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GROWTH OF ENTIRE SOLUTIONS OF SINGULAR
INITIAL-VALUE PROBLEM IN SEVERAL COMPLEX
VARIABLES

DEVENDRA KUMAR, MOHAMMED HARFAOUI

ABSTRACT. In this article, we characterize the order, type, lower order, and
lower type of entire function solutions to a class of singular initial-value prob-
lems, in terms of multinomials for n > 2.

1. INTRODUCTION

Let z; = x; + iy; denote a complex variable, 1 < j < n. Let z = (21,..., %),
2% = szl, ..., 22kn where k is the vector (ki, ..., k,) with k; a nonnegative integer

(j =1,...,n) and let ||k|| = k1 + -+ + k. Let ¢(2) be an entire function of

22 ...,22 in a domain D that includes the origin and let Aj = Dzj + %Dzj,ozj >
J
0,j =1,...,n. Also,let a > -l ande; =1ifj =1,...,m and ¢; = -1 if

j=m+1,...,n. Now consider the representations of an entire function solutions
of the problem

(th + %Dt>u(z,t) = iejAju(z,t) (1.1)

with initial data
u(z,0) = ¢(z), wu(2,0)=0

in terms of a set of associated multinomials { R (z,t)} throughout (z,t) space, t real.
These multinomials are solutions of corresponding to the choice of ¢(z) = 22*
in .

Let G be a region in R™ (positive hyper octant) and let Gg C C™ denote the
region obtained from G by a similarity transformation about the origin, with ratio
of similitude R.

Definition 1.1. Let ¢(z) = ZﬁZu:o apz2F» be an entire function of several complex
variables. Then ¢(z) is of growth (p,T) if
12|

T = limsup “—=[|az|d (G)]P/ 121 (0 < p < 00) (1.2)
Ikl —oo  €P
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where

dp(G) = %leac};{(R%); R%* = g2k R0,

This implies the existence of a positive constant M such that
6(2)] < MeTI*1” vz e Cm.

Using ([1.2)), for each ¢ > 0 there exists a positive integer kg such that if k > ko,
then

ep(T + €) |12kl /rho
|lak|de(G) < [W] . (1.3)
We can easily estimate, from [I} (4.14)], that
Ri(2,1)] < (“L;H)"Qk"/rh"ﬂ(p, T)e-I2MI/p KIS TSP (g g
p

where -
M(p,T) = / et dg,
0

and K is the sum of the absolute values of the coefficients of multinomial and
M(p,T) is a generic constant depending only on the p;s and T}s.
Now let

oo

u(z7t>: Z akRk(Zat)
lIk[|=0
or
N 0o
lu(z,0)] < > lakl[Re(z 0+ Y lal[Re(z, 1) (1.5)
[Ik|l=0 lk|l=N+1

Using the bound (1.5)) on |Ry(z,t)| and the estimate on |ag|di(G) from (1.3)), we
see that the bound on second sum in (|1.5) is given by

di.(G)

oo
K. T) I+ Ty125 19 Z T-l-E)”%H/P
|kll=N+1
Since the series of constants in (1.5 converges, it follows that the series u(z,t) =
ZT\ZH:O ayR¥(z,t) converges for all n complex variables (z1, ..., z,) and real ¢ and

uniformly so in compact subsets of (z,t) space.
Now we can establish a theorem.

Theorem 1.2. Let ¢(z) = Zﬁzllzo arz2¥ L 22k be entire in (22,...,22) and
converge in a domain G, : z € C";|z|* = max;<j<y, |2;|* < R*, R > 0 is a fized pos-
itive real. Then the series u(z,t) = Zﬁin:o ar Ry (z,t) converges for all n-complex

variables (z1,. .., 2zn) and real t and uniformly so in compact subsets of (z,t) space.
Bragg and Dettman [2] proved the following theorem.

Theorem 1.3. Let ¢(z) = ZT\ZH:O arpx?® be analytic in (¥2,...,22) and converge

in a domain D that includes the origin. Then the series ZﬁzH:O ar Py (x,t) con-
verges to an analytic solution of the problem (1.1) replacing z by xz, at least in
region S where S is defined by (x,t) € S if and only if

1/2
.

1/2
1| 4 [t ]+ [, (220 +2)2 (@2 +82) P €D (16)
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We shall proceed to the complex transformation of above Theorem A in the
following manner.

Let (21,...,2,) be an element of C" and R?", the space of real coordinates.
The transformation from real to the complex coordinates are given by z;, = 222k
Y = “2;3’“ We equip C" with the Euclidean metric of R2";

)

ds = (daf +dy}) = dz.dz,.
k=1 k=1
Let 2z be a point on the domain G for which |ay Ry (zk,0)| = sup,, cq,, lax R

(2%,0)| = Ck. By a rotation, we can assume that 2 = (27,0,...,0). Iff(w) =

f(w?,0,...,0) and f(w) = 3,2, aw? is the Taylor series expansion of f at the
origin, then |akxik} = C} and therefore we have the following theorem.

Theorem 1.4. Let ¢(z) = ZT\ZH:O arpz?* be entire in (2%,...,22) and converge in

a domain Gg that includes the origin. Then the series u(z,t) = Z(I)\;IHO ar Ry (z,1)
converges to an entire solution of the problem (L.1)) at least in a region S where S

is defined by (z,t) € S if and only if
21| + [t - s |zm + [ty (22044 + )2 (22 + )Y e Gy,

Let ¢(2) = Zﬁu:o arz?* be the power series expansion of the function ¢(z).
Then the maximum modulus of u(z,t) and ¢(z) are defined as in complex function
theory [15 pp. 129, 132],

Mra(R) =
r.c(R) = max |f(2)],
M, s(R) = ).
§(R) = max |u(z?)]

Following the usual definitions of order and type of an entire function of n-complex

variables (2%,...,22), the order p and type T of u(z,t) are defined as in [4]

loglog M, s(R)

u) = limsu , 1.7

p(u) n sup log B (1.7)
log M,

T(u) = limsup log Mu5(R) (1.8)

Rp(u)

R—o0

In this paper we characterize the order, lower order, type and lower type of en-
tire function solutions of problem in terms of a set {Ry(2,t)} of multinomials
for n > 2. Multinomials of this type have been constructed by Miles and Yong
[12] when z = z and m = n or m = 0. In these cases reduces to either the
generalized Euler-Poisson-Darboux or the generalized Beltrami equation. Gilbert
and Howard [B, [6] discussed analyticity properties of solutions of special cases of
(1.1). Bragg and Dettman obtained representation of analytic solutions of problem
(1.1) for z = x in terms of these multinomials for n > 2 [2] and for n = 1 in [3].
It has been found [2] that Ry(z,t),n > 2, can be expressed as a convolution of
n polynomials Ry, (x;,t),j = 1,...,n. For n = 1 the corresponding Ry (z,t) are
defined in terms of Jacobi polynomials. The Growth estimates for the solutions
of in terms of multinomials Rj(z,t) for n > 2 then permit the obtaining of
global region of convergence from acknowledge of singularities of the given data
function ¢(z). It should be noted that the function ¢(z) is the analytic continua-
tion of its restriction to the axis of symmetry; i.e., ¢(z) = u(z,0). Using various
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techniques, the characterizations of order and type of entire function solutions of
similar problems were obtained by McCoy [I3] 14] Kumar [8, 9, [10] and others for
n = 1. However, non of them have considered the case for n > 2.

2. AUXILIARY RESULTS

In this section we shall prove some auxiliary results which will be used in the
sequel.

Lemma 2.1. Ifu(z,t) = Zﬁznzo arRi(z,t) is an entire function solution of prob-
lem (L.1)) in terms of a set {Rk(z,t)} of multinomials corresponding to given data
function ¢(z) = Zﬁzu:o apz?F in . ) then ¢ and ¢* are also entire functions of

n—complex variables (23,...,22). Further,
[N(e)] 7' My,c(R) < My,5(c™" R) < CMy- (R) (2.1)
where
o) = > |ak|{H JE RN
ll%l1=0 j=1

N(e) =sup{N(ee?,£):0< 9 <2m,-1<E<1,0<e <1}

and C' is a constant.

Proof. From Theorem 1.1 and 1.2, bearing in mind with the relation of [2] (3.1)],
we obtain

e 3 oafe () (T 2 )

lI+]1=0
2%k - k?jkj! 2 2\k;
i k]{j—gﬂ G EACE IR

where ¢; = max((o; —1)/2,((a+1)/2n) —1,-1/2), j=m+1,...,n
Using the relation I'(z + a)/Tx ~ 2 as  — oo, we have

@
F(kj + (aj + 1)/2) ~ (k‘] _ 1/2)((1]4-2)/2’ 'l{;jJ kj' ~ kt_lj+1(kj)(a+1)/2n,
T(k; —1/2) Tk; + &t
and we see that there exist constants C,p1,...,p, with p; = p;(a;),j=1,...,m

and p; = pj(aj,a,n) for j =m+1,...,n such that
u(z ) < D2 laglOf TR Jal+ 1) ... (J2m] + [t) %
IKlI=0 =1 (2.2)
X (2241 +t3)Fmer (22 4 17)Rn

Now, [¢(2)] < Xoj=o larllz1]* ... |20 [*"", the series (2.2) converges for 2 € Gp.
But for z € GR, the series

Z |ak|{ Hkp]}|21|2kl -~-|Zn|2kn

ll%(1=0 J=1
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also converges. By Theorem 1.2, if ¢(z) is entire in (27,...,22), then u(z,t) con-
verges to an entire solution of problem (1.1)). We see that
lim [ a| H p”] iz = lim |ay] TR — (),
ll%ll—o0 Ikll—o0 ™

Hence both ¢ and ¢* are entire.

Using (2.2)) we obtain

R<c Y |ak|{ IR }R%n = CMy o(R) (2.3)

lIkI=0 =1

where

¢*(2) = Zw{ﬂkf’f}%,.. 22k,

ll%l1=0 J=1

Now for reverse relation, we have

E akz%1 z

ll&ll=0
SEDS |ak|{Hk§“}|zﬂ2’“. 2l
Ikll 0
-y |ak|{H'f”f} 21+ [0 {J2m] 4 [1]}2
llll=0
r 1 97 2km+1 2kn
(i) ) ]

r 2kq 2km

B CTIR N
21| + It |zm | + |t

o | Jzmnl 2 |20 2
[ (22,41 +12)1/2 Tl ez

This relation is valid globally, and leads to the estimates

R = e (Y
|¢(Z)| < Mu,S(R)N(E)7E - (‘Z|/R) B 1rélja§Xn ( Rj ) ’

N(e) = sup{|N(ee®?,€)|: 0< 0 < 2m, -1 <€ < 1}.
For z = eRe' (e real, 0 < ¢ < 1}, we have
My a(eR) < M, s(R)N(e)
or
[N()] " My.c(R) < My s(e'R). (2.4)
Combining (2.3]) and (2.4)) we obtain (2.1). O

Lemma 2.2. Let u(z,t) be an entire function solution of (1.1 in terms of a set
{Ri(z,t)} of multinomials corresponding to given data function ¢(z) in (1.1). Then
the orders and types of u(z,t) and ¢ respectively are identical.
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Proof. Let ¢(z) = 37\ =0 apz2* .. 2%k be an entire function of order p(¢) and
type T'(¢). Then it is well known [7, Thm. 1] that

pT— I -
p(¢) 71Hk\|—’010){ “log ax] 1, (2.5)
(ep(#)T())"?) = Tim sup { |2k ||/ * )| ag|dy(G)] /171, (2.6)

k]| —o0

Hence for the function ¢*(z) = Z\CﬁcH:O |a| {H kpj} 2k 22kn e have

J=1"%j

1 . ogflax| TT5_, k57171

= limin

p(¢*)  likl—oo  2[|k| log ||k
log |ax| ™! —log[[T}_, &}’

= liminf
ikl o0 2||k(| log || %||
—1
= lim inf log Jay|

Ikl —oo 2[|K|| log ||k

Hence p(¢) = p(¢*). Since ¢ and ¢* have same order, using we can easily
show that T'(¢) = T'(¢*).

Now using the relation with the definitions of order and type given by (1.7 .
and (| , the proof is complete

Lemma 2.3. If |ag|/|ax|, ||K']| = ||k|| + 1, forms a non-decreasing function of k
then |Bk|/|Bk| also forms a non-decreasing function of k, where

m

= anfr (S0 I T v - 2y}
j=1

ﬁ k(lq]‘+1+(a+l)/2n)}.
J

j=m+1

Proof. We have

ﬁ a-+1 29n gn—m m v
||5:/|| = ou{r ( 2n ) bt H ke (ky — 1/2)C2/2)
{H] . k;b+1+(a+1)/zn}

X
ap {1 (552) ) 22 (T Gy + 1) (k4 3) 727
1

X {Hn kq]+1+(a+1)/2n}
Jj=m+1"j

(2 +2)/2 (g;+1+(a+1)/2n)
_ Ty ks (ks — 5)' (T s B }
appr TTTmy (ks + 1) (kj + 1/2)(0a 4272 TT0_ L (kj + 1) (@ 1H(ed1)/20)°

Let

a i+1+(a+1)/2n
H] EZ1C *)( it2)/2 HJ m+1 x§q (att)/zn)

H;.n:l(xj +1)(x; + §)(@t+2)/2 Hj:mﬂ(x] +1)(a5+14(a+1)/2n)

G(z) =
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log G(x Zlog iz —1/2)@5+2/2] 4 Z log o (1 (@+D)/20)
Jj=m+1
- Zlog xj+ 1) (z; + )(%“)/2 Z log(x; + 1) F1+(at)/2n)
J=1 j=m+1

By logarithmic differentiation, we obtain

G'(z) B m i (a; +2) n g +1+ (a;T-LI)
Gla) ‘;(m* @ 1>>+ 2 T

J | j=m+1 J

1 J 2
m

>

Jj=1

n (a+1)

2
j+12 +) Pttt z;+1

Let
(a+1)

m
1 (Oé +2 qj+1+
t(x;) = 7+J7_~_ 2 - 2
J ; vy 2z — 5) i %;H x;

Then t(z;) — t(xj41) > 0 for any z; > 0. Hence t(z;) is decreasing function and
subsequently G’ (z;) > 0 for z; > 0. Hence |81|/|5y | is non-decreasing if |ax|/|a, |
is non-decreasing. O

3. MAIN RESULTS
Theorem 3.1. Let u(z,t) be an entire function converges to solution of problem

corresponding to given data function ¢(z) in . having order p(u). Then

: ||2k||10g||k\|

p(u) = limsup —————— 3.1

() = g3 31)
where By, is given by (2.7)).

Proof. Tt is well known [7, Thm. 1] that if f(z) = Z‘TZ”:O arpz?* be an entire
function of order p(f) then

12k log |[%[|

= limsu 3.2
p(f) i sup ] (32)
Hence for the function u(z,0) = 37|, B2k 22kn | we have
U ninr o8 16|
p(u)  |Ikll—oc [|2k] log ||2K||
_ +1 n on gn—m 7
= liminf log Jax| - log [{F ((GQ” )) } - 5”/2 {HJ 1k§) }]
[kl —o0 |2k || log || 2k ||
S ) e (|
— imin log |ag| T/ J=1"j
koo [[2%] log [2&] log |2k ||
= liminf 70g s '
h—oo 2% ] log [12%]
O

Now using (3.2 for data function ¢(z), we get the required results.
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Theorem 3.2. Let u(z,t) be an entire function converges to solution of (1.1)
corresponding to given data function ¢(z) in . 1.1)) having type T'(u). Then

(ep(u)T(u)) /7 = limp {||2k|\1/p(“) [18elr (@)1} (0 < plu) < o0).

Proof. For an entire function f(z) = Z\TZH:O apz?*, Gol'dberg [7l, Thm. 1] obtained
type in terms of the coefficients of its Taylor series expansion as

(ep(HT(F)Y7D = timsup { |12K][/7[laxldy (G)] /124, (0 < p(f) < 00)} . (3.3)

]| —o0
It can be seen that
[18xldi (@)1 — Tlag|dip(G)]V I as k]| — oo (3.4)
Hence the result follows by using (3.3]) for data function ¢(z) and taking into account
the equation (3.4)). O

In analogy with the definitions of order p(u) and type T (u), we define lower order
A(u) and lower type t(u) as
loglog M, s(R)
Auw) = liminf —=———=~—~
() = }R—uxa log R
R T IOg Mu,S (R)
t(u) = hRHi)loréf J0)
Theorem 3.3. Let u(z,t) be an entire function converges to the problem (1.1
corresponding to data function ¢(z) in . 1.1)) having lower order A\(u). Then

,0 < p(u) < oo.

¢ [12k] log || 2k|]
Au) >1 —_— 3.5
(u) 2 \|k|\ﬂoo — log | Bk| (3:5)
Also if |Bk|/|8k|, where |E'|| = ||k|| + 1, is a non-decreasing function of k, then

equality holds in (3.5)).

Proof. For entire function f(z) = 375, arzit 22k if Jag|/|ag| forms a non-

decreasing function of k then we have [I1, Thm. 1]

A(f) = limin W.

3.6
Hku%o log |az|~* (3.6)

Let |Bk|/|Bk/| forms a non-decreasing function of k for k > ky. Applying Lemma
2.3 and (3.6) to u(z,0) = Zﬁzu:o Brz2k1 . 22kn  we obtain

1 Ly log |ax| ™ — log [C | kfﬂ} y log |ax| !
= lim sup =limsup —————
Au) ([l — o0 [12k|| log |2k || Ikll—oo lI2K( log [|2K]]

Then A(u) = A(¢). O

In a similar manner we can prove the following theorem.
Theorem 3.4. Let u(z,t) be an entire function converging to a solution of (1.1))
corresponding to data function ¢(z) in . having lower type t(u). Then

) > timint 1281

(u)/l12k]|
Hkl\—wo ep(u) 181" 3.7

Also, if |Br|/|Br|, where |[K'|| = ||k|| + 1, is a non-decreasing function of k > ko,
then equality holds in (3.7)).
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