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FAST PROPAGATION FOR NONLOCAL DELAY EQUATIONS
WITH SLOWLY DECAYING INITIAL VALUES

FUGUO ZHU

Abstract. This article concerns the long time behavior of solutions to nonlo-
cal delay equations when the initial values decay slowly at infinity towards the
unstable steady state. By constructing proper auxiliary functions, it is proved
that the lower bounds of asymptotic speed for spreading is larger any given
positive constant, which implies the fast propagation.

1. Introduction

In this article, we shall investigate the initial-value problem of the following
nonlocal delay equation arising in population dynamics,

∂

∂t
u(x, t) = ∆u(x, t)− du(x, t) + b((g ∗ u)(x, t)), x ∈ R, t > 0,

u(x, s) = φ(x, s), x ∈ R, s ∈ [−τ, 0],
(1.1)

in which u(x, t) is the population density at time t at location x ∈ R, d > 0 reflects
the death rate, τ > 0 formulates the maximal maturation period of the population,
b : R+ → R+ denotes the birth function, (g ∗ u)(x, t) describes the random walk as
well as the historical effect of the individuals and is defined by

(g ∗ u)(x, t) =
∫ 0

−τ

∫
R

g(y, s)u(x− y, t + s) dy ds,

where g : R× [−τ, 0] → R+ is a probability function satisfying
∫ 0

−τ

∫
R g(y, s) dy ds =

1.
In the past decades, much attention has been paid to the dynamics of (1.1); see

for example So and Yang [18], Yi and Zou [21, 22]. To model the spatial-temporal
patterns about transition process in population invasion and epidemic spreading,
the traveling wave solutions and asymptotic spreading of (1.1) have been widely
studied in the past ten years, see Fang and Zhao [2], Li et al. [5], Liang and Zhao
[6], Ma [7], Mei et al. [9, 10], Schaaf [14], So et al. [17], Thieme and Zhao [19],
Wang et al. [20].

When b(u) is monotone, Wang et al. [20] obtained the existence, uniqueness
and asymptotic stability of traveling wave solutions of (1.1). When b(u) is not
monotone, Fang and Zhao [2] studied the existence and uniqueness of traveling
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wave solutions. In particular, the traveling wave solution grows like an exponential
function when the traveling wave coordinate goes to negative infinity, which was
proved by a Laplace transformation [2, 20]. Furthermore, the asymptotic stability
of traveling wave solutions allows us to understand the long time dynamics of (1.1)
when φ(x, s) is a spatial perturbation of the traveling wave solution in a weighted
functional space [20]. Due to the asymptotic behavior of traveling wave solutions,
these results are useful in reflecting the long time behavior of (1.1) when φ(x, s)
likes an exponential function when x → −∞. Besides the traveling wave solutions,
its asymptotic spreading has also been investigated in the past ten years, and
some results of asymptotic speed of spreading were obtained [6, 19]. These results
describe the long time behavior of (1.1) when the initial value admits nonempty
compact support.

From the viewpoint of initial value, the results mentioned above formulate the
propagation of (1.1) when the initial value decays very fast as |x| → ∞. The
purpose of this paper is the dynamics of (1.1) if the initial value decays slowly at
the infinity towards the unstable steady state 0, which is formulated as follows:

(C): lim|x|→∞ φ(x, s) = 0 holds for s ∈ [−τ, 0], and for each ε > 0, there exists
xε > 0 such that φ(x, s) ≥ e−ε|x| for |x| > xε.

For the reaction-diffusion equations with slowly decaying initial conditions, the
property has been investigated by Hamel and Roques [3], in which the comparison
principle plays a very important role. However, for the delayed model (1.1), the
technique may fail due to the possible loss of comparison principle and a famous
example is

b(u) = pue−au, p > de, (1.2)

in which all the parameters are positive. When b(u) is the above form, the cor-
responding reaction model of (1.1) is the famous Nicholson’s blowflies equation
[4, 11, 12], and we refer to Fang and Zhao [2], Li et al. [5], Ma [7] for the existence
of traveling wave solutions.

In this article, we first study the problem if b(u) is monotone increasing which
ensures the comparison principle on our desired interval. By constructing auxiliary
monotone equations, we further consider the problem if the birth function b(u) :
R+ → R+ is bounded, which is motivated by [2, 7] and Smith [15, Section 7.3].
For both cases, we obtain the estimates of lower bounds of asymptotic speed of
spreading for u(x, t). From the viewpoint of population dynamics, our results imply
that even if the initial population density decays towards 0 at the infinity, the fast
propagation still occurs in the following sense: if an observer were to move to the
right or left at any fixed speed, the local population density would be larger than
a positive constant. In other words, this also indicates that the lower bounds of
asymptotic speed of spreading of u(x, t) defined by (1.1) is larger than any given
positive constants (see Berestycki et al. [1] for an example in general domains).

The rest of this paper is organized as follows. In Section 2, we list some necessary
preliminaries. In Section 3, with the help of comparison principle, we prove the
fast propagation of u(x, t) if the birth function is monotone. By constructing two
auxiliary equations with monotone birth functions, the dynamics of (1.1) with
bounded birth function is studied in the last section.
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2. Preliminaries

In what follows, let

X = {u(x) : u : R → R is bounded and uniformly continuous}.
Then X is a Banach space with respect to the supremum norm | · |. Denote

X+ = {u : u ∈ X and u(x) ≥ 0 for all x ∈ R}.
If a < b, then

X[a,b] = {u : a ≤ u(x) ≤ b for all x ∈ R}.
At the same time, we define C : [−τ, 0] → X as a continuous map with the supremum
norm. Similarly, the mappings

C+ : [−τ, 0] → X+, C[a,b] : [−τ, 0] → X[a,b]

are continuous. Moreover, u(t) ∈ X will be interpreted as

u(t) =: (u(t))(x) = u(x, t).

For t > 0, we define T (t) : X → X as follows

T (t)u(x) =
e−dt

√
4πt

∫
R

e−
(x−y)2

4t u(y)dy, u(x) ∈ X.

Then T (t) : X → X is an analytic positive semigroup. For u(s) ∈ X, we also
denote

T (t)u(s) =: T (t)u(x, s) =
e−dt

√
4πt

∫
R

e−
(x−y)2

4t u(y, s)dy.

We now give the assumptions of b(u) and g(y, s) as follows:

(b1) for any λ > 0, c > 0,
∫ 0

−τ

∫
R g(y, s)eλ(y+cs) dy ds < ∞;

(b2) if u > 0, then b(u) > 0 is bounded;
(b3) there exists k > 0 such that b(k) = dk, b(0) = 0 and b(u) 6= du, u ∈ (0, k);
(b4) there exists k ≥ k such that b(k) = dk, b(u) 6= du, u ∈ (0, k), where

b(u) = supv∈[0,u] b(v);
(b5) there exists k ≥ k such that b(k) = dk, b(u) 6= du, u ∈ (0, k), where

b(u) = infv∈[u,k] b(v);
(b6) b′(u) exists for u ∈ [0, k] and b′(0) > d;
(b7) there exists L > 0 such that 0 < b′(0)u− b(u) ≤ Lu2, u ∈ (0, k].

Remark 2.1. If b(u) is monotone for u ∈ [0, k], then k = k = k and b(u) = b(u) =
b(u), u ∈ [0, k]. Moreover, (b2) and (b6) imply that (b3)-(b5) are well defined and
b(u), b(u) are continuous for u ∈ [0, k], we list (b3)-(b5) for the sake of convenience.

Using the theory of abstract functional differential equations established by Mar-
tin and Smith [8], we have the following result (see Smith and Zhao [16], Wang et
al. [20]).

Lemma 2.2. Assume that φ ∈ C[0,k]. Then (1.1) has a mild solution u(t) ∈ X[0,k]

for all t > 0, and u(t) is formulated by

u(t) = T (t)φ(0) +
∫ t

0

T (t− s)[(g ∗ u)(s)]ds,

which is also a classical solution satisfying (1.1) if t > τ . Moreover, if φ(0) ∈ X[0,k]

admits nonempty support, then u(t) � 0 (namely, u(x, t) > 0 for all x ∈ R, t > 0).
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When b(u) is monotone for u ∈ [0, k], the following comparison principle is true.

Lemma 2.3. Assume that φ ∈ C[0,k] holds and b(u) is monotone for u ∈ [0, k]. If
w(t) ∈ X[0,k] satisfies

w(t) ≥ (≤)T (t− s)w(s) +
∫ t

s

T (t− θ)[(g ∗ w)(θ)]dθ

for all 0 ≤ s ≤ t < t′(≤ ∞), then w(t) ≥ (≤)u(t) for all t ∈ (0, t′).
In particular, suppose that

∂

∂t
u1(x, t) = ∆u1(x, t)− du1(x, t) + b((g ∗ u1)(x, t)), x ∈ R, t > 0,

u1(x, s) = φ1(x, s), x ∈ R, s ∈ [−τ, 0],
(2.1)

and
∂

∂t
u2(x, t) = ∆u2(x, t)− du2(x, t) + b((g ∗ u2)(x, t)), x ∈ R, t > 0,

u2(x, s) = φ2(x, s), x ∈ R, s ∈ [−τ, 0].
(2.2)

If φ1, φ2 ∈ C satisfy

0 ≤ φ1(x, s) ≤ φ2(x, s) ≤ k, x ∈ R, s ∈ [−τ, 0],

then u1(x, t) ≤ u2(x, t), x ∈ R, t > 0.

Moreover, we also have the following result on the asymptotic spreading (see
Liang and Zhao [6], Thieme and Zhao [19]).

Lemma 2.4. Assume that φ ∈ C[0,k] holds and b(u) is monotone for u ∈ [0, k]. If
φ(x, 0) admits nonempty support, then limt→∞ u(x, t) = k locally uniform in x ∈ R.

For λ ≥ 0, c > 0, define

∆(λ, c) = λ2 − cλ− d + b′(0)
∫ 0

−τ

∫
R

g(y, s)eλ(y+cs) dy ds.

Lemma 2.5. There exists c∗ > 0 such that for each c > c∗, ∆(λ, c) = 0 has two
positive real roots λ1(c) < λ2(c). If λ ∈ (λ1(c), λ2(c)) holds, then ∆(λ, c) < 0.

3. Monotone birth function

In this part, we shall investigate the initial value problem (1.1) if φ ∈ C[0,k] holds
and the birth function b(u) is monotone for u ∈ [0, k]. In the remainder of this
paper, (C) will be imposed without further illustration.

For any c > c∗, Lemma 2.5 implies that there exists η ∈ (1, 2) such that

∆(ηλ(c), c) < 0.

In what follows, c, η will be fixed.

Lemma 3.1. There exists q > 1 such that

φ(x, s) ≥ max{eλ1(c)(x+cs) − qeηλ1(c)(x+cs), eλ1(c)(−x+cs) − qeηλ1(c)(−x+cs), 0}
for x ∈ R, s ∈ [−τ, 0].

Proof. If q →∞ is large, then

max{eλ1(c)(x+ct) − qeηλ1(c)(x+ct), eλ1(c)(−x+ct) − qeηλ1(c)(−x+ct), 0} > 0

implies that −|x|+ ct → −∞. By the condition (C), the lemma is clear. �
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By these constants, define continuous function

u(x, t) = max{eλ1(c)(x+ct) − qeηλ1(c)(x+ct), 0}.

Lemma 3.2. There exists q > 1 large enough such that

u(t) ≤ T (t− s)u(s) +
∫ t

s

T (t− θ)[(g ∗ u)(θ)]dθ

for all 0 ≤ s < t ≤ 1 + τ .

Proof. We now verify the inequality

u(t) ≤ T (t− s)u(s) +
∫ t

s

T (t− θ)[b ((g ∗ u)(θ))]dθ.

If u(x, t) = 0, then u(y, s) ≥ 0, y ∈ R, s ∈ [t− τ, t] and

T (t− s)u(s) +
∫ t

s

T (t− θ)[b ((g ∗ u)(θ))]dθ ≥ 0

by the positivity of T (t), which implies what we wanted.
By (b1), there exist L1 > 0, L2 > 0 such that∫ 0

−τ

∫
R

g(y, s)eλ(y+cs) dy ds = L1,

∫ 0

−τ

∫
R

g(y, s)eηλ(y+cs) dy ds = L2

and the definition of ∆(λ, c) indicates that

b′(0)L1 = d + cλ1(c)− λ2
1(c),

b′(0)L2 < d + cηλ1(c)− η2λ2
1(c) =: L3.

If u(x, t) = eλ1(c)(x+ct) − qeηλ1(c)(x+ct) ≥ 0, then the positivity of T (t) leads to

T (t− s)u(s)

=:
e−d(t−s)√
4π(t− s)

∫
R

e−
(x−y)2

4(t−s) u(y, s)dy

≥ e−d(t−s)√
4π(t− s)

∫
R

e−
(x−y)2

4(t−s)

[
eλ1(c)(y+cs) − qeηλ1(c)(y+cs)

]
dy

= e−d(t−s)+(t−s)λ2
1(c)+λ1(c)x+λ1(c)cs − qe−d(t−s)+(t−s)η2λ2

1(c)+ηλ1(c)x+ηλ1(c)cs

= eλ1(c)(x+ct)eb′(0)L1(s−t) − qeηλ1(c)(x+ct)eL3(s−t)

= I1 + I2,

where the definitions of I1, I2 are clear. From (b2) and (b7), we have∫ t

s

T (t− θ)[b ((g ∗ u)(θ))]dθ

=:
∫ t

s

e−d(t−θ)√
4π(t− θ)

∫
R

e−
(x−y)2

4(t−θ) [b ((g ∗ u)(y, θ))] dy dθ

≥
∫ t

s

e−d(t−θ)√
4π(t− θ)

∫
R

e−
(x−y)2

4(t−θ) [b′(0) ((g ∗ u)(y, θ))] dy dθ

− L

∫ t

s

e−d(t−θ)√
4π(t− θ)

∫
R

e−
(x−y)2

4(t−θ) [((g ∗ u)(y, θ))]2 dy dθ.
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By the above constants, we obtain

u(y, s) ≤ eλ1(c)(y+cs), y ∈ R, s ∈ [t− τ, t]

such that

(g ∗ u)(x, t) ≤ L1e
λ1(c)(x+ct), x ∈ R,

and ∫ t

s

e−d(t−θ)√
4π(t− θ)

∫
R

e−
(x−y)2

4(t−θ) [b′(0) ((g ∗ u)(y, θ))] dy dθ

≥ L1b
′(0)

∫ t

s

e−d(t−θ)√
4π(t− θ)

∫
R

e−
(x−y)2

4(t−θ) eλ1(c)(y+cθ) dy dθ

− qL2b
′(0)

∫ t

s

e−d(t−θ)√
4π(t− θ)

∫
R

e−
(x−y)2

4(t−θ) eηλ1(c)(y+cθ) dy dθ

= L1b
′(0)

∫ t

s

e−d(t−θ)+(t−θ)λ2
1(c)+λ1(c)x+λ1(c)cθdθ

− qL2b
′(0)

∫ t

s

e−d(t−θ)+(t−θ)η2λ2
1(c)+λ1(c)x+ηλ1(c)cθdθ

= L1b
′(0)e−dt+λ2

1(c)t+λ1(c)x

∫ t

s

edθ−λ2
1(c)θ+λ1(c)cθdθ

− qL2b
′(0)e−dt+η2λ2

1(c)t+ηλ1(c)x

∫ t

s

edθ−η2λ2
1(c)θ+ηλ1(c)cθdθ

= L1b
′(0)e−dt+λ2

1(c)t+λ1(c)x

∫ t

s

eb′(0)L1θdθ

− qL2b
′(0)e−dt+η2λ2

1(c)t+ηλ1(c)x

∫ t

s

eL3θdθ

= e−dt+λ2
1(c)t+λ1(c)x

(
eb′(0)L1t − eb′(0)L1s

)
− L2qb

′(0)e−dt+η2λ2
1(c)t+ηλ1(c)x

L3
eL3t

+
L2qb

′(0)e−dt+η2λ2
1(c)t+ηλ1(c)x

L3
eL3s

= eλ1(c)(x+ct)
(
1− eb′(0)L1(s−t)

)
− qL2b

′(0)eηλ1(c)(x+ct)

L3

+
L2qb

′(0)eηλ1(c)(x+ct)

L3
eL3(s−t)

= I3 + I4 + I5,

in which the definitions of I3, I4, I5 are clear. At the same time, we also have

− L

∫ t

s

e−d(t−θ)√
4π(t− θ)

∫
R

e−
(x−y)2

4(t−θ) [((g ∗ u)(y, θ))]2 dy dθ

≥ −LL2
1

∫ t

s

e−d(t−θ)√
4π(t− θ)

∫
R

e−
(x−y)2

4(t−θ) e2λ1(c)(y+cθ) dy dθ
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= −LL2
1

∫ t

s

e−d(t−θ)+(t−θ)4λ2
1(c)+2λ1(c)x+2λ1(c)cθdθ

≥ −L4LL2
1e

2λ1(c)(x+ct)(1− e2λ1(c)c(s−t))

≥ −L4LL2
1e

ηλ1(c)(x+ct)(1− e2λ1(c)c(s−t)) =: I6,

where the boundedness of L4 > 0 is obtained by 0 ≤ s ≤ t ≤ 1 + τ . Furthermore,
direct calculations tell us

I1 + I3 = eλ1(c)(x+ct).

Then it suffices to prove that

I2 + I4 + I5 + I6 ≥ −qeηλ1(c)(x+ct).

Let
I(t, s) = I2 + I4 + I5 + I6 + qeηλ1(c)(x+ct),

then I(t, t) = 0 for all t ∈ [0, 1 + τ ]. Moreover,

I(t, s) = −L2qb
′(0)eηλ1(c)(x+ct)

L3
− qeηλ1(c)(x+ct)eL3(s−t)

+
L2b

′(0)qeηλ1(c)(x+ct)

L3
eL3(s−t)

− L4LL2
1e

ηλ1(c)(x+ct)
(
1− e2λ1(c)c(s−t)

)
+ qeηλ1(c)(x+ct)

= −L2qb
′(0)eηλ1(c)(x+ct)

L3
+

(L2b
′(0)− L3) qeηλ1(c)(x+ct)

L3
eL3(s−t)

− L4LL2
1e

ηλ1(c)(x+ct)
(
1− e2λ1(c)c(s−t)

)
+ qeηλ1(c)(x+ct).

Clearly, I(t, s) is differentiable in s ∈ [0, t]. Denote

I7(t, s) =
q (L2b

′(0)− L3)
L3

eL3(s−t) − L4LL2
1

(
1− e2λ1(c)c(s−t)

)
.

Let q > 1 be large, then
∂I7

∂s
(t, s) < 0, s ∈ [0, t]

by L3 > L2b
′(0) and the boundedness of t− s. Moreover, it is clear that

∂I7

∂s
(t, s) = e−ηλ1(c)(x+ct) ∂

∂s
I(t, s) < 0,

which also implies that I(t, s) ≥ 0 and we complete the proof. �

Note that q is uniform for t− s ∈ [0, τ ] in the proof of Lemma 3.2, so we can fix
q > 1 satisfying Lemmas 3.1-3.2. Furthermore, for such a q > 1, we can obtain the
following conclusion by a discussion similar to the proof of Lemma 3.2.

Lemma 3.3. For each n ∈ N, u(t) ∈ X[0,k] satisfies

u(t) ≤ T (t− s)u(s) +
∫ t

s

T (t− θ)[(g ∗ u)(θ)]dθ

for all n + nτ ≤ s < t ≤ (n + 1) + (n + 1)τ.

Applying Lemma 2.3, the following result is true.

Lemma 3.4. u(x, t) ≥ u(x, t) for all t > 0, x ∈ R.
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From Lemma 3.1, we further obtain a conclusion as follows.

Lemma 3.5. For x ∈ R, t > 0, u(x, t) satisfies

u(x, t) ≥ max{eλ1(c)(x+ct) − qeηλ1(c)(x+ct), eλ1(c)(−x+ct) − qeηλ1(c)(−x+ct), 0}.

Assume that x + ct satisfies

x + ct = − ln q

(η − 1)λ1(c)
. (3.1)

Then Lemma 3.5 implies that there exist δ1 > 0, δ2 > 0 such that

u(y, s) > δ1, |x− y| ≤ δ2, t− s ∈ [0, τ ].

By Lemmas 2.3-2.4, the following holds.

Lemma 3.6. For any ε > 0, there exists T1 = T1(ε) > 0 such that

u(x, t + T ) > k − ε for any T > T1

if x, t satisfy (3.1) and t ≥ 3τ + 1.

If t = 3τ + 1 with

|x| ≤
∣∣− ln q

(η − 1)λ1(c)
− ct

∣∣, (3.2)

then the uniform continuity implies that there exist δ3 > 0, δ4 > 0 such that

u(y, s) > δ3, t− s ∈ [0, τ ], |x− y| ≤ δ4.

Applying Lemmas 2.3-2.4, u(x, t) defined by (1.1) satisfies the following property.

Lemma 3.7. For any ε > 0, there exists T2 = T2(ε) > 0 such that

u(x, t + T ) > k − ε for any T > T2

if x, t satisfy (3.2) and t = 3τ + 1.

By what we have done, we have the following result.

Theorem 3.8. For any ε > 0, there exists T3 = T3(ε) such that

u(x, t + T ) > k − ε for any |x| ≤ ct, T > T3. (3.3)

Due to the arbitrary of c, we can present the main result of this section.

Theorem 3.9. For any c1 > 0, u(x, t) satisfies

lim inf
t→∞

inf
|x|≤c1t

u(x, t) = lim sup
t→∞

sup
|x|≤c1t

u(x, t) = k. (3.4)

Proof. We now prove the result by the idea in Pan [13, Theorem 3.3]. For each
fixed c1 and ε > 0, there exists c = c1 + 1 such that

u(x, t + T ) > k − ε, |x| ≤ ct, T > T3(ε) (3.5)

by (3.3) and comparison principle.
Let c1s = ct with large t > 0, then s− t > T3(ε) and (3.5) imply that

lim inf
s→∞

inf
|x|≤c1s

u(x, s) > k − ε.

By the arbitrariness of ε and u(x, t) ≤ k, the proof is complete. �
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4. Bounded birth function

In the previous section, we investigate the dynamics of (1.1) if b(u) is monotone.
In this part, we shall establish a conclusion of (1.1) with bounded b(u).

Lemma 4.1. Assume that φ ∈ C[0,k] and u(x, t) is defined by (1.1). Let

∂

∂t
u1(x, t) = ∆u1(x, t)− du1(x, t) + b((g ∗ u1)(x, t)), x ∈ R, t > 0,

u1(x, s) = φ(x, s), x ∈ R, s ∈ [−τ, 0]
(4.1)

and
∂

∂t
u2(x, t) = ∆u2(x, t)− du2(x, t) + b((g ∗ u2)(x, t)), x ∈ R, t > 0,

u2(x, s) = φ(x, s), x ∈ R, s ∈ [−τ, 0],
(4.2)

then u1(x, t) ≤ u(x, t) ≤ u2(x, t) for all x ∈ R, t > 0.

Proof. Because of the monotonicity of b(u) and b(u) for u ∈ [0, k], then the conclu-
sion is evident by

b(u) ≤ b(u) ≤ b(u), u ∈ [0, k]
and Lemma 2.3. The proof is complete. �

Since both b(u) and b(u) are monotone in u ∈ [0, k], then Theorem 3.9 and
Lemma 4.1 imply the following result.

Theorem 4.2. For any c1 > 0, u(x, t) satisfies

0 < k < lim inf
t→∞

inf
|x|≤c1t

u(x, t) ≤ lim sup
t→∞

sup
|x|≤c1t

u(x, t) ≤ k. (4.3)

By [7, 22], we also have the following result.

Corollary 4.3. Assume that b(u) is defined by (1.2) and p/d ∈ (1, e2] holds. Then
(3.4) with k = 1

a ln p
d is true.

In fact, we can weaken the initial value condition as follows.

Theorem 4.4. If φ(s) ∈ C[0,k] and for any ε > 0, there exists xε > 0 such that

φ(x, 0) ≥ e−ε|x|, |x| > xε,

then Theorems 3.9 and 4.2 still hold.

Proof. We can verify that

u(x, t) ≥ max{eλ1(c)(x+ct) − qeηλ1(c)(x+ct), eλ1(c)(−x+ct) − qeηλ1(c)(−x+ct), 0}

for x ∈ R, t ∈ [0, 1 + τ ] and large q > 1, and the result is clear. �

Before ending the paper, we give the following remark.

Remark 4.5. Our result remains true for the model in Hamel and Roques [3], and
[3, Theorem 1.1] holds if u0(x) satisfies

u0(x) ≥ 0, lim
|x|→∞

u0(x) = 0

and for any ε > 0, there exists xε > 0 such that u0(x) ≥ e−ε|x|, |x| > xε.
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