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ROBUSTNESS OF A NONUNIFORM (µ, ν) TRICHOTOMY IN
BANACH SPACES

YONGXIN JIANG

Abstract. In this article, we consider the robustness of a nonuniform (µ, ν)
trichotomy in Banach spaces, in the sense that the existence of such a tri-
chotomy for a given linear equation persists under sufficiently small linear
perturbations. The continuous dependence with the perturbation of the con-
stants in the notion of trichotomy is studied, and the related robustness of
strong (µ, ν) trichotomy is also presented.

1. Introduction

Exponential trichotomy is the most complex asymptotic property of dynami-
cal systems arising from the central manifold theory. When asymptotic behavior
around the equilibrium point of a dynamical system is controlled by either the
attraction of the stable manifold or the repulsion of the unstable manifold, expo-
nential dichotomy describes a rather idealistic situation where the solution is either
exponentially stable on the stable subspaces or exponentially unstable on the un-
stable subspaces. When asymptotic behavior is described through the splitting
of the main space into stable, unstable and central subspaces at each point from
the flows domain, exponential trichotomy reflects a deeper analysis of the behavior
of solutions of dynamical systems. The conception of trichotomy was first intro-
duced by Sacker and Sell [28]. They described SS-trichotomy for linear differential
systems by linear skew-product flows. Later, Elaydi and Hájek [18, 19] gave the
notions of exponential trichotomy for differential systems and for nonlinear differen-
tial systems, respectively. These notions are stronger notions than SS-trichotomy.
Recently, Barreira and Valls [6] considered a general concept of nonuniform expo-
nential trichotomy, from which can see exponential trichotomy as a special case of
the nonuniform exponential trichotomy. For more information about exponential
trichotomy we refer the reader to [23].

The notion of exponential trichotomy plays a central role in the study of center
manifolds, it is one of the powerful tools in the analysis of the asymptotic behavior
of dynamical systems. When a linear dynamics possesses no unstable directions, all
solutions converge exponentially to the center manifold, and thus the stability of the
zero solution under sufficiently small perturbations is completely determined by the
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behavior on any center manifold. The study of center manifolds can be traced back
to the works of Pliss [27] and Kelley [22]. A very detailed exposition in the case of
autonomous equations is given [29], See also [30] for the case of infinite-dimensional
systems. We refer the reader to [14, 15, 29] for more details and further references.

Inspired both in the classical notion of exponential dichotomy and in the notion
of nonuniform hyperbolic trajectory introduced by Pesin in [25, 26], Barreira and
Valls have introduced the notion of nonuniform exponential dichotomies and have
developed the corresponding theory in a systematic way [2, 7]. See also the book [4]
for details. In particular, the results proved by Barreira and Valls can be regarded
as a nice contribution to the nonuniform hyperbolicity theory. We refer to [1] for a
detailed exposition of the nonuniform hyperbolicity theory.

Furthermore, general nonuniform dichotomies have been studied, which extend
the notion of nonuniform exponential dichotomy in various ways. In [11, 12], Bento
and Silva considered the nonuniform polynomial dichotomy, the existence of smooth
stable manifolds in Banach spaces for sufficiently small perturbations of nonuniform
polynomial dichotomy was obtained. Nonuniform (µ, ν) dichotomy was studied in
[9, 10], Barreira et al [9] have established robustness of this dichotomy, this general
nonuniform dichotomies and local stable manifolds was given in [10]. A similar
dichotomy for the discrete case was discussed in [13, 31]

In [6], Barreira and Valls have introduced the so-called nonuniform exponential
trichotomy. Robustness of such a nonuniform exponential trichotomy was estab-
lished, which means a nonuniform exponential trichotomy defined by a nonau-
tonomous linear equation

x′ = A(t)x (1.1)

in a Banach space, persists under sufficiently small linear perturbations in the
equation

x′ = [A(t) + B(t)]x. (1.2)

In [8], they considered a linear equations (1.1) that may exhibit stable, unstable
and central behaviors in different directions, with respect to arbitrary asymptotic
rates of the form ecρ(t) determined by an arbitrary function ρ(t) instead of the usual
exponential behavior ect. They proposed a ρ−nonuniform exponential trichotomy
and consider the Lyapunov functions for the trichotomy.

In the present paper, our main objective is to consider the general case of nonuni-
form (µ, ν) trichotomy for an arbitrary nonautonomous linear dynamics, and es-
tablish the robustness of the nonuniform (µ, ν) trichotomy in Banach spaces, based
on [9] for nonuniform (µ, ν) dichotomy. This means that such a trichotomy per-
sists under sufficiently small linear perturbations. Precisely, the perturbed equation
(1.2) admits a nonuniform (µ, ν) trichotomy if the same happens for (1.1) for any
sufficiently small perturbations B(t). We also establish the continuous dependence
with the perturbation of the constants in the notion of trichotomy and robustness of
strong nonuniform (µ, ν) trichotomy. We note that the notion of nonuniform (µ, ν)
trichotomy is also an elaboration of the notion of nonuniform (µ, ν) dichotomy.

We remark that the study of robustness in the case of uniform exponential be-
havior has a long history. Early it was discussed by Perron [24], Coppel [16]. For
more recent work, we refer to [20, 21] and the references therein for uniform ex-
ponential behavior. We refer to [2, 4, 5, 14] for the study of robustness in the
setting of a nonuniform exponential behavior. A trichotomy for the discrete case
was discussed in [3, 17]. We emphasize that the trichotomy considered in this paper
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is more general, this may seem a somewhat formal generalization of the notion of
nonuniform exponential trichotomy in [6, 8]. Particularly in view of the applica-
tions, it is important to look for more general notions. Moreover, due to the central
role played by the notion of trichotomy, most importantly in the theory of center
manifolds which are crucial in the study of the asymptotic behavior of trajectories,
it is also helpful to understand how trichotomies vary under perturbations.

The remaining part of this paper is organized as follows. Section 2 is a prelimi-
nary for our main results. In Section 3, we establish the robustness of nonuniform
(µ, ν) trichotomies. The robustness of strong (µ, ν) trichotomies is presented in
Section 4.

2. Preliminaries

We say that an increasing function µ : R+ → [1,+∞) is a growth rate if

µ(0) = 1 and lim
t→+∞

µ(t) = +∞.

Let X be a Banach space and denote by B(X) the space of bounded linear
operators acting on X. Given a continuous function A : R+ → B(X). We assume
that each solution of (1.1) is global and denote the evolution operator associated
with (1.1) by T (t, s); i.e., the linear operator such that

T (t, s)x(s) = x(t), t, s > 0,

where x(t) is any solution of (1.1). Clearly, T (t, t) = Id and

T (t, τ)T (τ, s) = T (t, s), t, τ, s > 0.

Definition 2.1. [9] We say that equation (1.1) admits a nonuniform (µ, ν) di-
chotomy in R+ if there exist projections P (t) : X → X for each t > 0 satisfying

T (t, s)P (s) = P (t)T (t, s), t ≥ s, (2.1)

and there exist constants α, β, D > 0 ε ≥ 0 and two continuously differentiable
growth rates µ, ν such that

‖T (t, s)P (s)‖ ≤ D
( µ(t)

µ(s)

)−α

νε(s), t ≥ s, (2.2)

‖T (t, s)Q(s)‖ ≤ D
(µ(s)

µ(t)

)−β

νε(s), s ≥ t, (2.3)

where Q(t) = Id−P (t) for each t > 0. When ε = 0, we say that (1.1) has a uniform
(µ, ν) dichotomy or simply a (µ, ν) dichotomy.

For the convenience of the reader, we recall the following result about robustness
of a nonuniform (µ, ν) dichotomy obtained in [9]. Set

α̃ =
(α− β) +

√
(α + β)2 − 4δD(α + β)

2

D̃1 =
D

1− δD/(β + α̃)
, D̃2 =

D

1− δD/(α + α̃)
, D̃ = max{D̃1, D̃2},

(2.4)

δ < min
{α + β

4D
,

αβ

2D(α + β)
,
α̃ + β

D
,
α̃ + α

D
,

1
4DD̃

}
. (2.5)

We denote the evolution operator associated to equation (1.2) by T̂ (t, s)
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Lemma 2.2 ([9]). Let A,B : R+ → B(X) be continuous functions such that equa-
tion (1.1) admits a nonuniform (µ, ν) dichotomy in R+ with ε < min{α, β}. More-
over, assume that B(t) satisfies

‖B(t)‖ ≤ δν−ε(t)
µ′(t)
µ(t)

, t ≥ 0 (2.6)

with (2.5), then (1.2) admits a nonuniform (µ, ν) dichotomy in R+ with the pro-
jections P̂ (t), Q̂(t) such that for each t, s ∈ R+:

P̂ (t) = T̂ (t, 0)P̂ (0)T̂ (0, t), Q̂(t) = T̂ (t, 0)Q̂(0)T̂ (0, t), (2.7)

‖T̂ (t, s)| Im P̂ (s)‖ ≤ D̃
( µ(t)

µ(s)

)−α̃

νε(s), t ≥ s, (2.8)

‖T̂ (t, s)| Im Q̂(s)‖ ≤ D̃
(µ(s)

µ(t)

)−α̃

νε(s), s ≥ t. (2.9)

Suppose further that growth rates satisfy µ ≥ ν and

‖B(t)‖ ≤ δν−2ε(t)
{
(α + α̃)

µ′(t)
µ(t)

+ ε
ν′(t)
ν(t)

}
, t ≥ 0, (2.10)

then equation (1.2) admits a nonuniform (µ, ν) dichotomy in R+ with the constants
α, D, ε replaced respectively by α̃, 4DD̃, 2ε in (2.2), (2.3) and

‖P̂ (t)‖ ≤ 4Dνε(t), ‖Q̂(t)‖ ≤ 4Dνε(t). (2.11)

Definition 2.3. We say that (1.1) admits a nonuniform (µ, ν) trichotomy in I if
there exist projections P (t), Q(t), R(t) : X → X for each t ∈ I such that

T (t, s)P (s) = P (t)T (t, s), T (t, s)Q(s) = Q(t)T (t, s), T (t, s)R(s) = R(t)T (t, s)
(2.12)

and
P (t) + Q(t) + R(t) = Id (2.13)

for every t, s ∈ I, and there exist constants

0 ≤ η < α, 0 ≤ ξ < β, ε ≥ 0, D ≥ 1 (2.14)

such that for every t, s ∈ I with t ≥ s we have:

‖T (t, s)P (s)‖ ≤ D
( µ(t)

µ(s)

)−α

νε(s), (2.15)

‖T (t, s)R(s)‖ ≤ D
( µ(t)

µ(s)

)ξ

νε(s), (2.16)

‖T (t, s)−1Q(t)‖ ≤ D
( µ(t)

µ(s)

)−β

νε(t), (2.17)

‖T (t, s)−1R(t)‖ ≤ D
( µ(t)

µ(s)

)η

νε(t), (2.18)

a We notice that setting t = s in (2.15) and (2.17) we obtain

P (t) ≤ Dνε(t), Q(t) ≤ Dνε(t), R(t) ≤ Dνε(t), (2.19)

for every t ∈ I. When ε = 0, we say that (1.1) admits a uniform (µ, ν) trichotomy.

The following is an example with a nonuniform (µ, ν) trichotomy which can not
be uniform.
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Example 2.4. Given ε > 0, α > 0, µ and ν are arbitrary differentiable growth
rates, consider the differential equation in R3 given by

ẋ =
(−αµ′(t)

µ(t)
+

εν′(t)
2ν(t)

(cos t− 1)− ε

2
log ν(t) sin t

)
x

ẏ = 0

ż =
(αµ′(t)

µ(t)
− εν′(t)

2ν(t)
(cos t− 1) +

ε

2
log ν(t) sin t

)
z.

(2.20)

It is easy to verify that (2.20) has the evolution operator

T (t, s)(x, y, z) = (X(t, s)x, Y (t, s)y, Z(t, s)z)

= (T (t, s)P (s)x, T (t, s)R(s)y, T (t, s)Q(s)z),

where

X(t, s) =
( µ(t)

µ(s)

)−α

exp
(ε

2
log ν(t)(cos t− 1)− ε

2
log ν(s)(cos s− 1)

)
,

Y (t, s) = 1,

Z(t, s) = X(s, t) =
( µ(t)

µ(s)

)α

exp
(
− ε

2
log ν(t)(cos t− 1) +

ε

2
log ν(s)(cos s− 1)

)
One can easily verify that

‖T (t, s)P (s)‖ = ‖X(t, s)‖ ≤
( µ(t)

µ(s)

)−α

νε(s),

‖T (t, s)R(s)‖ = ‖Y (t, s)‖ = 1 ≤ νε(s),

‖T (t, s)−1Q(t)‖ = ‖Z(t, s)−1‖ ≤
( µ(t)

µ(s)

)−α

νε(t),

‖T (t, s)−1R(t)‖ = ‖Y (t, s)−1‖ = 1 ≤ νε(t),

This shows that (2.20) admits a nonuniform (µ, ν) trichotomy in R+. Moreover, if
we take t = 2kπ and s = (2k − 1)π, k ∈ N, then

‖X(t, s)‖ =
( µ(t)

µ(s)

)−α

νε(s),

which ensures us that the nonuniform part can not removed when ε > 0.

3. Robustness in semi-infinite intervals

Theorem 3.1. Let A,B : I → B(X) be continuous functions in an interval I =
[0,+∞) such that (1.1) admits a nonuniform (µ, ν) trichotomy with µ ≥ ν in I
satisfying

ε < min{(α− η)/2, (β − ξ)/2}, (3.1)
and assume that B(t) satisfies (2.10) and (2.11) with (2.5), then (1.2) admits a
nonuniform (µ, ν) trichotomy in [0,+∞); i.e.

(i) there exist projections P̂ (t), Q̂(t) and R̂(t) for t ∈ I satisfying (2.12) and
(2.13) for every t, s ∈ I;

(ii) for every t, s ∈ I with t ≥ s, the corresponding estimates to the ones in
(2.15)–(2.19) are valid with constants α, β, ξ, η, ε,D replaced respectively by

α̂ = (α + η)/2 + L((α− η)/2), β̂ = (β + ξ)/2 + L((β − ξ)/2),
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ξ̂ = (β + ξ)/2− L((β − ξ)/2), η̂ = (α + η)/2− L((α− η)/2),

ε̂ = 3ε, D̂ = max
{ D

1− δD/(α̂− η)
,

D

1− δD/(β̂ − ξ)

}
,

where L(x) = x
√

1− 2δD/x,

Proof. Let x(t) = T (t, s)x(s) be a solution of (1.1). We consider the change of
variables y(t) = x(t)µk(t), where k = (α + η)/2. Then y(t) satisfies the linear
equation

y′ = [A(t) + k
µ′(t)
µ(t)

]y. (3.2)

Denoting by Tk(t, s) its evolution operator we have

Tk(t, s) = T (t, s)
( µ(t)

µ(s)

)k

. (3.3)

Since (1.1) admits a nonuniform (µ, ν) trichotomy in I , we conclude that (3.2) ad-
mits a nonuniform (µ, ν) dichotomy in I with α1 = β1 = (α−η)/2, and projections
P1(t) = P (t) and Q1(t) = Q(t) + R(t) for each t ∈ I. It follows from Lemma (2.2)
that the equation

y′ = [A(t) + k
µ′(t)
µ(t)

+ B(t)]y (3.4)

admits a nonuniform (µ, ν) dichotomy, say with projections P̂1(t) and Q̂1(t). In
particular, the linear subspaces Ê1(t) = P̂1(t)(X) and F̂1(t) = Q̂1(t)(X) satisfy

Ê1(t)⊕ F̂1(t) = X. (3.5)

Now we consider a second change of variables z(t) = x(t)µk′
(t), where k′ = −(β +

ξ)/2. Then z(t) satisfies the linear equation

z′ = [A(t) + k′
µ′(t)
µ(t)

]z, (3.6)

and denoting by Tk′(t, s) its evolution operator we have

Tk′(t, s) = T (t, s)
( µ(t)

µ(s)

)k′

. (3.7)

Since (1.1) admits a nonuniform (µ, ν) trichotomy in I , we conclude that (3.6) ad-
mits a nonuniform (µ, ν) dichotomy in I with α2 = β2 = (β− ξ)/2, and projections
P2(t) = P (t) and Q2(t) = Q(t) + R(t) for each t ∈ I. It follows from Lemma (2.2)
that the equation

z′ = [A(t) + k′
µ′(t)
µ(t)

+ B(t)]y, (3.8)

admits a nonuniform (µ, ν) dichotomy, say with projections P̂2(t) and Q̂2(t). In
particular, the linear subspaces Ê2(t) = P̂2(t)(X) and F̂2(t) = Q̂2(t)(X) satisfy

Ê2(t)⊕ F̂2(t) = X. (3.9)

We also consider the evolution operators in (3.4) and (3.8), namely

T̂k(t, s) =
( µ(t)

µ(s)

)k

T̂ (t, s) and T̂k′(t, s) =
( µ(t)

µ(s)

)k′

T̂ (t, s). (3.10)

�
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In the following, we firstly consider the relationship of these linear subspaces and
projections.

Lemma 3.2. For every t ∈ I we have

Ê1(t) ⊂ Ê2(t) and F̂2(t) ⊂ F̂1(t).

Proof. Set

U(x) = lim sup
t→+∞

ln ‖T̂k(t, s)x‖
lnµ(t)

. (3.11)

If there exists x ∈ Ê1(t)\Ê2(t), then we write x = y + z with y ∈ Ê2(t) and
z ∈ F̂2(t). Since x ∈ Ê1(t), by Lemma (2.2) we have

‖T̂k(t, s)x‖ ≤ D̃
( µ(t)

µ(s)

)−L(α1)

νε(s)‖x‖. (3.12)

and hence
U(x) ≤ −L(α1) < 0 (3.13)

where L(x) = x
√

1− 2δD/x. Moreover, since x ∈ Ê1(t)\Ê2(t), y ∈ Ê2(t), we have
z 6= 0, and hence

U(x) = max{U(y), U(z)} = U(z) = lim sup
t→+∞

ln ‖T̂k(t, s)z‖
lnµ(t)

.

Since z ∈ F̂2(t), for t ≥ s we have

‖T̂k(t, s)z‖ =
( µ(t)

µ(s)

)(k−k′)

‖T̂k′(t, s)z‖

≥ 1
D̃
‖z‖

( µ(t)
µ(s)

)(k−k′+L(α2))

ν−ε(t)

≥ 1
D̃
‖z‖

( µ(t)
µ(s)

)(k−k′+L(α2)) 1
µα2+L(α2)(t)

.

So

U(x) = (k − k′ − α2) =
α + η + 2ξ

2
> 0. (3.14)

This contradicts the inequality (3.13). Therefore, Ê1(t) ⊂ Ê2(t). In a similar
manner, we obtain that F̂2(t) ⊂ F̂1(t) for each t ∈ I. �

By Lemma (3.2), we can prove the following two Lemmas. These proofs are
similar to those in [6].

Lemma 3.3. For every t ∈ I we have

(Ê2(t) ∩ F̂1(t))⊕ Ê1(t)⊕ F̂2(t) = X. (3.15)

Proof. Since Ê1(t)⊕ F̂1(t) = X, we have

(Ê2(t) ∩ Ê1(t))⊕ (Ê2(t) ∩ F̂1(t)) = Ê2(t).

According to Lemma (3.2), Ê1(t) ⊂ Ê2(t), we have

Ê2(t) ∩ Ê1(t) = Ê1(t),

and hence
Ê1(t)⊕ (Ê2(t) ∩ F̂1(t)) = Ê2(t).
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Then we obtain

(Ê2(t) ∩ F̂1(t))⊕ Ê1(t)⊕ F̂2(t) = Ê2(t) ∩ F̂2(t) = X.

�

Lemma 3.4. For every t ∈ I we have

P̂1(t)Q̂2(t) = Q̂2(t)P̂1(t) = 0. (3.16)

Proof. According to Lemma (3.2), Ê1(t) ⊂ Ê2(t), F̂2(t) ⊂ F̂1(t), for each x ∈ X we
have

Q̂2(t)x ∈ F̂2(t) ⊂ F̂1(t),

P̂1(t)x ∈ Ê2(t) ⊂ Ê2(t).

Therefore,

P̂1(t)Q̂2(t)x ∈ P̂1(t)F̂1(t) = P̂1(t) Im Q̂1(t) = {0},

Q̂2(t)P̂1(t)x ∈ Q̂2(t)Ê1(2) = Q̂2(t) Im P̂2(t) = {0} .

�

We proceed with the proof of Theorem (3.1). Set

P̂ (t) = P̂1(t), Q̂(t) = Q̂2(t), R̂(t) = Id−P̂1(t)− Q̂2(t).

In view of Lemma (2.2), we have

T̂k(t, s)P̂ (s) = P̂ (t)T̂k(t, s), T̂k′(t, s)Q̂(s) = Q̂(t)T̂k′(t, s),

according to (3.10), we obtain

T̂ (t, s)P̂ (s) = P̂ (t)T̂ (t, s), T̂ (t, s)Q̂(s) = Q̂(t)T̂ (t, s).

This implies that
T̂ (t, s)R̂(s) = R̂(t)T̂ (t, s).

Since the operators P̂ (t) and Q̂(t) are projections,

P̂ (t) = P̂ (t)2, Q̂(t) = Q̂(t)2,

and by Lemma (3.4) we have

R̂(t)2 = (Id−P̂1(t)− Q̂2(t))2

= Id−2P̂1(t)− 2Q̂2(t) + P̂1(t)2 + Q̂2(t)2 + P̂1(t)Q̂2(t) + Q̂2(t)P̂1(t)

= Id−P̂1(t)− Q̂2(t) = R̂(t).

Now we consider the subspaces

Ê(t) = P̂ (t)(X), F̂ (t) = Q̂(t)(X) Ĝ(t) = R̂(t)(X). (3.17)

since Ê1(t) = P̂ (t)(X) and F̂2(t) = Q̂(t)(X), We have

Ê(t) = Ê1(t), F̂ (t) = F̂2(t). (3.18)

by Lemma (3.3), the image of Id−P̂ (t)− Q̂(t) = R̂(t) is Ê2(t) ∩ F̂1(t). So

Ĝ(t) = R̂(t)(X) = Ê2(t) ∩ F̂1(t). (3.19)

Furthermore, according to (2.11)

‖R̂(t)‖ = ‖Id− P̂1(t)− Q̂2(t)‖ ≤ 1 + 8Dνε(t) ≤ (1 + 8D)νε(t). (3.20)
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By Lemma (2.2), since P̂ (t) = P̂1(t), for every t ≥ s we have

‖T̂ (t, s)|Ê(s)‖ = ‖T̂k(t, s)
( µ(t)
µ(s)

)−k|Ê1(s)‖

≤ D1

( µ(t)
µ(s)

)−(k+L(α1))
ν2ε(s)

for some constant D1 > 0. Similarly, since Q̂(t) = Q̂2(t) for every t ≥ s ≥ 0 we
have

‖T̂ (t, s)−1|F̂ (t)‖ = ‖T̂k′(t, s)−1
( µ(t)
µ(s)

)k′

|F̂2(t)‖

≤ D2

( µ(t)
µ(s)

)(k′−L(α2))

ν2ε(t)

for some constant D2 > 0. Furthermore, by (3.18), for every t ≥ s we have

‖T̂ (t, s)|R̂(s)‖ ≤ ‖T̂ (t, s)|Ĝ(s)‖ · ‖R̂(s)‖

= ‖T̂ (t, s)|(Ê2(s) ∩ F̂1(s))‖ · ‖R̂(s)‖

≤ ‖T̂ (t, s)|Ê2(s)‖ · ‖R̂(s)‖

= D2

( µ(t)
µ(s)

)−k′

‖T̂k′(t, s)|Ê2(s)‖ · ‖R̂(s)‖

≤ (1 + 8D)D2

( µ(t)
µ(s)

)(−k′−L(α2))

ν3ε(s).

(3.21)

The last inequality follows from Lemma (2.2) and (3.20), on the other hand, again
by (3.18), for every t ≥ s ≥ 0 we have

‖T̂ (t, s)|−1R̂(t)‖ ≤ ‖T̂ (t, s)−1|Ĝ(t)‖ · ‖R̂(s)‖

= ‖T̂ (t, s)−1|F̂1(t)‖ · ‖R̂(t)‖

=
( µ(t)

µ(s)

)k

‖T̂−1
k′ (t, s)|F̂1(t)‖ · ‖R̂(t)‖

≤ (1 + 8D)D1

( µ(t)
µ(s)

)(k−L(α1))

ν3ε(t).

(3.22)

The last inequality also follows from Lemma (2.2) and (3.20). This shows that (1.2)
admits a nonuniform (µ, ν) trichotomy in [0,+∞).

4. Robustness of strong (µ, ν) trichotomy

We can also consider a stronger version of (µ, ν) trichotomy and establish a corre-
sponding robustness result. Namely, we say that (1.1) admits a strong nonuniform
(µ, ν) trichotomy in I if it admits a nonuniform (µ, ν) trichotomy in I and there
exist constants a ≥ α and b ≥ β such that for every t, s ∈ I with t ≥ s we have

‖T (t, s)−1P (t)‖ ≤ D
( µ(t)

µ(s)

)a

νε(t), (4.1)

‖T (t, s)Q(s)‖ ≤ D
( µ(t)

µ(s)

)b

νε(s), (4.2)
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We recall that (1.1) is said to admit a strong nonuniform (µ, ν) dichotomy if it
admits a nonuniform (µ, ν) dichotomy and there exists a > max{α, β} such that
for every t, s ∈ I with t ≥ s we have

‖T (t, s)−1P (t)‖ ≤ D
( µ(t)

µ(s)

)a

νε(t), (4.3)

‖T (t, s)Q(s)‖ ≤ D
( µ(t)

µ(s)

)a

νε(s), (4.4)

Lemma 4.1 ([9]). Let A,B : R+ → B(X) be continuous functions such that
(1.1) admits a nonuniform (µ, ν) dichotomy in R+ with µ ≥ ν satisfying ε <
min{α.β} and assume that B(t) satisfies (2.10) with (2.5), then (1.2) admits a
strong nonuniform (µ, ν) dichotomy in R+.

Theorem 4.2. Let A,B : R+ → B(X) be continuous functions such that (1.1)
admits a nonuniform (µ, ν) trichotomy in R+ with µ ≥ ν satisfying (3.1) and
assume that B(t) satisfies (2.10) with (2.5), then (1.2) admits a strong nonuniform
(µ, ν) trichotomy in R+.

Proof. Following the proof of Theorem (3.1), We consider the projections P̂ (t) =
P̂1(t) and Q̂(t) = Q̂2(t). According to lemma (4.1), for every t ≥ s we have

‖T̂ (t, s)−1P̂ (t)‖ =
( µ(t)

µ(s)

)k

‖T̂k(t, s)−1P̂ (t)‖ ≤ 4DD̃
( µ(t)

µ(s)

)k+L(α1)

ν3ε(t),

‖T̂ (t, s)Q̂(s)‖ =
( µ(t)

µ(s)

)−k′

‖T̂k′(t, s)−1Q̂(s)‖ ≤ 4DD̃
( µ(t)

µ(s)

)−k′+L(α2)

ν3ε(s),

where k = α + η, k′ = −(β + ξ), so (1.2) admits a strong nonuniform (µ, ν)
trichotomy in R+. �
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