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EXISTENCE OF LATTICE SOLUTIONS TO SEMILINEAR
ELLIPTIC SYSTEMS WITH PERIODIC POTENTIAL

NICHOLAS D. ALIKAKOS, PANAYOTIS SMYRNELIS

Abstract. Under the assumption that the potential W is invariant under a
general discrete reflection group G′ = TG acting on Rn, we establish existence
of G′-equivariant solutions to ∆u − Wu(u) = 0, and find an estimate. By
taking the size of the cell of the lattice in space domain to infinity, we obtain
that these solutions converge to G-equivariant solutions connecting the minima
of the potential W along certain directions at infinity. When particularized
to the nonlinear harmonic oscillator u′′ + α sin u = 0, α > 0, the solutions
correspond to those in the phase plane above and below the heteroclinic con-
nections, while the G-equivariant solutions captured in the limit correspond to
the heteroclinic connections themselves. Our main tool is the G′-positivity of
the parabolic semigroup associated with the elliptic system which requires only
the hypothesis of symmetry for W . The constructed solutions are positive in
the sense that as maps from Rn into itself leave the closure of the fundamental
alcove (region) invariant.

1. Introduction

The study of the system

∆u−Wu(u) = 0, for u : Rn → Rn, (1.1)

where W : Rn → R and Wu := (∂W/∂u1, . . . , ∂W/∂un)T under symmetry hy-
potheses on the potential W , was initiated in Bronsard, Gui, and Schatzman [4],
where existence for the case n = 2 with the symmetries of the equilateral triangle
was settled, and followed later by Gui and Schatzman [13], where the case n = 3
for the symmetry group of the tetrahedron was established. The corresponding
solutions are known as the triple junction and the quadruple junction respectively.
This class of solutions is characterized by the fact that they connect the global
minima of the potential W in certain directions as |x| → +∞. In [1], Alikakos and
Fusco established an abstract theorem for the existence of such solutions, together
with an estimate, for general dimension n and any reflection point group G acting
on Rn. Finally in [2] one of us gave a simpler proof of the result in [1].

Reflections are special linear isometries, and as such leave the Laplacian invari-
ant. The groups of symmetries of the equilateral triangle and the tetrahedron are
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reflection groups. This motivated the study in [1] for general reflection groups. By
including also translations, which obviously leave the Laplacian invariant, we are
led naturally to discrete reflection groups G′ acting on Rn. We note that G′ = TG
where T is the translation group of G′ and G the point group fixing the origin O.
T generates a lattice in Rn via the orbit {τO : τ ∈ T}. There are two natural
problems that one can identify in this context:

(I) The periodic potential problem;
(II) The periodic solution problem.
In Problem (I), we require that W (gu) = W (u), for every u ∈ Rn and every

g ∈ G′. Both domain and target have G′ acting on them and the solutions are
G′-equivariant. Actually it is more appropriate to scale G′ in domain and target
differently by introducing a parameter R > 0:

G′
R := {gR : gR(x) := Rg(x/R), g ∈ G′} (1.2)

and then seek (G′
R, G′) equivariant solutions:

u(gRx) = gu(x) for every x ∈ Rn and every g ∈ G′. (1.3)

In Problem (II), G′
R is acting in the domain and G in the target. We require

that W (gu) = W (u), for every u ∈ Rn and g ∈ G, and we seek a solution in the
class of G-equivariant maps modulo the translations of the discrete group G′

R:

u(τRgx) = gu(x) for every x ∈ Rn, every τ ∈ T , and every g ∈ G. (1.4)

These two classes of solutions are best visualized in terms of an elementary
example, the harmonic oscillator u′′ + α sinu = 0, α > 0, that we explain in detail
below. Type (I) correspond to the solutions above and below the separatrices in the
phase plane, while type (II) correspond to the periodic solutions inside a single cell.
The heteroclinic solutions (separatrices) correspond to the solutions constructed in
[4, 13, 1].

In this paper we focus on problem (I). We construct an equivariant solution to
(1.1) which maps each cell in the domain lattice to the corresponding cell in the
target lattice. Moreover, the map uR in the limit R → ∞, converges to another
solution to (1.1) equivariant for the point group G. In terms of the harmonic
oscillator above, the parameter R relates to the “time” x that it takes for the
solution uR to transverse a cell, and thus as R →∞ the solution converges to the
heteroclinic connection1.

One of the main tools in [1, 2], is the positivity invariance of the gradient flow
ut = ∆u −Wu(u), under appropriate boundary conditions. A map u is positive if
u(F ) ⊂ F , where F is the fundamental region of the group. Positivity is built in the
minimization process (that is, in constructing uR) as a constraint. This constraint
is then removed via the gradient flow which is shown to preserve it. The solutions
we construct are global minimizers in the class of positive maps. It is not known if
the property of positivity is automatic for global minimizers.

In the point reflection group case treated in [1] one can reduce the problem of
positivity to a half-space determined by a reflection plane (instead of F ), intersected
by a ball of radius R, and homogeneous Neuman conditions on the circumference.
In the discrete reflection group case treated in the present paper, the fundamental
alcove is a bounded simplex and one has to deal with the whole object all at once.

1N. D. A. is indebted to Peter Bates for pointing this out to him, as well as the different
scalings.



EJDE-2012/15 EXISTENCE OF LATTICE SOLUTIONS 3

If Si denotes the ith face of the fundamental alcove and Πi its supporting plane
then the boundary conditions take the form

x ∈ Si ⇒ u(x) ∈ Πi

x ∈ Si ⇒
∂u

∂ri
(x)⊥Πi, where ri ⊥Πi .

(1.5)

The main contribution in the present paper is the positivity result under (1.5)
(Theorem 5.1). Otherwise the paper proceeds as in [2]. We mention in passing that
the boundary conditions in (1.5) are conformal and for smooth domains have been
studied by Hamilton [14].

2. Notation

As it was mentioned in the Introduction, G′ denotes a discrete reflection group
acting on Rn, G its associated point group, and G′

R the image of G′ by the homo-
thetic transformation x → Rx, where R > 0. G′

R is the scaled discrete group of the
blown-up lattice; its elements are defined in (1.2).

A discrete reflection group G′ is generated by a finite set of reflections. The
hyperplanes {x ∈ Rn : gx = x} associated to these reflections g ∈ G′, bound
a region called fundamental alcove (see [17]) of G′ and denoted by F ′, with the
following properties:

(i) F ′ is an open polyhedron with acute angles 2,
(ii) F ′ ∩ gF ′ = ∅, for I 6= g ∈ G′, where I is the identity,
(iii) Rn = ∪{gF ′ : g ∈ G′}.
Similarly the associated point group G has a fundamental region, that is, a subset

F ⊂ Rn with the following properties:
(i) F is open and convex,
(ii) F ∩ gF = ∅, for I 6= g ∈ G, where I is the identity,
(iii) Rn = ∪{gF : g ∈ G}.

Figure 1. Fundamental alcoves for the discrete groups G′
R and

G′ of the hexagonal lattice

F ′ and F can be chosen such that the origin O is a vertex of F ′ and F ′ ⊂ F . As
regards the scaled group G′

R, it is clear that its fundamental alcove denoted by F ′
R

2Thanks to Christos Athanasiadis of the University of Athens who confirmed this fact to us.
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is the set {Rx : x ∈ F ′}. We shall denote the closed faces of F ′ (respectively F ′
R)

by Si, i = 1, · · · , N (respectively SR
i ), and by Πi (respectively ΠR

i ) their supporting
planes.

In the same way we defined in (1.3) (G′
R, G′) equivariant solutions, a map u is

called G equivariant when:

u(gx) = gu(x) for every x ∈ Rn and every g ∈ G. (2.1)

Given a ∈ Rn, the stabilizer of a, denoted by G′
a, is the subgroup of G′ that

fixes a. Finally, we shall denote by 〈·, ·〉 the Euclidean inner product, by | · | the
Euclidean norm, by d(·, ·) the Euclidean distance, and by B(x, ε) the open ball of
center x and radius ε with respect to this distance.

3. Main Theorems

We begin by stating the hypotheses.
(H1) (Symmetry) The potential W , of class C3, is invariant under a discrete

reflection group G′ acting on Rn; that is,

W (gu) = W (u) for all g ∈ G′ and u ∈ Rn. (3.1)

(H2) (nondegenerate global minimum) Let F ′ ⊂ Rn be a fundamental alcove of
G′. We assume that W is non-negative and has a unique zero a in F ′.
Furthermore, there holds v>∂2W (u)v ≥ 2c2|v|2, for v ∈ Rn and |u−a| ≤ q̄,
for some c, q̄ > 0.

(H3) (Q-monotonicity) We restrict ourselves to potentials W for which there is
a continuous function Q : Rn → R that satisfies

Q(u + a) = |u|+ H(u), (3.2)

where H : Rn → R is a C2 function such that H(0) = 0 and Hu(0) = 0,
and

Q is convex, (3.3a)

Q(u) > 0, on Rn \ {a}, (3.3b)

and, moreover,

〈Qu(u),Wu(u)〉 ≥ 0, in D′ \ {a}, (3.4)

where we have set

D′ := Int
(
∪g∈G′a

gF ′
)
. (3.5)

Theorem 3.1. Under Hypothesis (H1), for every R > 0 there exists a (G′
R, G′)

equivariant classical solution uR to system (1.1) such that uR(F ′
R) ⊂ F ′. Further-

more, if (H2)–(H3) also hold, then there exist positive constants R0, k, K, such
that for R > R0 and x ∈ D′

R := {Rx : x ∈ D′}

|uR(x)− a| ≤ Ke−kd(x,∂D′
R) . (3.6)

Theorem 3.2. Under Hypotheses (H1)–(H3), there exists a G equivariant classical
solution u to system (1.1) such that

(i) u(F ) ⊂ F ′ and u(D) ⊂ D′, where we have set D := ∪R>0{Rx : x ∈ D′}.
(ii) |u(x)− a| ≤ Ke−kd(x,∂D), for x ∈ D and for positive constants k, K.
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It would be interesting to relate Theorem 3.2 to the main result in [1]. Theorem
3.1 was conjectured by G. Fusco in a personal communication.

The harmonic oscillator is the elementary example which best illustrates the
above theorems. For the ODE,

u′′ + α sinu = 0, with α > 0, (3.7)

the corresponding potential is W (u) = α(1 + cos u) which is invariant under the
discrete group G′ acting on R, generated by the reflections s0 and sπ with respect
to the points 0 and π. The associated point group of G′ is G = {I, s0}, where
I denotes the identity. The fundamental alcove of G′ is F ′ = (0, π) while the
fundamental region of G is F = (0,∞). Clearly, W has in F ′ a unique minimum
attained at a = π, and since a ∈ ∂F ′, we have D′ = (0, 2π) and D = (0,∞).
Finally, Q-monotonicity is also verified by taking Q(u + π) = |u|.

Now we shall prove that solutions u to (3.7), above the separatrices in the plane
phase and satisfying the initial condition u(0) = 0 are (G′

R, G′) equivariant for some
R > 0 depending on u′(0). For such solutions, λ := u′(0) > 2

√
α holds, and by

integrating u′u′′ = −α(sinu)u′, we obtain

u′ =
√

2W (u) + λ2 − 4α . (3.8)

As a consequence, u is strictly increasing with limx→+∞ u(x) = +∞. This ensures
the existence of a minimal T > 0, depending on λ, such that u(T ) = 2π. Then,
utilizing the periodicity of W, it is easy to see that u is (G′

R, G′) equivariant,
for R := T/2π. Actually, since T is strictly decreasing from +∞ to 0, when
λ ∈ (2

√
α, +∞), there exists for every R > 0 a unique (G′

R, G′) equivariant solution
to (3.7), called uR.

According to Theorem 3.1, uR satisfies uR((0, T/2)) ⊂ (0, π), which is obvious,
and |uR(x) − π| ≤ Ke−kx, for x ∈ F ′

R = (0, T/2) and R big enough. Considering
then the sequence uR : (−T/2, T/2) → R, and passing to the limit when R → ∞,
we capture the heteroclinic solution u of Theorem 3.2, which is G equivariant (i.e.
odd) and satisfies:

(i) u([0,∞)) ⊂ [0, π];
(ii) |u(x)− π| ≤ Ke−kx, for x ∈ (0,+∞).

In R2, we give other examples of potentials W satisfying our hypotheses for the
discrete group G′ generated by the reflections with respect to the lines u2 = 0,
u1 = π and u1 = u2. The fundamental alcove bounded by these three lines is:
F ′ = {(u1, u2) ∈ (0, π) × (0, π) : u1 > u2}. Considering the auxilliary function
φ(u) = cos2 u + cos u + 1/4, we construct the potentials:

W1(u1, u2) = φ(u1) + φ(u2), W2(u1, u2) = φ(u1) + φ(u2) + φ(u1)φ(u2)

which have a unique minimum, nondegenerate, in F ′ at a = (2π/3, 2π/3). It can
then be verified that W1 and W2 satisfy Q-monotonicity in D′ = (0, π)× (0, π) with
Q(u) = |u− a|, where u = (u1, u2).

The Hypotheses (H1)–(H3) are exact analogs of the hypotheses introduced in [1]
for the point group G. Actually our hypothesis on Q here is less restrictive since
no symmetry assumptions are imposed (cf. [2]). Q-monotonicity is a restrictive
hypothesis on the potential. We note that for n = 1 and even symmetry, for a
double-well potential W , and D = F = {u > 0}, Q-monotonicity implies that for
u > 0, Wu(u)(u − a1) ≥ 0 holds. Nevertheless Q-monotonicity allows for a large
class of nontrivial potentials (cf. [1]). Very recently, in ongoing work, Fusco (cf. [9])
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has been able to remove the Q-monotonicity from the hypotheses in establishing the
main result in [1]. Since the main contribution of the present work is the positivity
result, which does not require the Q-monotonicity hypothesis, we decided not to
take into account these new developments.

4. Minimization

Thanks to the proposition below, we can identify the class of (G′
R, G′) equivariant

Sobolev maps W 1,2
E loc(R)(Rn; Rn), with the class

KR := {u ∈ W 1,2(F ′
R; Rn) : Tr u(SR

i ) ⊂ Πi ,∀i 1 ≤ i ≤ N}. (4.1)

of W 1,2(F ′
R; Rn) maps such that the restriction of the trace (denoted by Tr) to

each of the faces SR
i of F ′

R, takes values almost everywhere in the corresponding
hyperplane Πi.

Proposition 4.1. The map which associates to each u ∈ W 1,2
E loc(R)(Rn; Rn) its

restriction to F ′
R is one-to-one and onto KR.

Proof. We denote by (x1, . . . , xn) the coordinates of x ∈ Rn, and by (u1, . . . , un)
the components of a map u with values in Rn. Without loss of generality we assume
that R = 1 and that Π = {(x1, . . . , xn) ∈ Rn : xn = 0} is the supporting plane
of the face S of F ′. Furthermore, we denote by g(x1, . . . , xn) = (x1, . . . ,−xn), the
reflection with respect to Π. To a map φ : F ′ → Rn, we associate its extension by
reflection to gF ′, denoted by φ. Clearly, we have for every x ∈ gF ′:

φ(x) := gφ(gx) = (φ1(x1, . . . ,−xn), . . . , φn−1(x1, . . . ,−xn),−φn(x1, . . . ,−xn)).
(4.2)

It is easy to check that u ∈ W 1,2(F ′; Rn) ⇒ u ∈ W 1,2(gF ′; Rn). In addition, if
the sequence φm ∈ C∞(F ′; Rn) converges to u in W 1,2(F ′; Rn), then the sequence
φm ∈ C∞(gF ′; Rn) also converges to u in W 1,2(gF ′; Rn).

Now let us consider a map u ∈ W 1,2
E loc(Rn; Rn) and let us prove that Tr u(S) ⊂ Π.

Obviously u = u and (Tr u)
∣∣
S

= (Tr u)
∣∣
S
, where

∣∣
S

denotes the restriction of a
map to S. Then writing that limm→∞ φm

∣∣
S

= limm→∞ φm

∣∣
S

in L2(S; Rn) and
utilizing (4.2), we find that limm→∞(φn)m

∣∣
S

= 0 in L2(S, R) which means that
Tru(S) ⊂ Π. Therefore, the map of Proposition 4.1. takes its values in KR and
clearly by equivariance it is one-to-one. To complete the proof, it remains to show
that it is onto.

Indeed, if u ∈ KR, we can extend it by reflection to a map called U , defined in
Ω := Int

(
F ′ ∪ gF ′

)
, setting:

U(x) =

{
u(x), for u ∈ F ′,

u(x), for u ∈ gF ′.

Since Tr u(S) ⊂ Π, it can be shown as before that (Tru n)
∣∣
S

= 0 a.e.. Next, noting
that by definition of u, (Trui)

∣∣
S

= (Tru i)
∣∣
S

for 1 ≤ i < n, we conclude that U

defines a W 1,2(Ω; Rn) map symmetric with respect to Π. Repeating this process,
U can be extended to an equivariant map in the whole space. �
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The Proposition above allows us to define for (G′
R, G′) equivariant Sobolev maps

the functional associated to (1.1) by

JF ′R
(u) =

∫
F ′R

{1
2
|∇u|2 + W (u)

}
dx, (4.3)

and to consider the minimization problem

min
AR

JF ′R
, where AR :=

{
u ∈ KR : u(F ′

R) ⊂ F ′
}
. (4.4)

In the class AR, we have imposed the positivity constraint:

u(F ′
R) ⊂ F ′. (4.5)

Note that the convexity of F ′ implies that AR is convex and closed in W 1,2(F ′
R; Rn),

and so a minimizer uR ∈ AR exists.

5. The gradient flow and positivity

To show that the positivity constraint built in AR does not affect the Euler-
Lagrange equation we will utilize the gradient flow

∂u

∂t
= ∆u−Wu(u) in Rn × (0,∞),

u(x, 0) = u0(x) in Rn,
(5.1)

with initial condition u0 ∈ W 1,2
E loc(R)(Rn; Rn) ∩ L∞loc(Rn; Rn). Since W is C3 (cf.

(H1)), the results in [15, Ch. 3, §3.3, §3.5] apply and provide a unique solution
to (5.1) in C([0,∞);W 1,2

E loc(R)(Rn; Rn)). For every bounded domain Ω ⊂ Rn, this
solution is for t > 0, as a function of x, in C2+α(Ω; Rn), for some 0 < α < 1.
Moreover, if the initial condition u0 is also assumed globally Lipschitz in Rn, the
flow u ∈ C([0,∞);C(Ω; Rn)) ∩ C(0,∞;C2(Ω; Rn)) for every bounded domain Ω.

Theorem 5.1. Let W be a potential satisfying (H1). If the initial condition u0 ∈
W 1,2

E loc(R)(Rn; Rn) ∩ L∞loc(Rn; Rn) is assumed to be positive (cf. (4.5)), then

u(·, t;u0)(F ′
R) ⊂ F ′, for t ≥ 0 (positivity),

and, moreover,

u(·, t;u0)(F ′
R) ⊂ F ′, for t > 0 (strictly positivity)

Proof. Without loss of generality we assume R = 1. We first prove the Theorem
when u0 ∈ W 1,2

E loc(R)(Rn; Rn) is globally Lipschitz, in which case u is smooth and
satisfies for t > 0 the Boundary Conditions (1.5). We shall give a detailed proof
for n = 2 and an outline in higher dimensions n ≥ 3, just pointing out the new
elements. Next, we shall consider the general case of an initial condition u0 ∈
W 1,2

E loc(R)(Rn; Rn) ∩ L∞loc(Rn; Rn).

Proof for n = 2, and u0 ∈ W 1,2
E loc(R)(R2; R2) and globally Lipschitz. In R2,

F ′ is either a triangle with acute angles or a rectangle. We shall consider the case
of a triangle, the proof being similar for a rectangle. Let us denote by P0 = O,
P1 and P2 the vertices of F ′ and by S1 = P0P1, S2 = P0P2, S3 = P1P2, its sides
supposed to be closed. Π1, Π2 and Π3 are the corresponding supporting lines of
S1, S2, S3, while for 1 ≤ i ≤ 3, ri is the outer unit normal vector to the side Si.
Finally, we also need to define the closed segment Pij(t)Pji(t) := u(PiPj , t) which
is the image of the side PiPj by u(., t).
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Figure 2. The fundamental alcove F ′ and the extensions PijPji.

We shall suppose that there exists a t0 > 0 for which u(F ′, t0) 6⊆ F ′, and seek a
contradiction in the two following cases:
Case 1: u(∂F ′, t) ⊂ F ′ for every t ≥ 0. Without loss of generality we can suppose
that there exists x0 ∈ F ′ such that for instance:

〈u(x0, t0)− P0 , r1〉 > 0 . (5.2)

Following [1], we set h1(x, t) = 〈u(x, t)− P0 , r1〉 which is solution of

∂h1

∂t
= ∆h1 − 〈Wu(u) , r1〉, (5.3)

and noting that

〈Wu(u), r1〉 = 〈
∫ 1

0

Wuu

(
u + (s− 1)h1r1

)
r1ds, r1〉h1, (5.4)

due to the periodicity of W , (5.3) can be written as

∂h1

∂t
= ∆h1 + c1h1, (5.5)

with c1 continuous and bounded on R2 × [0,∞). To have an equation with a non-
positive first order coefficient, we apply a well-known trick, considering instead of
h1 the function h1(x, t) = e−λth1(x, t) which is solution to ∂h1

∂t = ∆h1 +(c1−λ)h1.
Choosing λ ≥ c1, the maximum principle applies to h1 and gives

0 < max
{
h1(x, t) : x ∈ F ′, t ∈ [0, t0]

}
= h1(x1, t1) (5.6)

for some x1 ∈ F ′ and some t1 ∈ [0, t0], since we supposed that h1(x0, t0) > 0,
h1(∂F ′, t) ⊂ (−∞, 0] for all t ≥ 0 (hypothesis in case 1), and h1(F ′, 0) ⊂ (−∞, 0]
(positivity of u0). As a consequence h1 ≡ h1(x1, t1) > 0 which contradicts the fact
that h1(P0, t) = 0, for every t ≥ 0.
Case 2: u(∂F ′, t2) 6⊆ F ′, for some t2 > 0. This case is more difficult since we have
to deal with the extensions Pij(t)Pji(t). As before, we consider for i = 1, 2, 3, the
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projection hi of u with respect to the vector ri which is solution to ∂hi

∂t = ∆hi+cihi,
with ci bounded. We will also need the functions hi(x, t) = e−λthi(x, t) which are
solutions to ∂hi

∂t = ∆hi + (ci − λ)hi, and choose λ ≥ ci, for i = 1, 2, 3.
Without loss of generality we can suppose that for instance

max
{
e−λtd(Pi, Pij(t)) : t ∈ [0, t2], 0 ≤ i, j ≤ 2, i 6= j

}
= e−λt3d(P0, P01(t3)) ,

(5.7)
for some t3 ∈ (0, t2]. By projecting u onto the direction τ := − 1

|
−−−→
P0P1|

−−−→
P0P1 we define

as before the functions h(x, t) = 〈u(x, t) − P0 , τ〉 and h(x, t) = e−λth(x, t). Since
the angles of F ′ are acute, τ can be written τ = αr1 + βr2 with α, β ≥ 0, and
therefore h = αh1 + βh2 and h = αh1 + βh2. Clearly, ∂h

∂t = ∆h + c h holds with
c ≤ 0. In order to successfully apply the maximum principle to h, we note that by
(5.7) and since F ′ has acute angles, there exists a closed half-plane E01 with the
following properties:

(i) e−λt3P01(t3) ∈ ∂E01,
(ii)

−−−→
P0P1 ⊥ ∂E01,

(iii) e−λtPij(t) ∈ E01, for all t ∈ [0, t2] and all (i, j) such that 0 ≤ i 6= j ≤ 2.

Figure 3. The separating half-plane E01 and the extensions
PijPji according to the time

Now, let µ := max
{
h(x, t) : x ∈ F ′, t ∈ [0, t2]

}
≥ e−λt3d(P0, P01(t3)) > 0. If

µ > e−λt3d(P0, P01(t3)), then necessarily µ is attained at an interior point x2 ∈ F ′,
for some t4 > 0. Thus for x ∈ F ′ and t ∈ [0, t4], we must have h(x, t) = µ which
contradicts the fact that h(P0, t) = 0, for every t ≥ 0. If µ = e−λt3d(P0, P01(t3)),
then there necessarily exists an interior point x3 of the segment P0P1 such that
h(x3, t3) = µ. In this case, we consider the extension of u, h and h to the union
of two fundamental alcoves Ω := Int

(
F ′ ∪ gF ′

)
where g denotes the reflection with

respect to the line P0P1. By equivariance of u, µ = max
{
h(x, t) : x ∈ Ω, t ∈ [0, t2]

}
also holds and since x3 is an interior point of Ω, we reach the same contradiction
as previously.

So far we have proved the first statement of the Theorem (positivity) for smooth
initial condition in R2. To complete the proof in this case it remains to show
that u(·, t;u0)(F ′) ⊂ F ′, for t > 0 (strong positivity). To see this, suppose by
contradiction that there exist x4 ∈ F ′ and t5 > 0 such that u(x4, t5) ∈ Π1 for
instance; i.e., h1(x4, t5) = 0. Then, max

{
h1(x, t) : x ∈ F ′, t ∈ [0, t5]

}
= h1(x4, t5)
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due to the positivity of u. According to the maximum principle, this implies that
for x ∈ F ′ and t ∈ [0, t5], we have h1(x, t) = 0 which contradicts the fact that
u(P2, t) = P2, for every t ≥ 0.

Proof for n ≥ 3, and u0 ∈ W 1,2
E loc(R)(Rn; Rn) and globally Lipschitz. To prove

the Theorem in higher dimension we proceed as in R2. Essential is the fact that
the angles between the faces of F ′ are acute (see [17]). This implies in particular
that any lower dimensional face has also acute angles. As before, we shall suppose
that there exists a t0 > 0 for which u(F ′, t0) 6⊆ F ′, and seek a contradiction in the
two following cases:
Case 1: u(∂F ′, t) ⊂ F ′, for every t ≥ 0. This case presents no difficulty. As
previously, to reach a contradiction, we consider the projection:

h1(x, t) = 〈u(x, t)− P0 , r1〉,
where r1 is the outer unit normal vector to the face S1 and P0 a vertex of S1.
Case 2: u(∂F ′, t′0) 6⊆ F ′, for some t′0 > 0. Let S1, S2,. . . , SN be the closed faces of
F ′. In the same way we considered in R2 the extensions Pij(t)Pji(t) of the sides of
F ′, in higher dimension we have to deal with the extensions of its faces. Without
loss of generality and omitting the e−λt term for reason of simplicity, we can assume
that for instance:

max
{
d(u(x, t), Si) : x ∈ Si , t ∈ [0, t′0], 1 ≤ i ≤ N

}
= d(u(x1, t1), S1) = ε > 0 ,

(5.8)
for some x1 ∈ S1 and t1 ∈ (0, t′0]. Setting u1 := u(x1, t1), there exists since S1 is
compact and convex, a unique point v1 ∈ ∂S1 such that d(u1, v1) = ε. We shall
consider the projection h of u with respect to the vector ρ := 1

|u1−v1| (u1 − v1):

h(x, t) = 〈u(x, t)− v1, ρ〉. (5.9)

Since the angles of F ′ are acute, the half-space E0 :=
{
x ∈ Rn : 〈x − v1, ρ〉 ≤ 0

}
contains F ′ and setting E1 :=

{
x ∈ Rn : 〈x − u1, ρ〉 ≤ 0

}
we have d(F ′, ∂E1) ≥ ε.

In particular, by (5.8), u(Si, t) ⊂ E1, for every i = 1, . . . , N and every t ∈ [0, t′0];
that is, the half-space E1 contains all the extensions of the faces of F ′.

Figure 4. The separating half-space E1

Now, let µ := max
{
h(x, t) : x ∈ F ′, t ∈ [0, t′0]

}
≥ h(x1, t1) = ε and let us apply

the maximum principle to h. If µ > ε, then necessarily µ is attained at an interior



EJDE-2012/15 EXISTENCE OF LATTICE SOLUTIONS 11

point of F ′, and it is easy in this case to reach a contradiction. Otherwise µ = ε
and the maximum of h is attained at (x1, t1). We have the following hierarchy:

(i) if ρ is not parallel to an n− 2 dimensional face of S1, then x1 ∈ Int(S1);
(ii) if ρ is parallel to an n− 2 dimensional face of S1 but not parallel to a lower

dimensional face, then either x1 ∈ Int(S1) or x1 belongs to the interior of
this n− 2 dimensional face . . .

(iii) if ρ is parallel to an edge of S1, then x1 belongs to the interior of this edge
or to the interior of any higher dimensional face of S1 containing this edge.

In all cases, if we consider the extension of u and h to Ω := Int
(
∪g∈ΓgF ′

)
where

Γ := G′
x1

is the stabilizer of x1, we will have by equivariance

µ = max
{
h(x, t) : x ∈ Ω, t ∈ [0, t′0]

}
= h(x1, t1),

and since x1 is an interior point of Ω it is easy to reach a contradiction. This
proves the positivity of the gradient flow for dimensions n ≥ 3. The proof of strong
positivity is straightforward by applying the same arguments as on the plane.

Proof for a general u0 ∈ W 1,2
E loc(R)(Rn; Rn) ∩ L∞loc(Rn; Rn). The idea is to ap-

proximate u0 by smooth positive equivariant maps an then utilize the continuous
dependence for the flow of initial condition. We need the following result3.

Proposition 5.2. If u ∈ W 1,2
E loc(R)(Rn; Rn) is such that u(F ′

R) ⊂ F ′ then there
exists a sequence (um) ⊂ C∞(F ′

R; Rn) with the following properties:
(i) (Tr um)(SR

i ) ⊂ Πi, for every face SR
i of F ′

R,
(ii) um(F ′

R) ⊂ F ′,
(iii) um converges to u in W 1,2(F ′

R; Rn) as m →∞.

Proof. Without loss of generality we can suppose that R = 1. In what follows we
will utilize the standard mollifier ηm(x) := mn(

∫
η)−1η(mx), m ≥ 1, where

η(x) =

{
e(|x|2−1)−1

for x ∈ Rn, |x| < 1,

0 for x ∈ Rn, |x| ≥ 1.

Let us consider the restriction of u to a smooth domain Ω containing F ′ and let us
extend it to a W 1,2(Rn; Rn) map called u. Setting um := u ∗ ηm, it is clear that
um ∈ C∞(Rn; Rn) ∩W 1,2(Rn; Rn) and that um converges to u in W 1,2(Rn; Rn) as
m →∞. Therefore, if we define (um) as the restrictions of (um) to F ′, (iii) will be
trivially satisfied. Before proving (i) and (ii), we need to introduce some notation.

Let us denote by S a face of F ′, by r the outer unit normal vector to S, by
Π = {x ∈ Rn : 〈x, r〉 = k} the supporting plane of S, and by g the reflection with
respect to Π. Π defines the closed half-spaces E− and E+ = {x ∈ Rn : 〈x, r〉 ≤ k}
which contains F ′.

For x ∈ S, we compute

um(x) =
∫

B(x,1/m)

ηm(x− y)u(y) dy

=
∫

B(x,1/m)∩E+
ηm(x− y)u(y) dy +

∫
B(x,1/m)∩E−

ηm(x− z)u(z) dz

=
∫

B(x,1/m)∩E+
ηm(x− y)u(y) dy +

∫
B(x,1/m)∩E+

ηm(gx− gy)u(gy) dy

3In a former version of [1] such an argument appeared.
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=
∫

B(x,1/m)∩E+
ηm(x− y)(u(y) + gu(y)) dy

and from this expression we see that

〈um(x), r〉 =
∫

B(x,1/m)∩E+
ηm(x− y)2kdy = k (by equivariance of u)

which means that (um) satisfies (i). To prove (ii), take x ∈ F ′ and compute as
before

um(x) =
∫

B(x,1/m)

ηm(x− y)u(y) dy

=
∫

B(x,1/m)∩E+
ηm(x− y)u(y) dy +

∫
B(x,1/m)∩E−

ηm(x− z)u(z) dz

=
∫

B(x,1/m)∩E+
ηm(x− y)u(y) dy +

∫
B′:=g(B(x,1/m)∩E−)

ηm(x− gy)gu(y) dy

=
∫

(B(x,1/m)∩E+)\B′
ηm(x− y)u(y) dy +

∫
B′

(ηm(x− y)− ηm(x− gy))u(y) dy

+
∫

B′
ηm(x− gy)(u(y) + gu(y)) dy .

From this decomposition, the equivariance of u, the fact that u(E+) ⊂ E+ and the
properties of the mollifier, we deduce that

〈um(x), r〉 ≤ k

∫
(B(x,1/m)∩E+)\B′

ηm(x− y) dy + k

∫
B′

(ηm(x− y)− ηm(x− gy)) dy

+ 2k

∫
B′

ηm(x− gy) dy

and

〈um(x), r〉 ≤ k

∫
(B(x,1/m)∩E+)\B′

ηm(x− y) dy + k

∫
B′

ηm(x− y) dy

− k

∫
B(x,1/m)∩E−

ηm(x− y) dy + 2k

∫
B(x,1/m)∩E−

ηm(x− y) dy

Thus 〈um(x), r〉 ≤ k which means that u(x) ∈ E+ and completes the proof. �

Taking into account Propositions 4.1 and 5.2, it is possible to construct for
every initial condition u0 ∈ W 1,2

E loc(R)(Rn; Rn) a sequence of positive maps (um) ⊂
W 1,2

E loc(R)(Rn; Rn), globally Lipschitz in Rn (and actually C∞ in the closure of
every fundamental alcove) which converges to u0 in W 1,2

loc (Rn; Rn). Utilizing then
the continuous dependence for the flow of the initial condition one can therefore
prove the positivity results of Theorem 5.1. in the general case. �

6. Proofs of Theorem 3.1 and Theorem 3.2

In this section we follow [2]. By taking for initial condition in Theorem 5.1 the
minimizer uR constructed in Section 4, we have u(·, t;uR) ∈ AR, for t ≥ 0. Since
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uR is a global minimizer of JF ′R
in AR, and since u(·, t;uR) ∈ C1(0,∞;C2+α(F ′

R)),
is a classical solution to (5.1) for t > 0, we conclude from

d
dt

JF ′R
(u(·, t)) = −

∫
F ′R

|ut|2 dx (6.1)

that |ut(x, t)| = 0, for all x ∈ Rn and t > 0. Hence, for t > 0, u(·, t) is satisfying

∆u(x, t)−Wu(u(x, t)) = 0. (6.2)

By taking t → 0+ and utilizing the continuity of the flow in W 1,2(F ′
R; Rn) at t = 0,

u(·, ·;uR) ∈ C([0,∞);W 1,2(F ′
R; Rn)), we obtain that uR is a (G′

R, G′) equivariant
classical solution to system (1.1) satisfying also uR(F ′

R) ⊂ F ′.
To prove the estimate in the second statement of Theorem 3.1 we need the

following lemma.

Lemma 6.1. Let uR be as above, H ′ := Int
(
∪g∈GF ′

)
and H ′

R := Int
(
∪g∈GF ′

R

)
.

Then for R > 1 the following hold:
(i) ‖uR‖L∞(H′

R;Rn) ≤ M , where M := maxu∈H′ |u|,
(ii) Q(uR(x)) ≤ Q, for x ∈ H ′

R, where Q := maxu∈H′ Q(u),
(iii) JF ′R

(uR) ≤ CRn−1, where C is a positive constant independent of R,
(iv) ∆Q(uR(x)) ≥ 0, in W 1,2

loc (D′
R; Rn), where D′

R is as in Theorem 3.1.

Proof. (i) and to (ii) are trivial. For (iii), define

bR(x) :=

{
((x/R)− a)(1− d(x; ∂F ′

R)) + a, for x ∈ F ′
R with d(x; ∂F ′

R) ≤ 1,

a, for x ∈ F ′
R with d(x; ∂F ′

R) ≥ 1.

bR is continuous and C∞ piecewise in F ′
R thus it defines a W 1,2(F ′

R; Rn) map
which also satisfies bR(F ′

R) ⊂ F ′, by convexity of F ′. According to Proposition
4.1 it can be extended equivariantly on the whole space since for x ∈ SR

i , we have
bR(x) = x/R ∈ Si. An easy computation shows that |∇bR| and W (bR) are bounded
in F ′

R, independently of R, and clearly these quantities vanish when d(x; ∂F ′
R) ≥ 1.

This implies that JF ′R
(bR) ≤ CRn−1 and since JF ′R

(uR) ≤ JF ′R
(bR) by definition of

uR, we obtain the desired estimate.
For (iv), see [2, Lemma 4.1]. �

Estimate (iii) in Lemma 6.1 and the subharmonicity of Q(u4R) in D′
4R allow

us to obtain via an iterated application of the De Giorgi oscillation Lemma the
following pointwise estimate, for R ≥ R0:

sup
B(xR,R∗)

Q(u4R(x)) ≤ q̄, (6.3)

where R∗ = R/2k (with k integer independent of R), xR := 4Rx0 (with x0 ∈ D′

fixed), and q as in Hypothesis 2. Utilizing then the comparison arguments in [2,
Section 5], it is possible to show that the ball B(xR, R∗) in (6.3) can be replaced
by a large set D′

R∗ which includes all of D′
4R with the exception of a strip along

the boundary ∂D′
4R of width d0 independent of R, for R ≥ R0; that is,

D′
R∗ ⊃ {x ∈ D′

4R : d(x, ∂D′
4R) ≥ d0}. (6.4)

This result states that the minimizer u4R(x) on a set of large measure is close to
a, the zero of W in D′, for R → ∞. From it, by applying, once again comparison
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arguments, follows the estimate of Theorem 3.1:

|uR(x)− a| ≤ Ke−kd(x,∂D′
R) (6.5)

which holds for R > R0 and x ∈ D′
R. Finally, the uniform bound (i) provided by

Lemma 6.1 and elliptic regularity, via a diagonal argument, allow us to pass to the
limit along a subsequence in R and capture a function

u(x) = lim
Rn→∞

uRn

∣∣
H′

Rn

, (6.6)

where
∣∣
H′

R

denotes the restriction of a map to H ′
R = Int

(
∪g∈GF ′

R

)
. Since the

convergence in (6.6) is uniform up to the second derivatives on compact sets, one
can then see that the limit u satisfies the exponential estimate of Theorem 3.2 and
is also a G equivariant solution to

∆u−Wu(u) = 0 in Rn.

Clearly, positivity is verified (i.e. u(F ) ⊂ F ′) and with the help of the exponential
estimate, strong positivity can be established in D′, that is u(D) ⊂ D′.
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