (1.1) has a unique solution u satisfying

lim
d(x)→∞

u(x)
exp

(
(C1(α− 1)K(d(x)))−1/(α−1)

) = exp(ξ0), (1.7)

where
ξ0 =

1
2
− C2

2αC2
1

. (1.8)

Then they extended the above result to weight b which can be vanishing on the
boundary.

It is worthwhile to point out that (1.7) depends not only on C2
1s(ln s)

2α but also
on the lower term C2s(ln s)2α−1 in (B). This is completely different from the case
f(s) = sp[C1 + o(1)] as s → ∞ for some p > 1, since problem (1.1) has a unique
positive solution u which satisfies

lim
d(x)→0

u(x)(d(x))2/(p−1) =
( 2(p+ 1)
C1(p− 1)2

)1/(p−1)

in such a situation and b ≡ 1 in Ω (see [3]).
On the other hand, when b ≡ 1 in Ω, f satisfies (F1), (F2) and the conditions

that
(F03) there exists α > 1 such that

2F (s)f ′(s)
f2(s)

= 1− (α+ o(1))(ln s)−1 as s→∞;

(F04) there exist θ0 ∈ (0, 1) and S0 > 1 such that

θf(s) ≥ f(θs), ∀θ ∈ (θ0, 1), ∀s > S0;
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(F05) there exist C0 > 0 and S1 ≥ S0 such that

s2|f ′′(θs)|
f ′′(s)

≤ C0(ln s)−1, ∀s > S1, ∀ θ ∈ (1/2, 2),

Anedda and Porru [2] showed that for any ε > 0 there is Cε > 0 such that the
solution of problem (1.1) satisfying

1 +
(α− 1)(N − 1)

2(2α− 1)
K(x)d(x)− εd(x)− Cεd

2(x)

<
u(x)

φ(d(x))

< 1 +
(α− 1)(N − 1)

2(2α− 1)
K(x)d(x) + εd(x) + Cεd

2(x),

where K(x) is the mean curvature of the surface {x ∈ Ω : d(x) = constant}.
We also note that an example which satisfies the above requirements is the

following

f(s) = 0, s ∈ [0, 1], f(s) = s(ln s)2α, s > 1, α > 1.

Inspired by the above works, in this article, we analyze the boundary behavior of
solutions to problem (1.1) for more general f which satisfies the condition (1.6).
In particular, we consider functions f which satisfy (F1), (F2) and the following
conditions that

(F3) there exist two functions f1 ∈ C1[S0, ∞) for some large S0 > 0 and f2 such
that

f(s) := f1(s) + f2(s), s ≥ S0;

(F4)
f ′1(s)s
f1(s)

:= 1 + g(s), s ≥ S0, (1.9)

with g ∈ C1[S0, ∞) satisfying

g(s) > 0, s ≥ S0, lim
s→∞

g(s) = 0, (1.10)

lim
s→∞

sg′(s)
g(s)

= 0, lim
s→∞

sg′(s)
g2(s)

= Cg ∈ R, lim
s→∞

√
s

f1(s)

g(s)
= 0; (1.11)

(F5) either there exists a constant E1 6= 0 such that

lim
s→∞

f2(s)
g(s)f1(s)

= E1 (1.12)

or

lim
s→∞

f2(s)
g(s)f1(s)

= 0 (1.13)

and there exists a constant µ ≤ 1 such that

lim
s→∞

f2(ξs)
f2(s)

= ξµ, ∀ξ > 0. (1.14)

Our main result is stated using the assumption
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(B2) There exist k ∈ Λ and a positive constant b0 such that

lim
d(x)→0

b(x)
(k(d(x)))2

= b20,

where Λ denotes the set of all positive non-decreasing functions in C1(0, δ0)
(δ0 > 0) which satisfy

lim
t→0+

d

dt

(
K(t)
k(t)

)
:= Dk ∈ [0,∞), K(t) =

∫ t

0

k(s)ds, (1.15)

Theorem 1.1. Let f satisfy (F1)–(F5). If b satisfies (B1)–(B2), then for any
solution u of problem (1.1),

lim
d(x)→0

u(x)
ψ(b0K(d(x)))

= exp(ξ0), (1.16)

where
ξ0 =

1
2
− E2 − (1−Dk)

(1
2

+ Cg
)
,

E2 =

{
E1 if (1.12) holds;
0, if (1.13) and (1.14) hold,

(1.17)

and ψ is the unique solution of the problem∫ ∞

ψ(t)

ds√
sf1(s)

= t, ∀t > 0. (1.18)

Remark 1.2. (F3), (1.10), and (1.12) or (1.13) imply

lim
s→∞

f2(s)
f(s)

= 0, lim
s→∞

f1(s)
f(s)

= 1.

Remark 1.3. Some basic examples which satisfy all our requirements are the
following:

(1) f1(s) = C2
1s(ln s)

2α in (F3), where α > 1,

g(s) = 2α(ln s)−1; lim
s→∞

√
s

f1(s)

g(s)
=

1
2αC1

lim
s→∞

(ln s)−(α−1) = 0;

sg′(s)
g2(s)

≡ Cg = − 1
2α

; lim
s→∞

f2(s)
g(s)f1(s)

=
1

2αC2
1

lim
s→∞

f2(s)
s(ln s)2α−1

= E2;

ψ(t) = exp
(
C1(α− 1)t

)−1/(α−1)
.

In particular, when f2(s) = C2s
µ(ln s)β with β ≤ 2α− 1, E1 = 0 for µ < 1

or µ = 1 and β < 2α− 1, and E1 = C2
2αC2

1
for µ = 1 and β = 2α− 1.

(2) f1(s) = C2
1se

(ln s)q

in (F3), where q ∈ (0, 1),

g(s) = q(ln s)−(1−q); lim
s→∞

√
s

f1(s)

g(s)
=

1
qC1

lim
s→∞

exp(− 1
2 (ln s)q)

(ln s)−(1−q) = 0;

lim
s→∞

sg′(s)
g2(s)

= −1− q

q
lim
s→∞

(ln s)−q = Cg = 0;

lim
s→∞

f2(s)
g(s)f1(s)

=
1
qC2

1

lim
s→∞

f2(s)
s(ln s)−(1−q) exp((ln s)q)

= E2;
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ln(ψ(t))

exp(−sq/2)ds = C1t.

(3) f1(s) = C2
1s(ln s)

2(ln(ln s))2α in (F3), where α > 1,

g(s) = 2(ln s)−1
(
1 + α(ln(ln s))−1

)
;

lim
s→∞

√
s

f1(s)

g(s)
=

1
2C1

lim
s→∞

(ln(ln s))−α

1 + α(ln(ln s))−1
= 0;

lim
s→∞

sg′(s)
g2(s)

= − lim
s→∞

1 + α(ln(ln s))−1 + α(ln(ln s))−2

2(1 + α(ln(ln s))−1)2
= Cg = −1

2
;

lim
s→∞

f2(s)
g(s)f1(s)

=
1

2C2
1

lim
s→∞

f2(s)
s ln s(ln(ln s))2α(1 + α(ln(ln s))−1)

= E2;

ψ(t) = exp
(
exp

(
C1(α− 1)t

)−1/(α−1))
.

Remark 1.4. When f further satisfies the condition f(s)/s being increasing on
(0,∞), in a similar proof in [5], problem (1.1) has a unique solution.

Remark 1.5. For the existence of the minimal solution to problem (1.1), see [12].

Remark 1.6. For each k ∈ Λ, Dk ∈ [0, 1] and

lim
t→0+

K(t)
k(t)

= 0, lim
t→0+

K(t)k′(t)
k2(t)

= 1− lim
t→0+

d

dt

(K(t)
k(t)

)
= 1−Dk. (1.19)

2. Preliminaries

Our approach relies on Karamata regular variation theory established by Kara-
mata in 1930 which is a basic tool in stochastic process (see, for instance, Bingham,
Goldie and Teugels [4], Maric [14] and the references therein.), and has been applied
to study the asymptotic behavior of solutions to differential equations and problem
(1.1) (see Maric [14], Ĉırstea and Rǎdulescu [6], Rǎdulescu [16], Ĉırstea and Du
[5], the authors [18] and the references therein.). In this section, we present some
bases of Karamata regular variation theory.

Definition 2.1. A positive measurable function f defined on [a,∞), for some
a > 0, is called regularly varying at infinity with index ρ, written f ∈ RVρ, if for
each ξ > 0 and some ρ ∈ R,

lim
t→∞

f(ξt)
f(t)

= ξρ. (2.1)

In particular, when ρ = 0, f is called slowly varying at infinity. Clearly, if
f ∈ RVρ, then L(t) : = f(t)/tρ is slowly varying at infinity.

Some basic examples of slowly varying functions at infinity are

(i) every measurable function on [a,∞) which has a positive limit at infinity;
(ii) (ln t)q and

(
ln(ln t)

)q, q ∈ R;
(iii) e(ln t)

q

, 0 < q < 1.

We also say that a positive measurable function g defined on (0, a) for some a > 0,
is regularly varying at zero with index ρ (and denoted by g ∈ RV Zρ) if t→ g(1/t)
belongs to RV−ρ.
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Proposition 2.2 (Uniform convergence theorem). If f ∈ RVρ, then (2.1) holds
uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2. Moreover, if ρ < 0, then uniform
convergence holds on intervals of the form (a1,∞) with a1 > 0; if ρ > 0, then
uniform convergence holds on intervals (0, a1] provided f is bounded on (0, a1] for
all a1 > 0.

Proposition 2.3 (Representation theorem). A function L is slowly varying at
infinity if and only if it may be written in the form

L(t) = ϕ(t) exp
( ∫ t

a1

y(τ)
τ

dτ
)
, t ≥ a1, (2.2)

for some a1 ≥ a, where the functions ϕ and y are measurable and for t → ∞,
y(t) → 0 and ϕ(t) → c0, with c0 > 0.

We say that

L̂(t) = c0 exp
( ∫ t

a1

y(τ)
τ

dτ
)
, t ≥ a1, (2.3)

is normalized slowly varying at infinity and

f(t) = tρL̂(t), t ≥ a1, (2.4)

is normalized regularly varying at infinity with index ρ (and written f ∈ NRVρ).
A function f ∈ RVρ belongs to NRVρ if and only if

f ∈ C1[a1,∞), for some a1 > 0 and lim
t→∞

tf ′(t)
f(t)

= ρ. (2.5)

Then, we see that f1 ∈ NRV1, f2 ∈ RVµ, f ∈ RV1 and g is normalized slowly
varying at infinity in (F3)-(F5).

Similarly, g is called normalized regularly varying at zero with index ρ, and
denoted by g ∈ NRV Zρ, if t→ g(1/t) belongs to NRV−ρ.

Proposition 2.4. If functions L,L1 are slowly varying at infinity, then
(i) Lρ (for every ρ ∈ R), L ◦ L1 (if L1(t) → ∞ as t → ∞) , are also slowly

varying at infinity.
(ii) For every ρ > 0 and t→∞,

tρL(t) →∞, t−ρL(t) → 0.

(iii) For ρ ∈ R and t→∞, ln(L(t))/ln t→ 0 and ln(tρL(t))/ln t→ ρ.

Our results in the section are summarized as follows.

Lemma 2.5 ([18, Lemma 2.1]). Let k ∈ Λ.
(i) When Dk ∈ (0, 1), k is normalized regularly varying at zero with index

(1−Dk)/Dk;
(ii) when Dk = 1, k is normalised slowly varying at zero;
(iii) when Dk = 0, k grows faster than any tp (p > 1) near zero.

Denote

Θ(r) =
∫ ∞

r

ds√
2F (s)

, Θ1(r) =
∫ ∞

r

ds√
sf1(s)

, r > 0. (2.6)

Then
Θ′(r) = − 1√

2F (r)
, Θ′1(r) = − 1√

rf1(r)
, r > 0. (2.7)
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Lemma 2.6. Under the hypotheses in Theorem 1.1:
(i)

lim
r→∞

Θ(λr)
Θ(r)

= lim
r→∞

Θ1(λr)
Θ1(r)

= 1, ∀λ ∈ (0, 1);

(ii)

lim
r→∞

(r/f1(r))1/2

Θ1(r)g(r)
=

1
2

+ Cg;

(iii)

lim
r→∞

f1(ξr)
ξf1(r)

− 1

g(r)
= ln ξ

uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2;
(iv)

lim
r→∞

f2(ξr)
ξg(r)f1(r)

= E2

uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2.

Proof. (i) By f, f1 ∈ RV1 and the l’Hospital’s rule, we have

lim
r→∞

F (λr)
F (r)

= λ lim
r→∞

f(λr)
f(r)

= λ2,

lim
r→∞

Θ(λr)
Θ(r)

= λ lim
r→∞

Θ′(λr)
Θ′(r)

= λ lim
r→∞

(F (λr)
F (r)

)−1/2

= 1;

lim
r→∞

Θ1(λr)
Θ1(r)

= λ lim
r→∞

Θ′1(λr)
Θ′1(r)

= λ lim
r→∞

(λf1(λr)
f1(r)

)−1/2

= 1.

(ii) By (1.11) and the l’Hospital’s rule, we obtain

lim
r→∞

(
r

f1(r)

)1/2

Θ1(r)g(r)

= lim
r→∞

(g(r))−1
(

r
f1(r)

)1/2

Θ1(r)

= lim
r→∞

−(g(r))−2g′(r)
(

r
f1(r)

)1/2 + 1
2 (g(r))−1

(
r

f1(r)

)−1/2 f1(r)−rf ′
1(r)

f2
1 (r)

−(rf1(r))−1/2

= lim
r→∞

( 1
2g(r)

rf ′1(r)− f1(r)
f1(r)

+
rg′(r)
g2(r)

)
=

1
2

+ Cg.

(iii) When ξ = 1, the result is obvious. Let ξ 6= 1. By f1 ∈ RV1, one can see
that

f1(ξr)
ξf1(r)

− 1 = exp
( ∫ ξr

r

g(τ)
τ

dτ
)
− 1.

It follows by g ∈ NRV0 and Proposition 2.3 that

lim
r→∞

g(rν)
ν

= 0, lim
r→∞

g(rν)
g(r)

= 1

uniformly with respect to ν ∈ [c1, c2]. So

lim
r→∞

∫ ξr

r

g(τ)
τ

dτ = lim
r→∞

∫ ξ

1

g(rν)
ν

dν = 0,
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lim
r→∞

∫ ξ

1

g(rν)
g(r)ν

dν =
∫ ξ

1

ν−1dν = ln ξ.

Since es − 1 ∼= s as s→ 0, this leads to

f1(ξr)
ξf1(r)

− 1 ∼= g(r) ln ξ as r →∞

uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2 by Proposition 2.3.
(iv) Note that

lim
r→∞

f2(ξr)
ξg(r)f1(r)

= lim
r→∞

f2(ξr)
ξf2(r)

lim
r→∞

f2(r)
g(r)f1(r)

.

When (1.13) and (1.14) hold,

lim
r→∞

f2(ξr)
ξg(r)f1(r)

= 0.

When (1.12) holds. Let

f2(s)
g(s)f1(s)

− E1 = h(s) with lim
s→∞

h(s) = 0.

It follows by g ∈ NRV0 and f1 ∈ NRV1 that

lim
r→∞

f2(ξr)
f2(r)

= lim
r→∞

f1(ξr)
f1(r)

g(ξr)
g(r)

E1 + h(ξs)
E1 + h(s)

= ξ;

thus

lim
r→∞

f2(ξr)
ξg(r)f1(r)

= E1.

�

Lemma 2.7. Under the hypotheses of Theorem 1.1, let ψ be the solution to the
problem ∫ ∞

ψ(t)

ds√
sf1(s)

= t, ∀t > 0.

Then
(i) −ψ′(t) =

√
ψ(t)f1(ψ(t)), ψ(t) > 0, t > 0, ψ(0) := limt→0+ ψ(t) = ∞,

ψ′′(t) = 1
2

(
f1(ψ(t)) + ψ(t)f ′1(ψ(t))

)
, t > 0;

(ii)

lim
t→0

(
g(ψ(t))

)−1
(1

2
(
1 +

ψ(t)f ′1(ψ(t))
f1(ψ(t))

)
− f1(ξψ(t))
ξf1(ψ(t))

)
=

1
2
− ln ξ;

(iii)

lim
t→0

√
ψ(t)f1(ψ(t))

tg(ψ(t))f1(ψ(t))
=

1
2

+ Cg;

(iv)

lim
t→0

f2(ξψ(t))
ξg(ψ(t))f1(ψ(t))

= E2

uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2.

Proof. By the definition of ψ and a direct calculation, we can show (i). Statements
(ii)–(iv) follow by Lemma 2.6, letting u = ψ(t). �
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3. Proof of Theorem 1.1

First, by the same proof of [7, Lemma 2.4], we have the following result.

Lemma 3.1 (Comparison principle [7, Lemma 2.1]). Let Ω ⊂ RN be a bounded
domain, and (F1), (B1) be satisfied. Assume that u1, u2 ∈ C2(Ω) satisfy ∆u1 ≥
b(x)f(u1) and ∆u2 ≤ b(x)f(u2) in Ω. If lim infx→∂Ω(u2−u1)(x) ≥ 0, then u2 ≥ u1

in Ω.

Let v0 ∈ C2+α(Ω) ∩ C1(Ω̄) be the unique solution of the problem

−∆v = 1, v > 0, x ∈ Ω, v|∂Ω = 0. (3.1)

By the Höpf maximum principle [10, Lemma 3.4], we see that

∇v0(x) 6= 0, ∀x ∈ ∂Ω and c1d(x) ≤ v0(x) ≤ c2d(x), ∀x ∈ Ω, (3.2)

where c1, c2 are positive constants.
Denote ς0 = exp(ξ0), where ξ0 is given in (1.17),

ς2 = ς0 + ε, ς1 = ς0 − ε, ε ∈ (0,min{ς0, b20}/2).

It follows that
ς0/2 < ς1 < ς2 < 2ς0, lim

ε→0
ς1 = lim

ε→0
ς2 = ς0.

Since ln(1 + s) ∼= s as s→ 0+, we can choose ε sufficiently small such that

ln(ς0)− ln(ς2) = ln
(
1− ε

ς0 + ε

)
< − 1

4ς0
ε; (3.3)

ln(ς0)− ln(ς1) = ln
(
1 +

ε

ς0 − ε

)
>

1
4ς0

ε. (3.4)

Fix the above ε. For any δ > 0, we define Ωδ = {x ∈ Ω : 0 < d(x) < δ}. Since
Ω is C2-smooth, choose δ1 ∈ (0, δ0) such that (see, 14.6. Appendix: Boundary
Curvatures and the Distance Function in [10])

d ∈ C2(Ωδ1), |∇d(x)| = 1, ∆d(x) = −(N − 1)H(x̄) + o(1), ∀x ∈ Ωδ1 . (3.5)

Proof of Theorem 1.1. By Lemma 2.7, (1.19), (3.3), (3.5) and K ∈ C[0, δ0) with
K(0) = 0, we see that there are δ1ε, δ2ε ∈

(
0,min{1, δ1/2}

)
(which are correspond-

ing to ε) sufficiently small such that
(i) (b20 − ε)k2(d(x) − σ) ≤ (b20 − ε)k2(d(x)) < b(x), x ∈ D−σ = Ω2δ1ε/Ω̄σ;

b(x) < (b20 + ε)k2(d(x)) ≤ (b20 + ε)k2(d(x) + σ), x ∈ D+
σ = Ω2δ1ε−σ, where

σ ∈ (0, δ1ε);
(ii) b0K(d(x)) ≤ δ2ε, x ∈ Ω2δ1ε ;
(iii) for all (x, t) ∈ Ω2δ1ε × (0, 2δ2ε),

(g(ψ(t))−1
(1

2
(
1 +

ψ(t)f ′1(ψ(t))
f1(ψ(t))

)
− f1(ς2ψ(t))
ς2f1(ψ(t))

)
− f2(ς2ψ(t))
ς2g(ψ(t))f1(ψ(t))

−
√
ψ(t)f1(ψ(t))

tg(ψ(t))f1(ψ(t))
K(d(x))k′(d(x))

k2(d(x))
≤ − 1

4ς0
ε;

(iv) √
ψ(t)f1(ψ(t))

tg(ψ(t))f1(ψ(t))
K(d(x))
k(d(x))

|∆d(x)| ≤ 1
8ς0

ε, ∀(x, t) ∈ Ω2δ1ε
× (0, 2δ2ε).
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Now we define

d1(x) = d(x)− σ, d2(x) = d(x) + σ; (3.6)

ūε = ς2ψ(
√
b20 − εK(d1(x))), x ∈ D−σ ; (3.7)

uε = ς1ψ(
√
b20 + εK(d2(x))), x ∈ D+

σ . (3.8)

Then, by (i)–(iv), (3.5) and a direct calculation, we see that for x ∈ D−σ and
r =

√
b20 − εK(d1(x)),

∆ūε(x)− b(x)f(ūε(x))

= ς2(b20 − ε)k2(d1(x))ψ′′(r) + ς2

√
b20 − εψ′(r)

(
k′(d1(x)) + k(d1(x))∆d(x)

)
− b(x)(f1(ς2ψ(r)) + f2(ς2ψ(r))

≤ ς2(b20 − ε)f1(ψ(r))g(ψ(r))k2(d1(x))
[
(g(ψ(r))−1

(1
2
(
1 +

ψ(r)f ′1(ψ(r))
f1(ψ(r))

)
− f1(ς2ψ(r))
ς2f1(ψ(r))

)
− f2(ς2ψ(r))
ς2g(ψ(r))f1(ψ(r))

−
√
ψ(r)f1(ψ(r))

rg(ψ(r))f1(ψ(r))

(K(d1(x))k′(d1(x))
k2(d1(x))

+
K(d1(x))
k(d1(x))

∆d(x)
)]
≤ 0;

i.e., ūε is a supersolution of (1.1) in D−σ .
In a similar way, we can show that uε = ς1ψ(

√
b20 + εK(d2(x))) is a subsolution

of (1.1) in D+
σ . Now let u be an arbitrary solution to problem (1.1), we can choose

a large M such that

u ≤ ūε +Mv0 on ∂D−σ , uε ≤ u+Mv0 on ∂D+
σ , (3.9)

where v0 is the solution of (3.1).
Also by (F1), we that u+Mv0 and ūε+Mv0 are two supersolutions of equation

(1.1) in Ω and in D−σ . Since u <∞ on d = σ; ūε(x) = ∞ on d = σ; u = ∞ on ∂Ω,
it follows by (F1) and Lemma 3.1 that

u(x) ≤Mv0(x) + ūε(x), x ∈ D−σ ; uε(x) ≤ u(x) +Mv0(x), x ∈ D+
σ . (3.10)

Hence, letting σ → 0, we have for x ∈ Ω2δ1ε ,

1− Mv0(x)
ς1ψ(

√
b20 + εK(d(x)))

≤ u(x)
ς1ψ(

√
b20 + εK(d(x)))

;

and
u(x)

ς2ψ(
√
b20 − εK(d(x)))

≤ 1 +
Mv0(x)

ς2ψ(
√
b20 − εK(d(x)))

.

Consequently, by K(0) = 0 and ψ(0) = ∞,

1 ≤ lim
d(x)→0

inf
u(x)

ς1ψ(
√
b20 + εK(d(x)))

,

lim
d(x)→0

sup
u(x)

ς2ψ(
√
b20 − εK(d(x)))

≤ 1.

Thus letting ε→ 0, we obtain

lim
d(x)→0

u(x)
ψ(b0K(d(x)))

= ς0.
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This completes the proof. �
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