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SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON
THE GRADIENT

GUANGGANG LIU, SHAOYUN SHI, YUCHENG WEI

Abstract. In this article we consider elliptic equations whose nonlinear term
depends on the gradient of the unknown. We assume that the nonlinearity
has a asymptotically linear growth at zero and at infinity with respect to the
second variable. By applying Morse theory and an iterative method, we prove
the existence of nontrivial solutions.

1. Introduction

In this article we consider the following elliptic equation with dependence on the
gradient,

−∆u = f(x, u,∇u), in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary. Since
the nonlinearity f depends on the gradient of the solution, solving (1.1) is not
variational. In fact the well developed critical point theory cannot be applied
directly. There have been several works on this equation, using sub and super-
solution, topological degree, fixed point theorems and Galerkin method; see, for
instance, [1, 2, 6, 11, 15, 16, 17].

In [5], de Figueiredo, Girardi and Matzeu developed a quite different method
of variational type. Under the assumptions that f has a superlinear subcritical
growth at zero and at infinity with respect to the second variable, they obtained
the existence of a positive and a negative solutions of (1.1) by using the mountain
pass theorem and iterative technique. Later, this method was applied to quasilin-
ear elliptic equations [7, 8, 13], Hamiltonian systems [9] and impulsive differential
equations [14].

In general the above papers which used mountain pass technique assume that the
nonlinearity has a superlinear subcritical growth at zero and at infinity with respect
to the second variable. Here we show that Morse theory and iterative method can
be used to find solutions to (1.1) under the assumption that f has a asymptotically
linear growth at zero and at infinity with respect to the second variable.
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Let 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk ≤ . . . be the eigenvalues associated with the
eigenvectors ϕ1, ϕ2, ϕ3, ϕ4, . . . of −∆ with Dirichlet boundary condition, and we
make the following assumptions:

(H0) f : Ω× R× RN → R is continuous;
(H1) f(x, t, ξ) = λt+g0(x, t, ξ), where λj < λ < λj+1, g0(x, t, ξ) = o(|t|) as t → 0

uniformly for x ∈ Ω, ξ ∈ RN ;
(H2) f(x, t, ξ) = µt + g(x, t, ξ), where λk < µ < λk+1, k 6= j, k ≥ 1, g(x, t, ξ) =

o(|t|) as |t| → ∞ uniformly for x ∈ Ω, ξ ∈ RN ;
(H3) f(x, t, ξ) = µt + g(x, t, ξ), where µ = λk and λk−l−1 < λk−l = λk−l+1 =

· · · = λk−1 = λk < λk+1, k 6= j, k ≥ l + 1, |g(x, t, ξ)| ≤ C and G(x, t, ξ) →
−∞ as |t| → ∞ uniformly for x ∈ Ω, ξ ∈ RN , where C > 0 is a constant,
G(x, t, ξ) =

∫ t

0
g(x, s, ξ)ds;

(H4) For any x ∈ Ω, t1, t2 ∈ R, ξ1, ξ2 ∈ RN , f(x, t, ξ) satisfies the Lipschitz
condition

|f(x, t2, ξ2)− f(x, t1, ξ1)| ≤ L(|t2 − t1|+ |ξ2 − ξ1|),

where L > 0 is a constant.
By (H1), zero is a solution of (1.1), called trivial solution. The purpose of this

article is to find nontrivial solutions. Our main results as as follows:

Theorem 1.1. Assume that (H0), (H1), (H2), (H4) hold. If 0 < L
√

λ1
λ1−L < 1, then

(1.1) has at least a nontrivial weak solution.

Theorem 1.2. Assume that (H0), (H1), (H3), (H4) hold. If 0 < L
√

λ1
λ1−L < 1, then

(1.1) has at least a nontrivial weak solution.

This article is organized as follows. In section 2 we give a simple revisit to Morse
theory. In section 3 we prove Theorem 1.1 and Theorem 1.2 by using Morse theory
and iterative method. An example will be given in section 4.

2. Preliminaries about Morse theory

Let H be a real Hilbert space and J ∈ C1(H, R) be a functional satisfying the
(PS) condition. Denote by Hq(A,B) the q-th singular relative homology group of
the topological pair with coefficients in a field G. Let u be an isolated critical point
of J with J(u) = c. The group

Cq(J, u) := Hq(Jc, Jc \ {u}), q ∈ Z,

is called the q-th critical group of J at u, where Jc = {u ∈ H | J(u) ≤ c}. Denote
K = {u ∈ H \ J ′(u) = 0}. Assume that K is a finite set. Take a < inf J(K). The
critical groups of J at infinity are defined by

Cq(J,∞) := Hq(H,Ja \ {u}), q ∈ Z.

The following result is important in proving the existence of nontrivial critical
points.

Proposition 2.1 ([3, Proposition 3.6]). Suppose J satisfies the (PS) condition. If
K = ∅, then Cq(J,∞) ∼= 0, q ∈ Z. If K = {u0}, then Cq(J,∞) ∼= Cq(J, u0), q ∈ Z.

Let A∞ and A0 be bounded self-adjoint operators defined on H. According to
their spectral decomposition, H = H+⊕H0⊕H−, where H+, H0, H− are invariant
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subspaces corresponding to the positive, zero and negative spectrum of A∞, respec-
tively, similarly, H = H+

0 ⊕H0
0 ⊕H−

0 , where H+
0 , H0

0 , H−
0 are invariant subspaces

corresponding to the positive, zero and negative spectrum of A0, respectively. Let
P0 : H → H0 be the orthogonal projector.

Consider the functionals

Φ(u) =
1
2
〈A∞u, u〉+ ϕ(u), Φ0(u) =

1
2
〈A0u, u〉+ ϕ0(u).

We make the following assumptions:

(A1) (A∞)± := A∞|H± has a bounded inverse on H±.
(A2) γ := dim(H− ⊕H0) < ∞.
(A3) ϕ ∈ C1(H, R) has a compact gradient mapping∇ϕ(u), and∇ϕ(u) = o(‖u‖)

as ‖u‖ → ∞. In addition, if dim H0 6= 0, we assume

‖∇ϕ(u)‖ ≤ C,∀u ∈ H, ϕ(P0u) → −∞ as ‖P0u‖ → ∞.

(A4) (A0)± := (A0)|H±0 has a bounded inverse on H±
0 .

(A5) β := dim(H−
0 ) < ∞, and dim H0

0 = 0.
(A6) ϕ0 ∈ C1(H, R) has a compact gradient mapping ∇ϕ0(u), and

∇ϕ0(u) = o(‖u‖) as ‖u‖ → 0.

Also we use the following results.

Theorem 2.2 ([4, Lemma 5.1]). Assume that (A1)–(A3) hold, then Φ satisfies the
(PS) condition, and

Cq(Φ,∞) =

{
G, q = γ,

0, q 6= γ.

Theorem 2.3 ([4, Theorem 4.1]). Assume that (A4)–(A6) hold, then

Cq(Φ0, 0) =

{
G, q = β,

0, q 6= β.

3. Proof of Theorems 1.1 and 1.2

Let H1
0 (Ω) be the usual Sobolev space with the inner product

〈u, v〉 =
∫

Ω

∇u(x) · ∇v(x) dx, ∀u, v ∈ H1
0 (Ω).

For w ∈ H1
0 (Ω), consider the problem

−∆u = f(x, u,∇w), in Ω,

u = 0, on ∂Ω
(3.1)

and the associated functional Iw : H1
0 (Ω) → R,

Iw(v) =
1
2

∫
Ω

|∇v(x)|2 dx−
∫

Ω

F (x, v(x),∇w(x)) dx.

By (H0) (H2) or (H0) (H3), Iw ∈ C1(H1
0 (Ω), R), and the weak solutions of the

problem (3.1) corresponds to the critical points of the functional Iw, see [12].
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Define the operators L∞, L0 : H1
0 (Ω) → H1

0 (Ω) by L∞u = u − µ(−4)−1u and
L0u = u − λ(−4)−1u. Obviously, L∞ and L0 are bounded self-adjoint operators.
Let

φw(u) =
∫

Ω

g(x, u(x),∇w(x)) dx, φw0(u) =
∫

Ω

g0(x, u(x),∇w(x)) dx.

It is well known that ∇φw,∇φw0 are compact mappings. By (H1), (H2) or (H1),
(H3), ∇φw(u) = o(‖u‖) as ‖u‖ → ∞, and ∇φw0 = o(‖u‖) as ‖u‖ → 0. We can
rewrite the functional Iw by

Iw(u) =
1
2
〈L∞u, u〉 − φw(u) =

1
2
〈L0u, u〉 − φw0(u).

According to the spectral decomposition of the operator L∞, H1
0 (Ω) = H+⊕H0⊕

H−, where H+,H0,H− are invariant subspaces corresponding to the positive, zero
and negative spectrum of L∞ respectively.

If (H2) holds, then H− = span{ϕ1, ϕ2, . . . ϕk}, H+ = (H−)⊥.
If (H3) holds, then H− = span{ϕ1, ϕ2, . . . ϕk−l−1}, H0 = span{ϕk−l, . . . ϕk},

H+ = (H0 ⊕H−)⊥.
Similarly, according to the spectral decomposition of the operator L0, H1

0 (Ω) =
H+

0 ⊕H0
0 ⊕H−

0 , where H+
0 ,H0

0 ,H−
0 are invariant subspaces corresponding to the

positive zero and negative spectrum of L0 respectively. If (H1) holds, then L0 is
invertible and H−

0 = span{ϕ1, ϕ2, . . . ϕj}, H+
0 = (H−

0 )⊥.

Lemma 3.1. Assume that (H0)–(H2) hold. Then for any w ∈ H1
0 (Ω), (3.1) has at

least a nontrivial weak solution.

Proof. By (H2), dim H0 = 0, L∞|H± has a bounded inverse on H± and dim H− =
k, thus (A1), (A2) and (A3) hold. So by Theorem 2.2, Iw satisfies (PS) condition
and

Cq(Iw,∞) =

{
G, q = k,

0, q 6= k.

By (H1), dim H0 = 0, L0|H±0 has a bounded inverse on H±
0 and dim H− = j, thus

(A4), (A5) and (A6) hold. By Theorem 2.3

Cq(Iw, 0) =

{
G, q = j,

0, q 6= j.

Since k 6= j, Cq(Iw,∞) 6= Cq(Iw, 0) for some q ∈ Z, hence by Proposition 2.1,
Iw has at least a nontrivial critical point and (3.1) has at least a nontrivial weak
solution. �

Lemma 3.2. Assume that (H0), (H1), (H3) hold. Then for any w ∈ H1
0 (Ω), (3.1)

has at least a nontrivial weak solution.

Proof. By (H3), L∞|H± has a bounded inverse on H±, and dim(H− ⊕ H0) = k,
so (A1), (A2) hold. On the other hand, dim H0 > 0, but it can be checked that
‖∇φw(u)‖ ≤ C ′ for any u ∈ H1

0 (Ω) and a constant C ′ > 0, and φw(u) → −∞ with
u ∈ H0 as ‖u‖ → ∞. Indeed, by (H3), Hölder inequality and Sobolev inequality,
for any u, v ∈ H1

0 (Ω), we have

|〈∇φw(u), v〉| ≤
∫

Ω

|g(x, u,∇w)||v| dx ≤ C(
∫

Ω

|v|2)1/2 ≤ C ′‖v‖,
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where C,C ′ > 0 are constants, this implies ‖∇φw(u)‖ ≤ C ′ for all u ∈ H1
0 (Ω).

We claim that φw(u) → −∞ with u ∈ H0 as ‖u‖ → ∞. If this is not true, then
there exists a sequence {un} and constant M > 0 such that un ∈ H0, ‖un‖ → ∞
as n → ∞, and φw(un) ≥ −M . Let ũn = un

‖un‖ , then ũn ∈ H0 and ‖ũn‖ = 1. By
dim H0 < ∞, there exists a subsequence of {ũn} still denoted by {ũn}, and ũ such
that ũn converges strongly to ũ ∈ H0 as n →∞, then ũ satisfies the equation

−∆ũ = λkũ, in Ω,

ũ = 0, on ∂Ω.
(3.2)

Since ũ 6= 0, by the unique continuation property as in [10], ũ 6= 0 a.e. in Ω, which
implies un → ∞ a.e. in Ω. Hence by (H3), G(x, un(x),∇w(x)) → −∞ a.e. in Ω,
then

φw(un) =
∫

Ω

G(x, un(x),∇w(x)) dx → −∞

as n →∞, we obtain a contradiction. Therefore, (A3) holds.
Next by using the argument used in the proof of Lemma 3.1 we complete the

proof. �

Lemma 3.3. There exists a constant c1 > 0 independent of w such that ‖uw‖ ≥ c1

for all solutions uw obtained in Lemma 3.1 or Lemma 3.2.

Proof. First we decompose uw as uw = u+
w + u−w ∈ H+

0 ⊕H−
0 . Since uw is a weak

solution of the problem (3.1), one has∫
Ω

∇uw · ∇φdx =
∫

Ω

(λuw + g0(x, uw,∇w))φ dx, ∀φ ∈ H1
0 (Ω). (3.3)

Particularly, take φ = u+
w − u−w into (3.3), we have∫

Ω

∇uw · ∇(u+
w − u−w)− λuw(u+

w − u−w) dx =
∫

Ω

g0(x, uw,∇w)(u+
w − u−w) dx. (3.4)

By (H1), λj−1 < λ < λj , then we have∫
Ω

∇uw(x) · ∇(u+
w − u−w)− λuw(x)(u+

w − u−w) dx

=
∫

Ω

(|∇u+
w |2 − λ|u+

w |2)− (|∇u−w |2 − λ|u−w |2) dx

≥ (1− λ

λj
)
∫

Ω

|∇u+
w |2 dx + (

λ

λj−1
− 1)

∫
Ω

|∇u−w |2 dx

≥ m

∫
Ω

|∇uw|2 dx,

(3.5)

where m = min{(1 − λ
λj

), ( λ
λj−1

− 1)} > 0. Fix (N + 2)/(N − 2) > p > 1, by
(H1) (H2) or (H1) (H3), for any ε > 0, there exists constant kε > 0 such that
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|g0(x, t, ξ)| ≤ ε|t|+ kε|t|p. By Hölder inequality and Sobolev inequality∫
Ω

g0(x, uw(x),∇w(x))(u+
w − u−w) dx

≤
∫

Ω

(ε|uw(x)|+ kε|uw(x)|p)(|u+
w |+ |u−w |) dx

≤ ε‖uw‖L2(Ω)‖u+
w‖L2(Ω) + ε‖uw‖L2(Ω)‖u−w‖L2(Ω)

+ kε‖uw‖p
Lp+1(Ω)‖u

+
w‖Lp+1(Ω) + kε‖uw‖p

Lp+1(Ω)‖u
−
w‖Lp+1(Ω)

≤ ε

λ1
‖uw‖‖u+

w‖+
ε

λ1
‖uw‖‖u−w‖+ Ckε‖uw‖p‖u+

w‖+ Ckε‖uw‖p‖u−w‖

≤ 2ε

λ1
‖uw‖2 + 2Ckε‖uw‖p+1.

(3.6)

Combining (3.4), (3.5) and (3.6) we obtain (m− 2ε
λ1

)‖uw(x)‖2 ≤ 2Ckε‖uw(x)‖p+1.
Since m > 0, we can take ε > 0 sufficiently small such that m − 2ε

λ1
> 0, note

that p + 1 > 2, thus there exists a constant c1 > 0 independent of w such that
‖uw‖ ≥ c1. �

Proof of Theorem 1.1. First take u0 ∈ H1
0 (Ω), by Lemma 3.1 we can construct a

sequence {un} such that for n ≥ 1 un is a nontrivial solution of the equation

−∆un = f(x, un,∇un−1), in Ω,

un = 0, on ∂Ω.
(3.7)

From (3.7), un+1 and un satisfy∫
Ω

∇un+1(∇un+1 −∇un) =
∫

Ω

f(x, un+1,∇un)(un+1 − un), (3.8)∫
Ω

∇un(∇un+1 −∇un) =
∫

Ω

f(x, un,∇un−1)(un+1 − un), (3.9)

By (3.8), (3.9), (H4), Sobolev inequality, and Hölder inequality, we obtain

‖un+1 − un‖2

=
∫

Ω

(f(x, un+1,∇un)− f(x, un,∇un−1))(un+1 − un) dx

≤
∫

Ω

L(|un+1 − un|+ |∇un −∇un−1|)|un+1 − un| dx

≤
∫

Ω

L

λ1
|∇(un+1 − un)|2 dx + L(

∫
Ω

|∇(un − un−1)|2 dx)1/2(
∫

Ω

|un+1 − un|2 dx)1/2

≤ L

λ1
‖un+1 − un‖2 +

L√
λ1

‖un − un−1‖‖un+1 − un‖;

thus

‖un+1 − un‖ ≤
L
√

λ1

λ1 − L
‖un − un−1‖.

Since 0 < L
√

λ1
λ1−L < 1, {un} is a Cauchy sequence in H1

0 (Ω), so {un} converges
strongly to some u∗ ∈ H1

0 (Ω).
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We claim that u∗ is a weak solution of (1.1). Indeed for any φ ∈ C∞0 (Ω), by
(H4), ∫

Ω

(f(x, un,∇un−1)− f(x, u∗,∇u∗))φdx

≤ L‖φ‖L∞(Ω)

∫
Ω

(|un − u∗|+ |∇un−1 −∇u∗|) dx

≤ Cφ(‖un − u∗‖+ ‖un−1 − u∗‖) → 0

as n →∞; thus by Lemma 3.1,

0 = lim
n→∞

∫
Ω

∇un∇φ− f(x, un,∇un−1)φdx

=
∫

Ω

∇u∗∇φ− f(x, u∗,∇u∗)φ dx.

Hence the claim is proved. By Lemma 3.3, ‖un‖ ≥ c1; thus ‖u∗‖ ≥ c1. Therefore,
u∗ is a nontrivial weak solution of the problem (1.1). �

Proof of Theorem 1.2. By Lemma 3.2 and using the argument as used in the proof
of Theorem 1.1 we complete the proof. �

4. Examples

Consider the equation

−∆u = mu− au

1 + u2
− u3

1 + u4
sin2 |∇u|, in Ω,

u = 0, on ∂Ω,
(4.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary. Suppose
that a > 0, m − a < λk ≤ m for some k ≥ 1, m − a 6= λj for any j ∈ N, and
0 < (m+a+3)

√
λ1

λ1−(m+a+3) < 1. We will show that (4.1) has at least one nontrivial weak
solution. Let

f(t, ξ) = mt− at

1 + t2
− t3

1 + t4
sin2 |ξ|.

Then f ∈ C(R× RN , R), so (H0) holds. Let

g0(t, ξ) = at(1− 1
1 + t2

)− t3

1 + t4
sin2 |ξ|.

Then f(t, ξ) = (m − a)t + g0(t, ξ). It is not difficult to see that g0(t, ξ) = o(|t|) as
t → 0. Since m− a 6= λj for any j ∈ N, then (H1) holds. Let

g(t, ξ) = − at

1 + t2
− t3

1 + t4
sin2 |ξ|.

Then f(t, ξ) = mt + g(t, ξ). It is not difficult to see that g(t, ξ) = o(|t|) as |t| → ∞.
Note that m − a < λk ≤ m for some k ≥ 1. If m 6= λk+l for any l ≥ 0, then (H2)
holds. If m = λk+l for some l ≥ 0, then (H3) holds, in fact, since a > 0, we have

|g(t, ξ)| ≤ | at

1 + t2
|+ | t3

1 + t4
sin2 |ξ|| ≤ a

2
+ 1

and

G(t, ξ) = −
∫ t

0

as

1 + s2
ds−

∫ t

0

s3

1 + s4
sin2 |ξ|ds
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= −a

2
ln(1 + t2)− 1

4
ln(1 + t4) sin2 |ξ| → −∞

as |t| → ∞, uniformly in ξ ∈ Rn.
Finally, we show that (H4) holds. By Lagrange mean value theorem, for any

t1, t2 ∈ R, ξ1, ξ2 ∈ RN we have

|f(t2, ξ2)− f(t1, ξ1)|

= |(mt2 −
at2

1 + t22
− t32

1 + t42
sin2 |ξ2|)− (mt1 −

at1
1 + t21

− t31
1 + t41

sin2 |ξ1|)|

≤ m|t2 − t1|+
∣∣ at2
1 + t22

− at1
1 + t21

|+ |( t32
1 + t42

− t31
1 + t41

) sin2 |ξ2|
∣∣

+ | t31
1 + t41

(sin2 |ξ2| − sin2 |ξ1|)|

≤ m|t2 − t1|+ a|t2 − t1|+ 3|t2 − t1|+ 2|ξ2 − ξ1|
≤ (m + a + 3)(|t2 − t1|+ |ξ2 − ξ1|),

so (H4) holds. By Theorem 1.1 and Theorem 1.2, Equation (4.1) has at least one
nontrivial weak solution.
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