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EXISTENCE OF SOLUTIONS FOR MIXED
VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

ASADOLLAH AGHAJANI, YAGHOUB JALILIAN, KISHIN SADARANGANI

Abstract. In this article, we give some results concerning the continuity of
the nonlinear Volterra and Fredholm integral operators on the space L1[0,∞).
Then by using the concept of measure of weak noncompactness, we prove an
existence result for a functional integral equation which includes several classes
of nonlinear integral equations. Our results extend some previous works.

1. Introduction

Integral Equations occur in mechanics and many related fields of engineering and
mathematical physics [6, 7, 8, 11, 12, 13, 14, 17, 22, 24, 25, 26, 27]. They also form
one of useful mathematical tools in many branches of pure analysis such as func-
tional analysis [21, 26]. Recently many papers have been devoted to the existence
of solutions of nonlinear functional integral equations [1, 2, 4, 5, 8, 11]. Our main
purpose is to prove an existence theorem for a class of functional integral equations
which contains many integral or functional integral equations. For example, we can
mention the nonlinear Volterra integral equations, mixed Volterra-Fredholm inte-
gral equations and Fredholm integral equations on the unbounded interval [0,∞).

The concept of measure of weak noncompactness was developed by De Blasie [16].
Banaś and Knap [6] introduced a measure of weak noncompactness in the space
of real Lebesgue integrable functions on an interval which is convenient for our
purpose. In the proof of main result we will use a measure of weak noncompactness
given by Banaś and Knap to find a special subset of L1[0,∞) and also by applying
the Schauder fixed point theorem on this set, the existence result which generalizes
several previous works [3, 7, 8, 9, 11, 13, 17, 27] will be proven.

Organization of this article: Section 2 gives some definitions and preliminary
results about continuous operator on L1(R+), Section 3 describes the concept of
measure of weak noncompactness and weakly compact sets in L1(R+) and finally
in Section 4 we give our main result and some examples.
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2. Notations and auxiliary results

In this paper, R+ indicates the interval [0,∞) and for the Lebesgue measurable
subset D of R, m(D) implies the Lebesgue measure of D. Also, let L1(D) be the
space of all Lebesgue integrable functions y on D equipped with the standard norm
‖y‖L1(D) =

∫
D
|y(x)|dx.

Lemma 2.1 ([20]). Let Ω be a Lebesgue measurable subset of R and 1 ≤ p ≤ ∞. If
{fn} is convergent to f ∈ Lp(Ω) in the Lp-norm, then there is a subsequence {fnk

}
which converges to f a.e., and there is g ∈ Lp(Ω), g ≥ 0, such that

|fnk
(x)| ≤ g(x), a.e. x ∈ Ω.

Let I ⊂ R be an interval. A function f : I × R → R is said to have the
Carathéodory property if

(M) for all x ∈ R the function t 7→ f(t, x) is Lebesgue measurable on I;
(C) for almost all t ∈ I the function x 7→ f(t, x) is continuous on R.
One of the most important nonlinear mappings is the so-called Nemytski operator

which is also called the substitution (or superposition) operator [6, 8, 20, 27]. By
substituting the function x : I → R into the function f the Nemytski operator
F : x → f(., x(.)) has been obtained which acts on a space containing functions x.
Krasnosel’skii [22] and Appell and Zabreiko [3] have proven the following assertion
when I is a bounded and an unbounded domain respectively.

Theorem 2.2. The superposition operator F generated by function f(t, x) maps
the space L1(I) continuously into itself if and only if |f(t, x)| ≤ g(t) + c|x| for all t
in an interval I, and x ∈ R, where g is a function from the space L1(I) and c is a
nonnegative constant.

Remark 2.3. The Carathéodory property can be generalized to functions f :
Ω×Rm → R where Ω is a measurable subset of Rn. Theorem 2.2 holds similarly if
and only if there exist c ∈ R and g ∈ L1(Ω) such that

|f(x, y)| ≤ g(x) + c

m∑
i=1

|yi|, (2.1)

for almost all x ∈ Ω and all y = (y1, . . . , ym) ∈ Rm.

Now we are going to review a theorem from [6] about the continuity of the linear
Volterra integral operator on the space L1 = L1(R+). Let ∆ = {(t, s) : 0 ≤ s ≤ t}
and k : 4→ R be a measurable function with respect to both variables. Consider

(Kx)(t) =
∫ t

0

k(t, s)x(s)ds, t ∈ R+, x ∈ L1(R+).

We notice that K is a linear Volterra integral operator generated by k.

Theorem 2.4. Let k be measurable on ∆ and such that

ess sups≥0

∫ ∞

s

|k(t, s)|dt < ∞. (2.2)

Then the Volterra integral operator K generated by k maps (continuously) the space
L1(R+) into itself and the norm ‖K‖ of this operator is majorized by the number
ess sups≥0

∫∞
s
|k(t, s)|dt.
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Assume that A is a measurable subset of R+, we denote by ‖K‖A the norm of
linear Volterra operator K : L1(A) → L1(A).

Now we give a result concerning the continuity of the nonlinear Volterra operator
on L1(R+). In what follows we suppose that u : R+ × R+ × R → R is a function
which satisfies:

(a) t → u(t, s, x) is measurable for all s ∈ R+ and x ∈ R;
(b) (s, x) → u(t, s, x) is continuous for almost all t ∈ R+.

Theorem 2.5. Let u : R+ × R+ × R → R be a function such that

|u(t, s, x)| ≤ k1(t, s) + k2(t, s)|x|, t, s ∈ R+ x ∈ R, (2.3)

where ki : R+ × R+ → R+ (i=1,2) are measurable functions. Moreover, the inte-
gral operator K2 generated by k2 is a continuous map from L1(R+) into itself and∫ t

0
k1(t, s)ds ∈ L1(R+). Then the operator

(Ux)(t) =
∫ t

0

u(t, s, x(s))ds,

maps L1(R+) continuously into itself

Proof. Let {xn} be an arbitrary sequence in L1 = L1(R+) which converges to
x ∈ L1 in the L1-norm. By using Lemma 2.1 there is a subsequence {xnk

} which
converges to x a.e., and there is g ∈ L1, g ≥ 0, such that

|xnk
(s)| ≤ g(s), a.e. on R+. (2.4)

Since xnk
→ x almost everywhere in R+, it readily follows from (b) that

u(t, s, xnk
(s)) → u(t, s, x(s)), for almost all s, t ∈ R+. (2.5)

From inequalities (2.3) and (2.4), we infer that

|u(t, s, xnk
(s))| ≤ k1(t, s) + k2(t, s)g(s), for almost all s, t ∈ R+. (2.6)

As a consequence of the Lebesgue’s Dominated Convergence Theorem, (2.5) and
(2.6) yield ∫ t

0

u(t, s, xnk
(s))ds →

∫ t

0

u(t, s, x(s))ds,

for almost all t ∈ R+. Inequality (2.6) implies that

|(Uxnk
)(t)| ≤

∫ t

0

|u(t, s, xnk
(s))|ds ≤

∫ t

0

k1(t, s)ds +
∫ t

0

k2(t, s)g(s)ds, (2.7)

for almost all t ∈ R+. Regarding the assumptions on k1 and k2, we obtain∫ ∞

0

∫ t

0

k1(t, s) ds dt +
∫ ∞

0

∫ t

0

k2(t, s)g(s) ds dt < ∞. (2.8)

Then inequalities (2.7)-(2.8) and the Lebesgue’s Dominated Convergence Theorem
imply

‖Uxnk
− Ux‖L1 → 0.

Since any sequence {xn} converging to x in L1 has a subsequence {xnk
} such that

Uxnk
→ Ux in L1, we can conclude that U : L1(R+) → L1(R+) is a continuous

operator. �

Similar to the above theorem, we can prove the following theorem for the non-
linear Fredholm integral operators.
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Theorem 2.6. Let v : R+×R+×R → R be a function satisfying (a)–(b) such that

|v(t, s, x)| ≤ k1(t, s) + k2(t, s)|x|, t, s ∈ R+ x ∈ R, (2.9)

where ki : R+ × R+ → R+ (i = 1, 2) are measurable functions. Moreover, the
integral operator (K2x)(t) =

∫∞
0

k2(t, s)|x(s)|ds maps L1(R+) continuously into
itself and k1(t, s) ∈ L1(R+ × R+). Then the operator

(V x)(t) =
∫ ∞

0

v(t, s, x(s))ds,

maps L1(R+) continuously into itself.

3. Measure of weak noncompactness

Let (E, ‖ · ‖) be an infinite dimensional Banach space with zero element θ. We
write B(x, r) to denote the closed ball centered at x with radius r and conv X to
denote the closed convex hull of X. Further let:

mE be the family of all nonempty bounded subsets of E, nw
E : the subfamily of

mE consisting of all relatively weakly compact sets, and X
w

: the weak closure of
a set X.

In this paper, we use the following definition of the measure of weak noncom-
pactness [9].

Definition 3.1. A mapping µ : mE → R+ is said to be a measure of weak non-
compactness if it satisfies the following conditions:

(1) The family ker µ = {X ∈ mE : µ(X) = 0} is nonempty and ker µ ⊂ nw
E,

(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ),
(3) µ(conv X) = µ(X),
(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1],
(5) If Xn ∈ mE, Xn = X

w

n for n = 1, 2, . . . and if limn→∞ µ(Xn) = 0, then
the intersection set X∞ =

⋂∞
n=1 Xn is nonempty.

In the sequel, we will use a measure of weak noncompactness represented by a
convenient formula in the space L1(R+) [10]. For X ∈ mL1(R+) define:

c(X) = lim
ε→0

{sup
x∈X

{sup[
∫

D

|x(t)|dt : D ⊂ R+, m(D) ≤ ε]}},

d(X) = lim
T→∞

{sup[
∫ ∞

T

|x(t)|dt : x ∈ X]},

µ(X) = c(X) + d(X).

In [10], it is shown that µ is a measure of weak noncompactness on L1(R+). By
using the following theorem [19], we can infer that kerµ = nw

L1(R+).

Theorem 3.2. A bounded set X is relatively weakly compact in L1(R+) if and only
if the following two conditions are satisfied:

(1) for any ε > 0 there exists δ > 0 such that if m(D) ≤ δ then
∫

D
|x(t)|dt ≤ ε

for all x ∈ X,
(2) for any ε > 0 there exists T > 0 such that

∫∞
T
|x(t)|dt ≤ ε for any x ∈ X.
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4. Main results

In this section, we study the existence of solutions to the functional integral
equation

x(t) = f
(
t,

∫ t

0

u(t, s, x(s))ds,

∫ ∞

0

a2(t)v(s, x(s))ds
)
, t ≥ 0. (4.1)

This equation is a general form of many integral equations, such as the mixed
Volterra-Fredholm integral equation

x(t) = g(t) +
∫ t

0

k(t, s)u(s, x(s))ds + a(t)
∫ ∞

0

v(s, x(s))ds, t ≥ 0. (4.2)

Equations like (4.2) have been considered by many authors; see for example [12,
15, 18, 23, 25] and references cited therein. Moreover, (4.1) contains the nonlinear
Volterra and Fredholm integral equations on R+ such as:

x(t) = g(t) +
∫ t

0

u(t, s, x(s))ds, t ≥ 0,

x(t) = f(t) + a(t)
∫ ∞

0

v(s, x(s))ds, t ≥ 0.

We consider equation (4.1) under the following assumptions:

(i) The function f : R+ × R2 → R satisfies Carathédory conditions and there
exist constant B ∈ R+ and function a1 ∈ L1(R+) such that

|f(t, x, y)| ≤ a1(t) + B(|x|+ |y|), t ∈ R+, x, y ∈ R. (4.3)

(ii) u : R+×R+×R → R satisfies (a)–(b) and |u(t, s, x)| ≤ k1(t, s) + k2(t, s)|x|
for (t, s, x) ∈ R+ × R+ × R, where ki : R+ × R+ → R+ (i=1,2) satisfies
Carathéodory conditions. Moreover, the integral operator K2 generated by
k2 i.e.

(K2x)(t) =
∫ t

0

k2(t, s)x(s)ds, (4.4)

is a continuous map from L1(R+) into itself and
∫ t

0
k1(t, s)ds ∈ L1(R+).

(iii) v : R+×R → R satisfies Carathéodory conditions and |v(s, x)| ≤ n(s)+b|x|
for (s, x) ∈ R+ × R where n ∈ L1(R+) and b is a positive constant.

(iv) a2 : R+ → R is a function in L1(R+).
(v) B(b‖a2‖+ ‖K2‖) < 1, where ‖K2‖ denotes the norm of operator K2.

To prove the main result of this paper, we need the next lemma.
Let X be a nonempty, closed, convex, bounded and weakly compact subset of

L1 = L1(R+) and I = [0, a] where a > 0. Moreover, we define the operator F on
L1 = L1(R+) as follows:

(Fx)(t) = f
(
t,

∫ t

0

u(t, s, x(s))ds,

∫ ∞

0

a2(t)v(s, x(s))ds
)
. (4.5)

Lemma 4.1. Suppose that assumptions (i)–(iv) hold and the operator F takes X
into itself. Then for any ε > 0 there exists Dε ⊂ I with m(I \ Dε) ≤ ε such that
F (conv FX) on Dε is a relatively compact subset of C(Dε).
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Proof. Consider an arbitrary but fixed ε > 0. Then using Lusin theorem and
generalized version of Scorza-Dragoni theorem [14] we can find the closed set Dε ⊂
I with m(I \ Dε) ≤ ε, such that the functions ai

∣∣
Dε

, k
∣∣
Dε×R+

, u
∣∣
Dε×R+×R and

f
∣∣
Dε×R+×R are continuous. Let us take an arbitrary x ∈ X. Then for t ∈ Dε we

have ∣∣ ∫ t

0

u(t, s, x(s))ds
∣∣ ≤ ∫ t

0

k1(t, s) +
∫ t

0

k2(t, s)|x(s)|ds

≤ k̄1a + k̄2‖x‖ ≤ k̄1a + k̄2‖X‖ =: Uε,

(4.6)

and ∣∣ ∫ ∞

0

a2(t)v(s, x(s))ds
∣∣ ≤ ā2(‖n‖+ b‖x‖) ≤ ā2(‖n‖+ b‖X‖) =: Vε, (4.7)

where ‖X‖ = sup{‖x‖ : x ∈ X}, āi = sup{|ai(t)| : t ∈ Dε} and k̄i = sup{|ki(t, s)| :
(t, s) ∈ Dε × I} for i = 1, 2. Now let y ∈ FX. Then there exists x ∈ X such that
y = Fx. Using the inequalities (4.6) and (4.7) for t ∈ Dε we obtain

|y(t)| = |(Fx)(t)| ≤ a1(t) + |
∫ t

0

u(t, s, x(s))ds|+ |
∫ ∞

0

a2(t)v(s, x(s))ds|

≤ ā1 + Uε + Vε =: Yε.

(4.8)

We can easily deduce that the inequality (4.8) is true, for any y ∈ Y = conv FX.
Now assume that {yn} is a sequence in Y and let t1, t2 ∈ Dε. Without loss of
generality we can assume that t1 ≤ t2. Relatively weakly compactness of the set
{yn} implies that for ε0 = t2 − t1 there exists 0 < δ0 ≤ ε0 such that for any
measurable subset D of [0, t1] with m(D) ≤ δ0, we have:∫

D

|yn(t)|dt ≤ ε0 for n = 1, 2, . . . . (4.9)

We see that the estimate (4.8) does not depend on the choice of ε. Thus for ε = δ0

there exists a closed set Dδ0 ⊂ [0, t1] with m([0, t1] \Dδ0) ≤ δ0 such that

|yn(t)| ≤ Yδ0 for t ∈ Dδ0 , n = 1, 2, . . . . (4.10)

Hence from (4.9) and uniform continuity of u
∣∣
Dε×Dδ0×[−Yδ0 ,Yδ0 ]

and ki

∣∣
Dε×[0,a]

(i =
1, 2) we infer that∫ t1

0

|u(t1, s, yn(s))− u(t2, s, yn(s))|ds

≤
∫

Dδ0

|u(t1, s, yn(s))− u(t2, s, yn(s))|ds

+
∫

[0,t1]\Dδ0

|u(t1, s, yn(s))− u(t2, s, yn(s))|ds

≤ O(|t1 − t2|) + 2k̄1m([0, t1] \Dδ0) + 2k̄2

∫
[0,t1]\Dδ0

|yn(t)|dt

≤ O(|t1 − t2|) + 2(k̄1 + k̄2)|t1 − t2|.

(4.11)
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Here O is a function which O(η) → 0 as η → 0. Thus from (4.11) we have:

|
∫ t1

0

u(t1, s, yn(s))ds−
∫ t2

0

u(t2, s, yn(s))ds|

≤
∫ t1

0

|u(t1, s, yn(s))− u(t2, s, yn(s))|ds + |
∫ t2

t1

u(t2, s, yn(s))ds|

≤ O(|t1 − t2|) + 2(k̄1 + k̄2)|t1 − t2|+
∫ t2

t1

k1(t2, s)ds +
∫ t2

t1

k2(t2, s)|yn(s)|ds

≤ O(|t1 − t2|) + 2(k̄1 + k̄2)|t1 − t2|+ k̄1|t1 − t2|+ k̄2

∫ t2

t1

|yn(s)|ds.

(4.12)

Weakly compactness of the set {yn} implies that
∫ t2

t1
|yn(s)|ds is arbitrary small

uniformly with respect to n ∈ N if t2 − t1 is small enough. Then from (4.12) and
(4.6) the sequence {Uyn} which

(Uyn)(t) =
∫ t

0

u(t, s, yn(s))ds,

is equibounded and equicontinuous on the set Dε. Obviously from assumption (iii)
and inequality (4.7) we can easily infer that the sequence {V yn} is equibounded
and equicontinuous on Dε where

(V yn)(t) =
∫ ∞

0

a1(t)v(s, yn(s))ds.

Hence, uniform continuity of f
∣∣
Dε×[−Uε,Uε]×[−Vε,Vε]

implies that the sequence {Fyn}
is equibounded and equicontinuous on Dε. Then, by Ascoli theorem the sequence
{Fyn} has a convergent subsequence in the norm C(Dε). Therefore, F (conv FX)
is a relatively compact subset of C(Dε). �

Now we present our main result.

Theorem 4.2. Under assumptions (i)–(v), the functional integral equation (4.1)
has at least one solution x ∈ L1(R+).

Proof. At first we define the operator F on L1 = L1(R+) by

(Fx)(t) = f
(
t,

∫ t

0

u(t, s, x(s))ds,

∫ ∞

0

a2(t)v(s, x(s))ds
)
.

We prove the theorem in the following steps.
Step 1. F : L1(R+) → L1(R+) is a continuous operator.

Using Theorems 2.5 and 2.6, the operators

(Ux)(t) =
∫ t

0

u(t, s, x(s))ds, (V x)(t) =
∫ ∞

0

v(t, s, x(s))ds,

map L1(R+) continuously into itself. Also by assumptions (i)–(iv) and Remark 2.3,
the Nemytski operator generated by f is a continuous operator from L1(R+) into
L1(R+). Thus the operator F is continuous.
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Step 2. There exists a positive number r such that the operator F takes the ball
B(θ, r) into itself. Let x ∈ L1(R+). Then

‖Fx‖ =
∫ ∞

0

|(Fx)(t)|dt

=
∣∣∣ ∫ ∞

0

f
(
t,

∫ t

0

u(t, s, x(s))ds,

∫ ∞

0

a2(t)v(s, x(s))ds
)
dt

∣∣∣
≤ ‖a1‖+ B

∫ ∞

0

( ∫ t

0

|u(t, s, x(s))|ds +
∫ ∞

0

|a2(t)v(s, x(s))|ds
)
dt

≤ ‖a1‖+ B(K1 + ‖K2‖‖x‖) + B‖a2‖(‖n‖+ b‖x‖),

(4.13)

where

K1 =
∫ ∞

0

∫ t

0

k1(t, s) ds dt.

From (4.13) and assumption (v), one can deduce that for r = ‖a1‖+B(K1+‖a2‖‖n‖)
1−B(‖K2‖+‖a2‖b) ,

the operator F takes Br = B(θ, r) into itself.
Step 3. There exists a weakly compact subset Y such that the operator F maps

Y into itself. Let X be a nonempty subset of Br. Let ε > 0 be an arbitrary number
and D ⊂ R+ be a measurable subset with m(D) ≤ ε. Then for x ∈ X we have:∫

D

|(Fx)(t)|dt

≤
∫

D

a1(t)dt + B

∫
D

( ∫ t

0

|u(t, s, x(s))|ds +
∫ ∞

0

|a2(t)v(s, x(s))|ds
)
dt

≤
∫

D

a1(t)dt + B

∫
D

∫ t

0

k1(t, s) ds dt

+ B

∫
D

|(K2x)(t)|dt + B(‖n‖+ br)
∫

D

|a2(t)|dt

≤
∫

D

a1(t)dt + B

∫
D

∫ t

0

k1(t, s) ds dt

+ B‖K2‖D

∫
D

|x(t)|dt + B(‖n‖+ br)
∫

D

|a2(t)|dt

(4.14)

Further, as a simple consequence of the fact that a single set in L1(R+) is weakly
compact, for γ(t) = a1(t),

∫ t

0
k1(t, s)ds or a2(t), we have:

(C1) limε→0{sup[
∫

D
|γ(t)|dt : D ⊂ R+, m(D) ≤ ε]} = 0,

(C2) limT→∞
∫∞

T
|γ(t)|dt = 0.

Then from (4.14) and (C1) we conclude that

c(FX) ≤ B‖K2‖c(X). (4.15)

By similar calculations we obtain:∫ ∞

T

|(Fx)(t)|dt ≤
∫ ∞

T

a1(t)dt + B

∫ ∞

T

∫ t

0

k1(t, s)ds dt

+ B‖K2‖
∫ ∞

T

|x(t)|dt + B(‖n‖+ br)
∫ ∞

T

|a2(t)|dt.

(4.16)
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Therefore, from (C2), we have

d(FX) ≤ B‖K2‖d(X). (4.17)

Hence by adding (4.15) and (4.17) we obtain

µ(FX) ≤ B‖K2‖µ(X). (4.18)

Assumption (v) implies that B‖K2‖ < 1. Thus inequality (4.18) yields that there
exists a closed, convex and weakly compact set X∞ ⊂ Br such that FX∞ ⊂ X∞.
Let Y = conv FX∞. Obviously FY ⊂ Y ⊂ X∞. Thus FY and Y are relatively
weakly compact.

Step 4. The set FY obtained in the Step 3 is a relatively compact subset of
L1(R+). Suppose {yn} ⊂ Y , and fix an arbitrary ε > 0. Applying Theorem 3.2
for relatively weakly compact set FY implies that there exists T > 0 such that for
m,n ∈ N ∫ ∞

T

|(Fyn)(t)− (Fym)(t)|dt ≤ ε

2
. (4.19)

Further, by using Lemma 4.1 for any k ∈ N there exists a closed set Dk ⊂ [0, T ] with
m([0, T ]\Dk) ≤ 1

k such that {Fyn} is a relatively compact subset of C(Dk). So for
any k ∈ N there exists a subsequence {yk,n} of {yn} which is a Cauchy sequence
in C(Dk). Also these subsequences can be chosen such that {yk+1,n} ⊆ {yk,n}.
Consequently the subsequence {yn,n} is a Cauchy sequence in each space C(Dk)
for any k ∈ N which for simplicity we call it again {yn}.

From the relatively weakly compactness of {Fyn} we can find δ > 0 such that
for each closed subset Dδ with m([0, T ] \Dδ) ≤ δ we obtain:∫

[0,T ]\Dδ

|(Fyn)(t)− (Fym)(t)|dt ≤ ε

4
, m, n ∈ N. (4.20)

Considering the fact {Fyn} is Cauchy in C(Dk) for each k ∈ N one can find k0 such
that m([0, T ] \Dk0) ≤ δ and for m,n ≥ k0

‖(Fyn)− (Fym)‖C(Dk0 ) ≤
ε

4(m(Dk0) + 1)
, (4.21)

consequently (4.20) and (4.21) imply that∫ T

0

|(Fyn)(t)− (Fym)(t)|dt

=
∫

Dk0

|(Fyn)(t)− (Fym)(t)|dt +
∫

[0,T ]\Dk0

|(Fyn)(t)− (Fym)(t)|dt

≤ ε

2
,

(4.22)

for m,n ≥ k0. Now by considering (4.19) and (4.22) for m,n ≥ k0 we obtain the
inequality

‖(Fyn)− (Fym)‖L1 =
∫ ∞

0

|(Fyn)(t)− (Fym)(t)|dt ≤ ε, (4.23)

which shows that the sequence {Fyn} is a Cauchy sequence in the Banach space
L1(R+). Then {Fyn} has a convergent subsequence which implies that FY is a
relatively compact subset of L1(R+).
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Step 5. By the Step 4 there exists a bounded, closed, convex set Y ⊂ L1(R+)
such that the operator F : Y → Y is continuous and compact. Then Schauder fixed
point theorem completes the proof. �

Next, by applying our theorem we prove the existence of solutions for some
integral equations.

Example 4.3. Consider the Fredholm integral equation

x(t) =
t2/3

t3 + 1
+

∫ ∞

0

a2(t) tanh(
s + |x(s)|
(1 + s2)2

)ds, t ≥ 0, (4.24)

where
a2(t) =

tπ

8
χ[0,1] +

1
4(1 + t2)

χ(1,∞),

in which for A ⊂ R+ and χA(x) =

{
1, x ∈ A,

0, x ∈ R+ \A.
Put

f(t, x, y) =
t2/3

1 + t3
+ y, u(t, s, x) = 0,

v(s, x) = tanh(
s + |x|

(1 + s2)2
), a1(t) =

t2/3

1 + t3
,

n(s) =
s

(1 + s2)2
, B = 1, b = 1.

We know that tanh(α) ≤ α, for α > 0. Then

|v(s, x)| ≤ n(s) + b|x|,

|f(t, x, y)| ≤ t2/3

1 + t3
+ B(|x|+ |y|),

Further

‖a2‖ =
∫ ∞

0

|a2(t)|dt =
π

8
.

Since u = 0 we can choose k1 = k2 = 0 and then ‖K2‖ = 0. Thus, B(b‖a2‖ +
‖K2‖) = π

8 < 1. It is easy to see that assumptions (i)-(v) are fulfilled. Consequently
Theorem 4.2 ensures that the equation (4.24) has at least one solution in L1(R+).

Example 4.4. Consider the mixed Volterra-Fredholm integral equation

x(t) =
1 + t2

cosh(t)
+

∫ t

0

bt + s2c
2

exp(−t) sin(x(s))ds

+
∫ ∞

0

t ln(1 + sx2(s))
3(1 + t2)2(s + 1)

ds, t ≥ 0,

(4.25)

where the symbol bzc means the largest integer less than or equal to z. Let

f(t, x, y) =
1 + t2

cosh(t)
+ x + y,

u(t, s, x) =
bt + s2c

2
exp(−t) sin(x),

v(s, x) =
ln(1 + sx2)

s + 1
, a2(t) =

t

3(1 + t2)2
,



EJDE-2012/137 EXISTENCE OF SOLUTIONS 11

k2(t, s) =
bt + s2c

2
exp(−t), B = 1, b = 1.

We know that ln(1 + α2) ≤ |α| for α ∈ R. Then

|f(t, x, y)| ≤ 1 + t2

cosh(t)
+ B(|x|+ |y|),

|u(t, s, x)| ≤ k2(t, s)|x|, |v(s, x)| ≤ b|x|,

‖a2‖ =
∫ ∞

0

|a2(t)|dt =
∫ ∞

0

t

3(1 + t2)2
dt =

1
6
,∫ ∞

s

|k2(t, s)|dt =
∫ ∞

s

bt + s2c
2

exp(−t)dt ≤ (s2 + s + 1)
2

exp(−s) ≤ 3
2

exp(−1),

for s, t ∈ R+ and x ∈ R. Therefore, from Theorem 2.4, we have that B‖K2‖ ≤
3
2 exp(−1) and then B(b‖a2‖+ ‖K2‖) ≤ 1

6 + 3
2 exp(−1) < 1. Using Theorem 4.2 we

deduce that the equation (4.25) has at least one solution in L1(R+).
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