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IRREGULAR OBLIQUE DERIVATIVE PROBLEMS FOR
SECOND-ORDER NONLINEAR ELLIPTIC EQUATIONS ON

INFINITE DOMAINS

GUO CHUN WEN

Abstract. In this article, we study irregular oblique derivative boundary-
value problems for nonlinear elliptic equations of second order in an infinite
domain. We first provide the formulation of the above boundary-value prob-
lem and obtain a representation theorem. Then we give a priori estimates of
solutions by using the reduction to absurdity and the uniqueness of solutions.
Finally by the above estimates and the Leray-Schauder theorem, the existence
of solutions is proved.

1. Formulation of the problem

Let D be an (N + 1)-connected domain including the infinite point with the
boundary Γ = ∪N

j=0Γj in C, where Γ ∈ C2
µ (0 < µ < 1). Without loss of generality,

we assume that D is a circular domain in |z| > 1, where the boundary consists
of N + 1 circles Γ0 = Γn+1 = {|z| = 1}, Γj = {|z − zj | = rj}, j = 1, . . . , N and
z = ∞ ∈ D. In this article, the notation is as the same in References [1, 2, 3, 4, 5, 6].
We consider the second-order nonlinear elliptic equation in the complex form

uzz̄ = F (z, u, uz, uzz), F = Re[Quzz + A1uz] + Â2u + A3,

Q = Q(z, u, uz, uzz), Aj = Aj(z, u, uz), j = 1, 2, 3, Â2 = A2 + |u|σ,
(1.1)

satisfying the following conditions.

Condition (C). (1) Q(z, u, w, U), Aj(z, u, w)(j = 1, 2, 3) are continuous in u ∈ R,
w ∈ C for almost every z ∈ D, U ∈ C, and Q = 0, Aj = 0 (j = 1, 2, 3) for z 6∈ D, σ
is a positive number.

(2) The above functions are measurable in D for all continuous functions u(z),
w(z) in D, and satisfy

Lp,2[Aj(z, u, w), D] ≤ k0, j = 1, 2, Lp,2[A3(z, u, w), D̄] ≤ k1, (1.2)

in which p0, p (2 < p0 ≤ p), k0, k1 are non-negative constants.
(3) Equation (1.1) satisfies the uniform ellipticity condition

|F (z, u, w, U1)− F (z, u, w, U2)| ≤ q0|U1 − U2|, A2 ≥ 0, in D, (1.3)
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for almost every point z ∈ D, any number u ∈ R, w,U1, U2 ∈ C, where q0(< 1) is
a non-negative constant.

Problem (P). In the domain D, find a solution u(z) of equation (1.1), which is
continuous in D, and satisfies the boundary conditions

1
2

∂u

∂ν
+ c1(z)u(z) = c2(z), z ∈ Γ, u(aj) = bj , j = 0, 1, . . . ,K ′, i.e.

Re[λ(z)uz] + c1(z)u = c2(z), z ∈ Γ, u(aj) = bj , j = 0, 1, . . . ,K ′,
(1.4)

where the vector ν (6= 0) can be arbitrary at every point on Γ, K ′ (= 2K−2N +J +
1 ≥ 0), J are non-negative integers as stated below, λ(z) = cos(ν, x) + i sin(ν, x) =
ei(ν,x) 6= 0, (ν, x) is the angle between ν and the x-axis, aj (∈ Γj , j = 0, 1, . . . ,K ′)
are distinct points on Γ. Suppose that λ(z), c1(z), c2(z), bj(j = 0, 1, . . . ,K ′) satisfy
the conditions

Cα[λ(z),Γ] ≤ k0, Cα[c1(z),Γ] ≤ k0, Cα[c2(z),Γ] ≤ k2,

|bj | ≤ k2, j = 0, 1, . . . ,K ′, c1(z) cos(ν, n) ≥ 0 on Γ,
(1.5)

in which α (1/2 < α < 1), k2 are non-negative constants. The boundary ∂D = Γ
can be divided into two parts, namely E+ ⊂ {z ∈ ∂D, cos(ν, n) ≥ 0, c1 ≥ 0}
and E− ⊂ {z ∈ ∂D, cos(ν, n) ≤ 0, c1 ≤ 0}, and E+ ∩ E− = ∅, E+ ∪ E− = Γ,
E+ ∩ E− = E0. For every component L = Γj (0 ≤ j ≤ N) of Γ, there are three
cases:

1. L ⊂ E+.
2. L ⊂ E−. In these cases, if cos(ν, n) ≡ 0, c1(z) ≡ 0 on Γj (1 ≤ j ≤

J, J ≤ N + 1), and the above identical formulas on Γj (J < j ≤ N + 1) do not
hold, then we need the conditions

∫
Γj

c2(z)ds = 0 (1 ≤ j ≤ J), and u(aj) = bj ,
j = 0, 1, . . . ,K ′ (≥ J), in which aj , bj (j = 0, 1, . . . ,K ′) are as stated before, and
denote Γ′ = ∪J

j=1Γj , Γ′′ = ∪N+1
j=J+1Γj .

3. There exists at least a point on each component of L+ = E+ ∩ L and L− =
E− ∩ L, such that cos(ν, n) 6= 0 at the point, and E0 ∩ L ∈ {a0, a1, . . . , aK′}, such
that every component of L+, L− includes its initial point and does not include its
terminal point; and aj ∈ L+ ∩ L− (0 ≤ j ≤ K ′), when the direction of ν at aj is
equal to the direction of L; and aj ∈ L+ ∩ L− (0 ≤ j ≤ K ′), when the direction
of ν at aj is opposite to the direction of L; and cos(ν, n) changes the sign once
on the two components with the end point aj (0 ≤ j ≤ K ′); we may assume that
u(aj) = bj , j = 0, 1, . . . ,K ′. The number

K =
1
2
(K1 + · · ·+ KN+1), Kj = ∆Γj arg λ(z), j = 1, . . . , N + 1, (1.6)

is called the index of Problem (P). We can choose K ′ = 2K − 2N + J + 1. In
the following, we shall prove the next theorem. Now we prove the uniqueness of
solutions for Problem (P) of (1.1).

Theorem 1.1. Suppose that (1.1) satisfy Condition (C). Then Problem (P) for
equation (1.1) with the condition that A3 = 0 in D, c2 = 0 on Γ and bj = 0(j =
0, 1, . . . ,K ′) has only the trivial solution.

Proof. Let u(z) be any solution of Problem (P) for equation (1.1) with A3 = 0,
c2 = 0 on Γ and bj = 0(j = 0, 1, . . . ,K ′). From Condition (C), it is easily seen that
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u(z) is a solution of the following uniformly elliptic equation

uzz̄ = Re[Quzz + A1uz] + Â2u, |Q| ≤ q0 < 1, Â2 = A2 + |u|σ ≥ 0 in D, (1.7)

and satisfies the boundary condition

∂u

∂ν
+ 2c1(z)u(z) = 0 on Γ∗, u(aj) = 0, j = 0, 1, . . . ,K ′. (1.8)

Substitute the solution u(z) into the coefficients of equation (1.7), we can find a
solution Ψ(z) of (1.7) satisfying the condition

Ψ(z) = 1 on Γ,

thus the function U(z) = u(z)/Ψ(z) is a solution of the equation

Uzz̄ = Re[QUzz + A0Uz], A0 = −2(log Ψ)z̄ + 2Q(log Ψ)z + A1, (1.9)

satisfying the boundary conditions

∂U

∂ν
+ c∗1(z)U(z) = 0 on Γ∗, U(aj) = 0, j = 0, 1, . . . ,K ′, (1.10)

where a∗1(z) = c1(z) + (∂Ψ/∂ν)/Ψ(z), c∗1(z) cos(ν, n) ≥ 0 on Γ∗.
If M = maxD U(z) > 0 in D, then there exists a point z∗ ∈ Γ such that

M = U(z∗) = maxD U(z) > 0. When z∗ ∈ Γ′, noting that cos(ν, n) ≡ 0, c1(z) ≡ 0,
∂Ψ(z)/∂ν ≡ 0 on Γ′, we have ∂U/∂ν ≡ 0, U(z) ≡ M on Γj(1 ≤ j ≤ J ′), this
contradicts the point conditions in (1.10). When z∗ ∈ Γ′′, if cos(ν, n) > 0 at z∗,
from [3, Corollary 2.11, Chapter III], we have ∂U/∂ν > 0 at z∗, this contradicts
(1.10) on Γ′′. If cos(ν, n) = 0 and c∗1(z

∗) 6= 0 at z∗, then ∂U/∂ν + c∗1(z)U 6= 0
at z∗, it is also impossible. Denote by L the longest curve of Γ including the
point z∗, such that cos(ν, n) = 0 and c∗(z) = 0, thus u(z) = M on L, from the
point conditions in (1.10), any point of T̃ = {z0, z1, . . . , zK′} cannot be an end
point of L, then there exists a point z′ ∈ Γ′′, such that at z′, cos(ν, n) > 0 (< 0),
∂U/∂n > 0, cos(ν, s) > 0 (< 0), ∂U/∂s ≥ 0, or cos(ν, n) < 0 (> 0), ∂U/∂n > 0,
cos(ν, s) > 0 (< 0), ∂U/∂s ≤ 0, hence

∂U

∂ν
= cos(ν, n)

∂U

∂n
+ cos(ν, s)

∂U

∂s
> 0, or < 0 at z′

holds, where s is the tangent vector at z′ ∈ Γ′′, and then

∂U

∂ν
+ c∗1U > 0, or

∂U

∂ν
+ c∗1U < 0 at z′,

it is also impossible. This shows that u(z) cannot attain its maximum M at a point
z∗ ∈ Γ. Similarly we can prove that u(z) cannot attain its minimum at a point
z∗ ∈ Γ, hence u(z) = 0 on Γ, thus u(z) = 0 in D. �

By a similar way as stated before, we can prove the uniqueness theorem of
solutions of Problem (P) for equation (1.1) with σ = 0 as follows.

Corollary 1.2. Suppose that(1.1) with σ = 0 satisfies Condition (C) and the
following condition, for any real functions uj(z) ∈ C1(D), Vj(z) ∈ Lp0,2(D)(j =
1, 2), the following equality holds:

F (z, u1, u1z, V1)− F (z, u2, u2z, V2)

= Re[Q̃(V1 − V2) + Ã1(u1 − u2)z] + Ã2(u1 − u2) in D,
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where |Q̃| ≤ q0 in D, A1, Ã2 ∈ Lp0,2(D). Then Problem (P) for equation (1.1) has
at most one solution.

2. A priori estimates

We consider the nonlinear elliptic equations of second order

uzz̄ − Re[Quzz + A1uz]− Â2u = A3, (2.1)

where Â2 = A2 + |u|σ, σ is a positive number, and assume that the above equation
satisfies Condition (C).

Theorem 2.1. Let (2.1) satisfy Condition (C). Then any solution of Problem (P)
for (2.1) satisfies the estimates

Ĉβ [u, D] = C1
β [|u|σ+1, D] ≤ M1, ‖u‖W 2

p0,2(D) ≤ M1,

Ĉβ [u, D] ≤ M2(k1 + k2),
(2.2)

in which k = (k0, k1, k2), β (0 < β ≤ α), M1 = M1(q0, p0, β, k, D), M2 =
M2(q0, p0, β, k0, p,D) are non-negative constants.

Proof. Using the reduction to absurdity, we shall prove that any solution u(z) of
Problem (P) satisfies the estimate

Ĉ[u, D] = C[|u|σ+1, D] + C[uz, D] ≤ M3, (2.3)

where M3 = M3(q0, p0, α, k, p,D) is a non-negative constant. Suppose that (2.3)
is not true, then there exist sequences of coefficients {A(m)

j } (j = 1, 2, 3), {Q(m)},
{λ(m)(z)}, {c(m)

j } (j = 1, 2), {b(m)
j }(j = 0, 1, . . . , N0), which satisfy the same con-

ditions of Condition (C) and (1.6)–(1.8), such that {A(m)
j } (j = 1, 2, 3), {Q(m)},

{λ(m)(z)}, {c(m)
j } (j = 1, 2) and {b(m)

j } (j = 0, 1, . . . , N0) in D,Γ weakly con-

verge or uniformly converge to A
(0)
j (j = 1, 2, 3), Q(0), λ(0)(z), c

(0)
j (j = 1, 2), b

(0)
j

(j = 0, 1, . . . , N0), and the corresponding boundary-value problem

uzz̄ − Re[Q(m)uzz + A
(m)
1 uz]− Â

(m)
2 u = A

(m)
3 , Â

(m)
2 = A

(m)
2 + |u|σ, (2.4)

and
1
2

∂u

∂ν
+ a

(m)
1 (z)u = c

(m)
2 (z) on Γ, u(aj) = bj , j = 0, 1, . . . , N0, (2.5)

have the solutions {u(m)(z)}, where Ĉ[u(m)(z), D] (m = 1, 2, . . . ) are unbounded.
Hence we can choose a subsequence of {u(m)(z)} denoted by {u(m)(z)} again, such
that hm = Ĉ[u(m)(z), G] →∞ as m →∞. We can assume hm ≥ max[k1, k2, 1]. It
is obvious that ũ(m)(z) = u(m)(z)/hm (m = 1, 2, . . . ) are solutions of the boundary-
value problems

ũzz̄ − Re[Q(m)ũzz + A
(m)
1 ũz]− Â

(m)
2 ũ = A

(m)
3 /hm, (2.6)

and

1
2

∂ũ

∂ν
+ c

(m)
1 (z)ũ = c

(m)
2 (z)/hm on Γ, ũ(aj) = b

(m)
j , j = 0, 1, . . . , N0. (2.7)
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We can see that the functions in the above equation and boundary conditions satisfy
condition (C), (1.6)–(1.8), and

|u|σ+1/hm ≤ 1, Lp,2[A
(m)
3 /hm, D] ≤ 1,

|c(m)
2 /hm| ≤ 1, |b(m)

j /hm| ≤ 1, j = 0, 1, . . . , N0,
(2.8)

hence from [3, Theorem 4.10, Chapter III], we obtain the estimate

Ĉβ [ũ(m)(z), D] ≤ M4, ‖ũ(m)(z)‖W 2
p0,2(D) ≤ M4,

in which M4 = M4(q0, p0, β, k, D) is a non-negative constant. Thus from the se-
quence of functions {ũ(m)(z)}, we can choose the subsequence denoted by {ũ(m)(z)},
which converges uniformly to ũ(0)(z) in D, and their partial derivatives ũ

(m)
x , ũ

(m)
y

in D are uniformly convergent and ũ
(m)
xx , ũ

(m)
yy , ũ

(m)
xy in D weakly convergent. This

shows ũ0(z) is a solution of the boundary-value problem

ũ0zz̄ − Re[Q(0)ũ0zz + A
(0)
1 ũ0z]− Â

(0)
2 ũ0 = 0, (2.9)

and
1
2

∂ũ0

∂ν
+ c

(0)
1 (z)ũ0 = 0 on Γ, u0(aj) = 0, j = 0, 1, . . . , N0. (2.10)

We see that (2.9) possesses the condition A
(0)
3 = 0 and (2.10) is the homogeneous

boundary condition. On the basis of Theorem 1.1, the solution satisfies ũ0(z) = 0.
However, from Ĉ[ũ(m)(z), D] = 1, we can derive that there exists a point z∗ ∈ D,
such that [|ũ0(z)|σ+1 + |ũ0z|]z=z∗ 6= 0, which is impossible. This shows the first
of two estimates in (2.2) is true. It is not difficult to verify the third estimate in
(2.2). �

3. Solvability

By the above estimates and the Leray-Schauder theorem, we can prove the exis-
tence of solutions of Problem (P) for equation (1.1). We first introduce the nonlinear
elliptic equation of second order

uzz̄ = fm(z, u, uz, uzz), fm(z, u, uz, uzz)

= Re[Qmuzz + A1muz] + Â2mu + A3 in D,
(3.1)

with the coefficients

Qm =

{
Q in Dm

0 in C \Dm

Ajm =

{
Aj in Dm

0 in C \Dm

j = 1, 3,

Â2m =

{
Â2 in Dm

0 in C \Dm

where Dm = {z ∈ D : dist(z,Γ ∪ {∞}) ≥ 1/m}, m is a positive integer.

Theorem 3.1. If (3.1) satisfies Condition (C), and u(z) is any solution of Problem
(P) for equation (3.1), then u(z) can be expressed in the form

u(z) = U(z) + ṽ(z) = U(z) + v̂(z) + v(z),

where ṽ(z) = v̂(z) + v(z) is a solution of (3.1) with the homogeneous Dirichlet
boundary condition

ṽ(z) = 0 on ∂D0 = {|z| = 1}. (3.2)
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Here

v(z) = Hfm =
2
π

∫ ∫
D0

fm(1/ζ)
|ζ|4

ln
∣∣1− ζz

ζ

∣∣dσζ ,

in which D0 is the image under the mapping z = 1/ζ, U(z) is a solution of the
Dirichlet boundary-value problem for Uzz̄ = 0 in D, and U(z) and ṽ(z) satisfy the
estimates

Ĉ1
β [U,D] + ‖U |W 2

p0,2(D) ≤ M5, Ĉ1
β [ṽ, D0] + ‖ṽ‖W 2

p0,2(D0) ≤ M6, (3.3)

where β(> 0), Mj = Mj(q0, p0, β, k, Dm) (j = 5, 6) are non-negative constants.

Proof. It is clear that the solution u(z) can be expressed as before. On the basis
of Theorem 2.1, it is easy to see that ṽ satisfies the second estimate in (3.3), and
then we know that U(z) satisfies the first estimate of (3.3). �

Theorem 3.2. If (1.1) satisfies Condition (C), then Problem (P) for equation
(1.1) has a solution.

Proof. To prove the existence of solutions of Problem (P) for (3.1) by using the
Leray-Schauder theorem, we introduce the equation with the parameter t ∈ [0, 1]:

Vzz̄ = tfm(z, u, uz, (U + V )zz) in D. (3.4)

Denote by BM a bounded open set in the Banach space B = Ŵ 2
p0,2(D0) = Ĉ1

β(D0)∩
W 2

p0,2(D0)(0 < β ≤ α), the elements of which are real functions V (z) satisfying the
inequalities

Ĉ1
β [V (z), D0] + ‖V ‖W 2

p0,2(D0) < M7 = M6 + 1, (3.5)

in which M6 is a non-negative constants as stated in (3.3). We choose any function
V (z) ∈ BM and make an integral v(z) = Hρ as follows:

v(z) = Hρ =
2
π

∫ ∫
D0

ρ(1/ζ)
|ζ|4

log
∣∣∣∣1− ζz

ζ

∣∣∣∣dσζ , (3.6)

where ρ(z) = Vzz̄. Next we find a solution v̂(z) of the boundary-value problem in
D0:

v̂zz̄ = 0 in D0, (3.7)

v̂(z) = −v(z) on ∂D0. (3.8)

Denote ṽ(z) = v̂(z)+v(z). Moreover we find a solution U(z) of the boundary-value
problem in D:

Uzz̄ = 0 in D, (3.9)
1
2

∂U

∂ν
+ c1(z)U = c2(z)− ∂ṽ

∂ν
− c1(z)ṽ on Γ. (3.10)

Now we discuss the equation

Ṽzz̄ = tfm(z, u, uz, Uzz + ṽzz), 0 ≤ t ≤ 1, (3.11)

where u(z) = U(z) + ṽ(z). By Condition (C), the principle of contracting mapping
and the results in Subsection 3.2, Problem (D) for the equation (3.11) in D0 has a
unique solution Ṽ (z) with the boundary condition

Ṽ (z) = 0 on ∂D0.
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Denote by Ṽ = S(V, t) (0 ≤ t ≤ 1) the mapping from V onto Ṽ . Furthermore, if
u(z) is a solution of Problem (P) in D for the equation

uzz̄ = tfm(z, u, uz, uzz), 0 ≤ t ≤ 1, (3.12)

then from Theorem 2.1, the solution u(z) of Problem (P) for (3.12) satisfies (2.2),
consequently Ṽ (z) = u(z)−U(z) ∈ BM . Set B0 = BM × [0, 1]. In the following, we
shall verify that the mapping Ṽ = S(V, t) satisfies the following three conditions of
Leray-Schauder theorem:

1. For every t ∈ [0, 1], Ṽ = S(V, t) continuously maps the Banach space B into
itself, and is completely continuous in BM . Besides, for every function V (z) ∈ BM ,
S(V, t) is uniformly continuous with respect to t ∈ [0, 1].

In fact, we arbitrarily choose Vn(z) ∈ BM , n = 1, 2, . . . . It is clear that from
{Vn(z)} there exists a subsequence {Vnk

(z)}, such that {Vnk
(z)}, {Vnkz(z)} and

corresponding functions {Unk
(z)}, {Unkz(z)} uniformly converge to V0(z), V0z(z),

U0(z), U0z(z) in D respectively. We can find a solution Ṽ0(z) of Problem (D) for
the equation

Ṽ0zz̄ = tfm(z, u0, u0z, U0zz + ṽ0zz), 0 ≤ t ≤ 1.

Noting that unkzz̄ = Unkzz̄ + ṽnkzz̄, from Ṽnk
= S(Vnk

, t) and Ṽ0 = S(V0, t), we
have

(Ṽnk
− Ṽ0)zz̄ = t[fm(z, unk

, unkz, Unkzz + ṽnkzz)

− fm(z, unk
, unkz, Unkzz + ṽ0zz) + Cnk

(z)], 0 ≤ t ≤ 1,

where

Cnk
= fm(z, unk

, unkz, Unkzz + ṽ0zz)− fm(z, u0, u0, U0zz + ṽ0zz), z ∈ D0.

Similarly to [6, (2.4.18), Chapter 2], we obtain

Lp0,2[Cnk
, D0] → 0 as k →∞.

Similarly to (2.2)–(2.10), we obtain

‖Ṽnk
− Ṽ0‖Ŵ 2

p0,2(D0)
≤ Lp0,2[Cnk

, D0]/[1− q0], (3.13)

where q0 < 1. It is easy to show that ‖Ṽnk
− Ṽ0‖Ŵ 2

p0,2(D) → 0 as k →∞. Moreover,

from Theorem 2.1, we can verify that from {Ṽnk
(z) − Ṽ0(z)}, there exists a sub-

sequence, denoted by {Ṽnk
(z) − Ṽ0(z)} again, such that C1

β [Ṽnk
− Ṽ0, D0] → 0 as

k →∞. This shows that the complete continuity of Ṽ = S(V, t)(0 ≤ t ≤ 1) in BM .
By using a similar method, we can prove that Ṽ = S(V, t)(0 ≤ t ≤ 1) continuously
maps BM into B, and Ṽ = S(V, t) is uniformly continuous with respect to t ∈ [0, 1]
for V ∈ BM .

2. For t = 0, from Theorem 2.1 and (3.5). It is clear that Ṽ (z) = S(V, 0) ∈ BM .
3. From Theorem 2.1 and (3.5), we see that Ṽ = S(V, t)(0 ≤ t ≤ 1) does not

have a solution Ṽ (z) on the boundary ∂BM = BM \BM .
Hence by the Leray-Schauder theorem, we know that Problem (P) for the equa-

tion (3.4) with t = 1, namely (3.1) has a solution u(z) = U(z) + ṽ(z) = U(z) +
v̂(z) + v(z) ∈ BM . �

Theorem 3.3. Under the conditions in Theorem 3.1, Problem (P) for equation
(1.1) has a solution.
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Proof. By Theorems 2.1 and 3.2, Problem (P) for the equation (3.1) possesses a
solution um(z), and the solution um(z) of Problem (P) for (3.1) satisfies the estimate
(2.2), where m = 1, 2, . . . . Thus, we can choose a subsequence {umk

(z)}, such
that {umk

(z)}, {umkz(z)} in D uniformly converge to u0(z), u0z(z) respectively.
Obviously, u0(z) satisfies the boundary conditions of Problem (P) for equation
(1.1). �

We can choose K ′ = 2K − 2N + J + 1. By using the similar method as Section
1-3, we can prove the following theorem.

Theorem 3.4. Under the above conditions, Problem (P) for the equation (1.1) has
a solution. Moreover we have the solvability result of Problem (P) for (1.1) with
the boundary condition

1
2

∂u

∂ν
+ c1(z)u(z) = c2(z), z ∈ Γ.

When K ≥ N − 1/2, the general solution includes K ′ + 1 = 2K − 2N + 2 + J
arbitrary real constants.
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