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PERIODIC SOLUTIONS FOR P-LAPLACIAN NEUTRAL
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MULTIPLE
DEVIATING ARGUMENTS

AOMAR ANANE, OMAR CHAKRONE, LOUBNA MOUTAOUEKKIL

ABSTRACT. By means of Mawhin’s continuation theorem, we prove the ex-
istence of periodic solutions for a p-Laplacian neutral functional differential
equation with multiple deviating arguments

(op(2'(t) — c(t)2’(t = 7))’
= f(@®)z'(t) + g(t, (t), x(t — 71(), ..., 2(t — m (1)) + e(t).

1. INTRODUCTION

In recent years, periodic solutions involving the scalar p-Laplacian have been
studied extensively by many researchers. Lu and Ge [4] discussed sufficient condi-
tions for the existence of periodic solutions to second order differential equation,
with a deviating argument,

2(t) = f(t,z(t), x(t — 7(2)),2'(t)) + e(t).
Recently, Pan [5] studied the equation

2™(t) = i bz (1) + f(t,2(t), 2(t = 7a(t)), ..., 2(t — T (1)) + p(2).
i=1

Feng, Lixiang and Shiping [2] investigated the existence of periodic solutions for a
p-Laplacian neutral functional differential equation

(op(a(t) — c(t)a’(t = 1)) = fx(t)2’ (t) + Bt)g(x(t — (1)) + e(t),
where ¢(t) and ((t) are allowed to change signs.
The purpose of this article is to study the existence of periodic solution for
p-Laplacian neutral functional differential equation

(p(2'(t) — c(t)a’(t — 1))’ 1)
= fx(®)2'(t) + g(t, x(t), x(t = 71(1)), .., 2(t — 7 (1)) + €(t)- '

Where p > 1 is a fixed real number. The conjugate exponent of p is denoted by

q; i.e., % + % = 1. Let ¢, : R — R be the mapping defined by ¢, (s) = |s|P72s
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for s # 0, and ¢,(0) = 0, f,e,c € C(R,R) are continuous T-periodic functions
defined on R and T'> 0 , » € R is a constant with » > 0, g € C(R™*2 R) and
gt + Toug, v, -y Uum) = gt ug, Uty ..., Unm), for all (t,ug,ui, ..., uy) € RMT2
7, € C(R,R)(i =1,2,...,m) with 7;(¢t + T) = 1(1).

2. PRELIMINARIES

For convenience, define Cr = {x € C(R,R) : (¢t + T) = z(t)} with the norm
|7|oo = max |z(t)];cjo,r). Clearly Cr is a Banach space. We also define a linear
operator

A:Cp —Cp,  (Az)(t) = 2(t) — c(t)a(t —r), (2.1)
1 if 1 <2
and constant Cp, = - ?f ig <2,
I p .

To simplify the studying of the existence of periodic solution for (L.1)) we cite
the following lemmas.

Lemma 2.1 ([2]). Let p €]1,400[ be a constant, s € C(R,R) such that s(t +T) =
s(t), for all t € [0,T]. Then for for all u € CY(R,R) with u(t +T) = u(t), we have

te[0,T

/ |u(t) —u(t — s(t))|Pdt < 2( max \s(t)|)p/ [u/ (t)|Pdt.
0 0

Lemma 2.2 ([2]). Let B :Cpr — Cr, (Bz)(t) = c(t)x(t — r). Then B satisfies the
following conditions
(1) 1B] < felo-
(oD \BI2) (1) [Pdt) /P < |elio (fo |=(t)|Pdt) /P, V€ Cr,p>1, j > 1.

Lemma 2.3 ([2]). If |c|oo < 1, then A, defined by ([21)), has continuous bounded
inverse A™' with the following properties:

1) A7 < 1/(1 = leloc),
()( 1f)( f) + 3252 1H et —(i—1)r)f(t—jr), for all f €Cr,
fo (t)Pdt < (1= ‘C‘m fo |F(®)|Pdt for all f € Cr.

Now, we recall Mawhin’s continuation theorem which will be used in our study.
Let X and Y be real Banach spaces and L : D(L) C X — Y be a Fredholm operator
with index zero. Here D(L) denotes the domain of L. This means that Im L is closed
in Y and dimker L = dim(Y/Im L) < +o0. Consider the supplementary subspaces
Xiand Y] and such that X = ker L X; andY =ImL®Y; and let P: X — ker L
and @ : Y — Y] be natural projections. Clearly, ker L N (D(L) N X;) = {0}, thus
the restriction L, := L\D(L)QXI is invertible. Denote the inverse of L, by K

Now, let 2 be an open bounded subset of X with D(L) N Q # (), a map N :
Q — Y is said to be L-compact on Q. If QN () is bounded and the operator
K(I — Q)N :Q — Y is compact.

Lemma 2.4 ([3]). . Suppose that X andY are two Banach spaces, and L : D(L) C
X — Y is a Fredholm operator with index zero. Furthermore, Q0 C X is an open
bounded set, and N : Q@ — Y is L-compact on Q. If all of the following conditions
hold:

(1) Lz # ANx,Vax € 0Q N D(L), A €]0,1];

(2) Nx ¢ ImL for all x € 02 Nker L; and
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(3) deg{JQN,QnNkerL,0} # 0, where J : ImQ — ker L is an isomorphism.
Then the equation Lx = Nx has at least one solution on QN D(L).

To use Mawhin’s continuation theorem to study the existence of T-periodic so-

lution for , we rewrite in the system
21(8) = [A7py(22))(0),
25(t) = Fl(0)[A gy (22)](0) (2.2)
+g(t,z1(t),z1(t = 11(t)), ... 21 (t — T (1)) + e(2).

Where ¢ > 1 is constant with © + 1 = 1. Clearly, if z(t) = (z1(t),z2(t))" is a
T-periodic solution to equation set (2.2]), then x4 (¢) must be a T-periodic solution
to equation (1.1)). Thus, to prove that (L.I) has a T-periodic solution, it suffices to
show that equation set has a T-periodic solution.

Now, we set X =Y = {z = (z1(t),22(t))T € C(R,R?) : 21 € Cp, 29 € Cr} with
the norm ||z|| = max{|21|s0, |T2|oc }- Obviously, X and Y are two Banach spaces.
Meanwhile, let

/
L:D(L)Cc X =Y, Lx:x’:@}). (2.3)

2

and N : X — Y be defined by
[Nz](t)
( (A2 )] (1 )
Fla()[A g (z2)](t) + gt 21(t), 21 (t = 11(t)), ... 21 (t = T (1)) + e(t)

(2.4)
It is easy to see that (2.2)) can be converted to the abstract equation Lz = Nz.
Moreover, from the definition of L, we see that ker L = R?, ImL = {y : y €

Y, fOT y(s)ds = 0}. So L is a Fredholm operator with index zero.
Let projections P : X — ker L and ) : Y — Im @) be defined by

T 1 /7
Pz = T/o x(s)ds, Qy= T/o y(s)ds,

and let K represent the inverse of L|we: prp(r). Clearly, ker L = Im Q = R? and

T
Ky(t) = / G(t, s)y(s)ds, (2.5)

where

=L if0<t<s<T.
From (2.4) and (2.5)), it is not hard to find that N is L-compact on €2, where € is
an arbitrary open bounded subset of X.

Lemma 2.5 ([6]). If w € C}(R,R) and w(0) = w(T) =0 then

= if 0 < t<T
G(Ls):{T’ RO s<t=

T T T
| wtopa < () [ wopa,
0 " Jo
where
(p=1)*/7 ds 2m(p — 1)M/P
Tp = 2/ (1— =2)p ~  psin(Z)
0 p—1 psmy,
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Lemma 2.6 ([7]). 2 C R™ is an open bounded set, and symmetric with respect to
0€Q. If f € C(LR") and f(x) # uf(—z) for all x € OQ and all p € [0,1], then
deg(f,9Q,0) is an odd number.

Lemma 2.7 ([2]). If ¢(t) € Cr is not a constant function, |cle < 1/2,
(Az)(t) = z(t) — c()x(t — ) = dy, (2.6)
where dy is a nonzero constant, and x(t) € Cr, then

(1) z(t) = A=tdy is not a constant function,

(2) Jy (A72dr)(t)dt # 0.
3. MAIN RESULTS

For the next theorem, we assume that the following conditions:
(H1) There is a constant d > 0 such that:
(1) g(t,up,u1y. . Um) > |e|oo, for all (t,ug,ut,. .., uy) € [0,7] x R™T!
with u; >d (i=0,1,...,m).
(2) g(tvu(%ulu s 7um) < _|e|007 for all (tvu0a Ugy - 7um) € [OaT] x R™H
with u; < —d (i =0,1,...,m).
(H2) The function g has the decomposition
g(t, UG, ULy - - -y um) = hl(t, uo) + hg(f, UQg, - - - ,um),
such that uohi(t,ug) > lluo|™, |ha(t,uo, ... um)| < Simyailu [P~ + B,
where n,l,a;(i = 0,...,m), 3 are non-negative constants with n > p.

Theorem 3.1. Assume (H1)—(H2). Then, (1.1} has at least one T-periodic solu-
tion, if |c|leo < 1/2 and if
T

p - 1T \p - -
() Dokt o+ 25D 6 S argec] <1
o0 P [ et

where § = max(Cp, Y1~ a; — g — 1,0).

Proof. Let Q) = {x € X : Lv = ANz, X €]0,1]} if () = (21(:), 22(-))T € Qy, then
from and , we have

1(t) = AA™ pq(a2)](1),
wy(t) = Af (21 () [A7 pq(22)](1) (3.1)
+ Ag(t, 21 (t), 21(t — 71(t)), .o, 21 (E — T (B))) + Ae(2).

From the first equation in (3.I), we have za(t) = ¢, (3 (Az))(t), together with the
second formula of (3.1]), which yields

lep(Axy) (1)) = AP~ f(aa (1)) (1) (3.2)
F APtz (8), 21 (E—Ti(L)), .. 2 (= T (1)) + APe(t).

Integrating both sides of (3.2) on the interval [0, 7] and applying integral mean
value theorem, then there exists a constant to € [0, 7] such that

T

We can prove that there is ¢t; € [0,T] such that |z ()] < d.
If |x1(to)| < d, then taking t; = to such that |z1(t1)] < d.

T
g(t,xl(to),fl(to —Tl(t())),...7l'1(t0 —Tm(to))) = —1/0 e(t)dt (33)
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If |z1(to)| > d. Tt follows from (H1) that there is some i € {1,2,...,m} such
that |x1(to — 7:(to))| < d. Since x4 (t) is continuous for ¢t € R and z1(t +T') = z1(¢),
so there must be an integer k and a point ¢; € [0, 7] such that tg — 7;(to) = kT + 1.
So |z1(t1)] = |x1(to — Ti(to))| < d. Then, we have

t t
21 ()] = |2 (1) + / 2 (s)ds) < d + / 2 (s)[ds, t € [tr,tr +7T),
ty

t1
and

t1

\ml(t)|:|a:1(t—T)|:|a:(t1)—/ x’l(s)ds\gd—i—/l 1@ (s)|ds, ¢ € [t t+T).

t—=T t1 =T

Combining the above two inequalities, we obtain

o = t)| = t
|1 | e |21 ()] e |1 (t)]
1 ¢ t1
< ma {d+f(/ z (s ds+/ T (s ds)}
belinta +7] 2\ J, [21(5)] t_T| 1(s)] (3.4)

1 T
<d+ f/ 12, (s)|ds.
2 0

On the hand, multiplying both sides of (3.2)) by z1(t) and integrating it from 0 to
T, we obtain

/0 (o () (8))'ar (£)dt

T
— / Faa (1) (B (1)t

; (3.5)
+ )\p/ g(t,z1 (), x1(t — T1(t)), ..., z1(t — T (1)) 1 (t)dt
0
T
Y /0 e(t)z: (1)t
On the other hand we have
T
/0 (p (A (1)) (£)dt
T
_ / o (A} () (1)t
0 (3.6)

T
= —/0 op((A)) (1) [21(t) — e(®)21 (t — ) + c(t)ay (t - r)]dt

T T
. / (A ()Pt / ()t — 7)o (A2} (1) .
0 0

Meanwhile,

/0 Fan )2 () (t)dt = o. (3.7)
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Substituting (3.6)-(3.7) into (3.5) we obtain

| 1o
0

T
__ / e(B)) (t — ) ((Az)) (1)) dt
o (3.8)
- A”/ gtz (t), 21 (t = 71(t)), .. w1 (t = T (8)))21 (t)dt
0

—\ / " e (0)dt.

In view of (H2), we obtain

/0 (Azy) (Pt

T
_ / c(t)a) (t — r)pp((Azh)(¢))dt

_ )\p/o Gt o1 (), 21 (E = T1(8)), 1 (E— T ()22 (£)lE — )\p/o e(t)z () dt

—\P /T hl(t,l‘l)Il(t)dt
0
- )\p/o ho(t, 21 (8), 21t — 71(8)), -+, 21 ( — o () )2 (£)dlE

T
—/\p/o e(t)xy(t)dt.
(3.9)

Define Ay = {t € [0,T] : |z1(t)] < 1}, Ag = {t € [0,T] : |z1(t)| > 1}, in view of
(H2) again we have

T T
BV / ho (8, 20 )an ()t < —\PI / o ()| dt
0 0

:—Apl</Al+/A2)|x1(t)|”dt

< —Apz/ o (8)|"dt
~ (3.10)

<3 [ @t
Ao

T
— / o (D) |Pdt + AP / o ()Pt
0 Ap

T
< —Apz/ |y (£) [Pt + IT.
0
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Substituting (3.10) into (3.9),
T
| sy
0

T

T
< lelos / lon (A} (0|2 (t — )\t — APL / s (1) Pt
0 0 (3.11)

T
+)\p/0 ‘hg(t,a)j(t),wl(t—Tl(t)),...,l'l(t—Tm(t)>)||$1(t)|dt
T
+Ap|e|oo/ o (£)|dt + IT.
0

Moreover, by using Holder’s inequality and Minkowski inequality, we obtain

/0 oy (A1 (¢ — 1)t

T T

1/p
oy

0 0
(/OT |x'1(t)|pdt)1/p + |c\oo(/0

T
= (14 [e}oo)?? / ) (t)|Pt.

a7 /

(3.12)
By (3.11) and (3.12)) and combining with (H2) and Lemma [2.1] we obtain

/0 (Az))(t)[Pdt
T T
< [eloo(1 + leloo)?™ / (& ([Pt — AP / a1 ()Pt
T
AP / (ot 21 (£), 21 (¢ — 710 s 20t — 7o () | (0) |t
0
T
+/\p|e|oo/0 o ()| dt + 1T
T

T
<o (1 + Icloo>p’1/ |2 (£) [Pdt + AP (g — U/ |1 ()Pt
0 0

T m T
+A”/O ;ailxl(t—ﬂ‘(t)ﬂp1|$1(t)|dt+)\p(ﬁ+|e|oo)/0 |21 (¢)|dt +IT

T

T
< efoo(1+ |c|oo)p_1/ |2 (8)[Pdt + AP (o — U/ |1 () [Pdt
0 0
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m

T
0,3 ai [l = m(0) — o 0P a0l
i=1 0
m T T
+)\pCpZai/ |x1(t)\pdt+)\p(ﬁ+\e|oo)/ o (8)|dt + 1T
i=1 0 0

T m T
<o (1 + |C|oo)p_1/ |2y (8)[Pdt + NP (Cp Y i + g — l)/ |1 (8)[Pdt
0 0

i=1
m T 1/q T 1/p
+ \PC o / z1(t — () — x1(t)Pdt / z1(t)|Pdt
p;(om 0) = @) ([ @)
T 1/p
+)\p(5+|e|oo)T1/q(/ jar(t)Pdt) 1T
0
T T
< efoo (1 + ICIm)p_l/ |~”C’1(t)|”dt+5/ |1 (8)[Pdt
0 0
- T 1/q, (T 1/p
ol/a| . |p—1 TP P
M (/O (1)t (/0 oRy

+(B+ |€|OO)T1/¢1(/OT |x1(t)|pdt> e +IT. (3.13)

Let w(t) = z1(t + t1) — 21(t1), then w(T) = w(0) = 0 and from Lemma [2.1] we see

that
/OT wioyrdt < (=)' /OT Wpa = (=) /OT 2, (4)|Pdt. (3.14)

Tp Tp

By (3.14) and the Minkowski inequality, we obtain

(/OT |$1(t)|pdt> 1/p _ (/OT () + xl(t1)|pdt>l/p
(/OT Iw(t)l”dt)l/p + (/OT |x1(t1)|Pdt>1/p (3.15)

T/ (" 1/p
< "(E)|P 1/p.
< 7r,,</o 2 (8)] dt) +dT

Substituting (3.15]) into (3.13]) yields
T
| 1caaora
0

IN

—(/ S orear)” +arie)”
0

Tp

+ 2t i a|m[ps? [j; ( /OT @4 (t) Pt vy ar'/v| (/OT @4 (t) Pt e
1=1

T
< el + el [ a0t +5]
0

T T 1/p
+(6+|e|oo)T1/q[7T—(/O |x’1(t)|pdt> +dT1/p}+lT
p
T
T

< [|c\oo(1 + leloo)? ™t + 20715
p

T «— r
R I I
P, 0
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" T 1/q
+ G2y aifrfz tar o ([ s olrde)
=1 0

T, (" 1/
+ @+ e ([ aipar)”

p

+ 207 15dPT + (B + |e|oo)dT + IT. (3.16)

By applying the third part of Lemma [2:2] we obtain

T T 1 p T
[ ora= [artasora s (=) [ ladora. e
0 0 1 —|efoo 0
Then, substituting (3.17)) into (3.16]), we have

T
1 P T
/ p < 1 p—1 2p—1 S \P
| et < (=) T+ el 27 (0)
T & T
e S S RO
Gt 0
Cp2Y/ 13" | B tdT P o (T 1/q
P (17_1 ET (/ |x’1(t)|pdt> (3.18)
1/q T T _
(B + leloe) T / \xfl(t)|pdt)1/p 2P~ 154PT
(1 —eloo)? 0 (1 = Jeloc)?
(B + leloo)dT T
(1 =Teloo)? (1= lefoo)?
As
1 P p—1 p—15( L \p /9L N N
() [t ey #2700 4 G2 3 el <1,

1/p <1, 1/q <1, then from (3.18)), there exists a constant M > 0 such that
T
/ |z} (t)[Pdt < M. (3.19)
0
Which together with (3.4) gives
1
21|00 < d + iTl/qu/P =: M. (3.20)

Again, from the first equation in (3.1)), we have

T
/0 (A" (22))(t)dt = 0.

Then there is a constant n € [0, 7], such that (A7 ¢, (z2))(n) = 0, which together
with the second part of lemma [2:3] gives

oo J

(A7 g (22)) () = pgwa(n) + D T [ eln— (i = 1)r)pq(aa(n — jr)) =0,

j=li=1
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|z2(n)] 77" = g (w2(m)))]

j=1i=1
S |
< J q—1 _ o) q—1
< 3 eeloalts! = o lt
]_
It follows that
c 1/(g—1)
lz2(n)] < (k) |2 oo (3.21)
1- |C|oo
Let My = maxpy <, [f(w)], My = max;c(o.1], uo|<M,....Jum| <My [9(E %05 - -+ s Um)|

and from (3.1]), we have

zy(t) = Af(21(8)) () + Ag(t, 21(t), w1 (t — 71(2)), - ., @1 (t — T (2))) + Ae(t),

T
| Iebtoae
0

T T
< / | (8)) ()t + / 9t 21 (8), 21t — T2 (1)), 2 — (1))

" /OT e(t)

T
<My / 12 ()]t + T(M, + [e]so)
0

and

< MyTYIMYP 4 T(My + |e|o) =: Ma.

(3.22)
By (321) and (3:22)
t Cloo \M(a—D) T
a0 = haa) + [ (o)l < (1) e [ (o)l
1 —e|oo 0
7 (3.23)

1/(g—1)
< <1|_C||OCO|) |JJ2|OO—|-M2, te [O,T}

Since |clos < 3, ( |C|°|° )M/@=1 < 1, and (3.23), it follows that there exists a

1—|c¢|oo
positive constant M3 such that

Let Qy = {x € ker L, QNz = 0}. If x € Q2 then z € R? is a constant vector, and

7 | ema =0,

T
%/0 [f(:m(t))[A*l@q(xg)](t) (3.25)

+ gt z1(t),z1(t — 11(t)), ..., 21 (t — T (£))) + e(t)]dt = 0.
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By the first formula in (3.25) and the second part of Lemma we have zo = 0.
Which together with the second equation in (3.25)) yields

1 T
T/ [g(t’whxl?"';ml)+€(t)]dt:0.
0

In view of (H1), we see that |21]| < d. Now, we let Q = {z]|z = (21,72)T € X, |21] <
My +d, |za] < M3+ d}, then ; UQy C Q. So from and , it is easy to
see that conditions (1) and (2) in Lemma are satisfied.

Next, we verify the condition (3) in Lemma To do this, we define the
isomorphism J : Im Q — ker L, J(x1,22)T = (z1,22)7. Then

1 (Trg-1
JQN(x) = 1 T _1T fO [A Spq(x2)}(t)dt )
7 Jo [F@®)A™ 0q(@2)](t) + g(t, 1,21, . 1) + e(t)]dt
r € ker LN . By Lemma we need to prove that
JQN(z) # u(JQN(-z)), Vzed(QnkerL), pel0,1]
Casel. If v = (z1,72)T € 9(QNker L)\{(M;+d,0)", (=M1 —d,0)T}, then zo #
0 which, together with the second part of Lemma gives us fOT [A™ g (22)](t)dt #
0,
]. T —1 ]- T —1
(7 [ A euteioa) (7 | 147 eu=enlo) <o
obviously, for all u € [0,1], JQN(z) # n(JQN(—x)).
Case2. If x = (M; + d,0)T or x = (—M; — d,0)T then

0
JQN(z) =
Q ( ) <’]1“ f()T[g(taxlaxla"'7xl)+e(t)]dt)
which, together with (H1), yields JQN (x) # u(JQN (—=x)) for all u € [0,1]. Thus,
condition (3) of Lemma[2.4]is also satisfied. Therefore, by applying Lemma we

conclude that the equation Lz = Nz has at least one T-periodic solution on €2, so
(1.1) has at least one T-periodic solution. This completes the proof. O

4. EXAMPLE

In this section, we provide an example to illustrate Theorem 3.1} Let us consider
the equation

(op(2'(t) — 0.1sin(20mt)’ (t — 1))’ )
cos 207 sin 207 4.1
= fz(t)2'(t) + g(t, z(t), x(t — 9200 t),x(t - %)) + cos(207t),

where p = 3, T = 1/10, ¢(t) = 0.1sin(207t), 71(t) = cos(207t)/90, T2(t) =
sin(207t) /100,

g(t,u,v,w) = u®(2 + sin(20mt)) + %5 (sgn(v)v? + sgn(w)w?)| cos(207t)|,
e(t) = cos(207t). Therefore we can choose [ =1,d =1, ag =0, a; = a2 = 0,014.
We can easily check condition (H1), (H2) in Theorem [3.1| hold. We can check that

1

(ﬁ

loo

P -1 1T p 1/mAT‘—1
) [leloo (1 + feloc)? ™" + 27 5()" + G2t/ Yl )l | <1

i=1 p
By Theorem equation (4.1]) has at least one %—periodic solution.
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