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OPTIMAL CONTROL OF A MODIFIED SWIFT-HOHENBERG
EQUATION

NING DUAN, WENJIE GAO

ABSTRACT. In this article, we present the optimal control for the modified
Swift-Hohenberg equation, under certain boundary conditions, and show the
existence of an optimal solution.

1. INTRODUCTION

This article concerns the 1-D modified Swift-Hohenberg equation that was pro-
posed by Doelman et al [2]:

g+ kgppe + 2Upe + au + blug* +u® =0, x€Q, te(0,7T). (1.1)
On the basis of physical considerations, (1.1)) is supplemented with the boundary
value condition
u(z,t) = Ugy(z,t) =0 for z € 0Q, (1.2)
and the initial condition
u(z,0) =uo(z), =€, (1.3)

where () is an open connected bounded domain in R, k£, a and b are arbitrary
constants. ug(z) is a given function from a suitable phase space.

The Swift-Hohenberg equation is one of the universal equations used in the
description of pattern formation in spatially extended dissipative systems, (see [15]),
which arise in the study of convective hydrodynamics [I6], plasma confinement in
toroidal devices [5], viscous film flow and bifurcating solutions of the Navier-Stokes
[12]. Note that, the usual Swift-Hohenberg equation [16] is recovered for b = 0. The
additional term b|Vu|?, reminiscent of the Kuramoto-Sivashinsky equation, which
arises in the study of various pattern formation phenomena involving some kind of
phase turbulence or phase transition, (see [4} [0, [14]), breaks the symmetry u — —u.

During the past years, many authors have paid much attention to the Swift-
Hohenberg equation (see, e.g. [6, B, [16]). However, only a few people dovoted
to the modified Swift-Hohenberg equation. It were A. Doelman et al.[2] who first
studied the modified Swift-Hohenberg equation for a pattern formation system with
two unbounded spatial directions that is near the onset to instability. M. Polat[9]
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also considered the modified Swift-Hohenberg equation. In his paper, the existence
of a global attractor is proved for the modified Swift-Hohenberg equation as —
(1.3). Recently, L. Song et al.[I5] studied the long time behavior for modified
Swift-Hohenberg equation in H* (k > 0) space. By using an iteration procedure,
regularity estimates for the linear semigroups and a classical existence theorem of
global attractor, they proved that problem (L.I)-(L.3) possesses a global attractor
in Sobolev space H* for all k > 0, which attracts any bounded subset of H*(£2) in
the H*-norm.

The optimal control plays an important role in modern control theories, and has
a wider application in modern engineering. Two methods are used for studying
control problems in PDE: one is using a low model method, and then changing
to an ODE model [3]; the other is using a quasi-optimal control method [I]. No
matter which one is chosen, it is necessary to prove the existence of optimal solution
and establish the optimality system. Many papers have already been published to
study the control problems of nonlinear parabolic equations. For example, Yong
and Zheng[T9], Tian et al.[I7, [I8], Ryu and Yagi [10l [I1], Zhao and Liu[20] and so
on.

This article concerns the distributed optimal control problem

. 1 1)
minimize J(u,w) = 3 Cu = zall} + Slwl3q,). (1.4)

subject to

0
au + Kgpre + 2Upe + au + blug|* +u® = Bw, (x,t) € Q x (0,7),

ot
u(z,t) = uge(z,t) =0, €09, (1.5)
u(z,0) = ug(z), =€
The control target is to match the given desired state z4 in the L2-sense by adjusting
the body force w in a control volume Qg C Q = (0,1) x (0,7) in the L%-sense.
Assume that V = {u € H?*(0,1)|u(0,t) = u(1,t) = 0}, U = H{(0,1) and
H = L*(0,1). Assume further that V', U’ and H' are dual spaces of V, U and H.
Then, we obtain

VeoU—sH=H U <V.

Each embedding being dense. The extension operator B € L(L?*(Qy), L?(0,T; H))
which is called the controller is introduced as

Buw — w, q€ QOa
w =
Oa w e Q \ QO'
We supply H with the inner product (-,-) and the norm || - ||, and define a space

W(0,T;V) as
W(0,T;V)={y:y € L*(0,T;V), y, € L*(0,T;V")},

which is a Hilbert space endowed with common inner product.

This paper is organized as follows. In the next section, we prove the existence
and uniqueness of weak solution to the equation in a special space. We also discuss
the relation among the norms of weak solution, initial value and control item:;
In section 3, we consider the optimal control problem and prove the existence of
optimal solution; Finally in Section 4, conclusions are obtained.
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2. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

In this section, we prove the existence and uniqueness of weak solution for prob-
lem (1.5, where z € (0,1), t € [0,T], Bw € L*(0,T; H) and a control w € L*(Qo).
Now, we give the definition of the weak solution in the space W (0,T; V).

Definition 2.1. For all n € V, a function u(z,t) € W(0,T;V) is called a weak
solution to problem (1.5]), if

(%”’) + Bty M) — 20ty 02) + @ty ) + b |, m) + (u,m) = (Bw,p). (2.1)

We shall give a theorem on the existence and uniqueness of weak solution to

problem ([1.5)).

Theorem 2.2. Suppose that k is sufficiently large, ug € V, Bw € L*(0,T; H),
then (1.5) admits a unique weak solution u(xz,t) € W(0,T;V).

Proof. Galerkin’s method is applied for this proof. Denote A = (—92)? as a differ-
ential operator, let {1;}52; denote the eigenfunctions of the operator A = (—9%)2.
For n € N, define the discrete ansatz space by

Vi = span{yy, ¢, ..., hn} C V.

Let u, = > ul(t)1i(x) require u,,(0,-) — up in H to hold true.
By analyzing the limiting behavior of sequences of smooth function {u,,}, we can
prove the existence of a weak solution to the modified Swift-Hohenberg equation.
Performing the Galerkin metod for , we obtain

ouy,
(xﬁan) + k(”n,ajaja 77:1:30) - 2(un,wanw) + a(un777) + b(|un,:1: 2) 77) + (Uiﬂ?)

= (Bw,n), VneV, (zt)€Q, (2.2)
(un(Qj?O)’n) = (UO(x)vn)7 W] eV, xe (07 1)

Then the equation of problem is an ordinary differential equation and
according to ODE theory, there exists a unique solution in the interval [0,t,).
what we should do is to show that the solution is uniformly bounded when t,, — T'.
We need also to show that the times ¢,, there are not decaying to 0 as n — oc.

Then, we shall prove the existence of solution in the following steps.

Step 1, multiplying the equation in by u,, integrating with respect to x on
(0,1), we deduce that

Tl Ml el + (23)
< Jalllun ]| + 2l tinzl? + [bl(Jtunz[?, ) + (Buw, un).
By Nirenberg’s inequality,
e lls/s < colltnaz |2 unlls.
Then
cip?
D1, un) < [bllens 13 sllulla < bl 1l < llun 1§+ == ltnas] |

On the other hand, we have

2||unw||2 = —2(Un, Ungz) < HunH2 + HUHM||27
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1 1
(Bw,up) < || Bwl|[lun]l < 5[ Bwl* + 5 Jun]*.

Summing up, we have

d 2 cgb? 2 2 2

g (0,T; H) is the control item, we
can assume ||Bw]|| < M, where M is a positive constant. Then
2 4 2k — D2 > < (2al+3 P+ M? 2.4
gy lunll” + 5 Munea||” < 2laf + 3)[Jun||” + M". (2.4)
Using Gronwall’s inequality, we obtain
M2
lun® < €1y 0 + S
2lal+3 (2.5)
(2lal+3)T 2 M? 2 '
< elle " =cy, te€[0,T].
e ||u 70 + 2|a| +3 Cl [ ]
Integrating ([2.4) with on [0, 77,
T
| e Pt
0
2 g 2 2 2 (2.6)
- 9al + 3 JI12dt + MPT + ||u,, ) :
< grarr— (Gl +3) [ P+ 32T 4 )
2

2 _
Sm(@l@H@ AT + M?T + |lun|®) = 5.

Multiplying the equation in by Unze, integrating with respect to  on (0,1),
we deduce that
1d
2.dt
= 2Hunmn2 - aHum:H2 + ((un)?’,unm) + b(‘unw|27unm) - (Bwaun,m’)-

Noticing that

+ kHun,mmHQ

(2.7)

k 12
and
M? 1
< ||Bwl|[|[ungz]| < 5 + ’Hunxas”Q
M?2 1k

< 2 +2(6H na:xac||2 Qk”un:c”)

A

_(Bw7 umcx)

By Nirenberg’s inequality,
[unlle < COHUnmmnl/gHunHS/gv [tnella < CO”unmzHS/u”un”?ﬂQ'

Hence

1
((un)3vunm) < 2Hunmn2 + *||Un||g

12 k
< *||un:vm||2 *||unw||2 12”“71119:”2"'0(01)

12
= ||un:v||2 ”unmeQ + c(e1),



EJDE-2012/155 OPTIMAL CONTROL 5

and
2 ! 2 1] 4 2
16[((Una)s Unzz) = |b| (Ung) “Ungedr < ?Hunﬂcllzi + QHuan
0
k 12
< E”unmzHQ +cle1) + ||unzzm||2 + 7” nw”2

k 1
= g”“nmmeQ +c(e1) + ?||un:r||2

Summing up,

72
% k
Using Gronwall’s inequality, we deduce that
2k(2¢(cy) + M?)

144 + 4k|a| + 3

a”unr”2+k”unrmu2 < + 2|a + )”unz”2+20(cl)+M2

72 3
o l|? < CFF21F 20 a0 (0)2 +

(2.8)
72 3 2k(2¢c(cy) + M?)
< (B +2lal+5p)T 2 2T ) 2 T].
Then, by (2.5), (2.6) and (2.8)), we obtain
T
/ ()|t < c.
0
Using Sobolev’s embedding theorem, we also have
lltn oo < ca. (2.9)

Step 2, we prove a uniform L?(0,T;V’) bound on a sequence {uy ;}. In order to
obtain the result, we first establish the H2-norm estimate for problem .

Multiplying the equation in by Unzzzz, integrating with respect to x on
(0,1), we deduce that

1d
2dt ”u" zzH2 + k”un mcm:||2
= 2||un:vzzH2 - aHunzx” - ((un)gaunzmmz) - b(|unz|2aunazmzz) + (Bwaunzzza:)~

(2.10)

By Nierenberg’s inequality,

||Un$||4 < COH“m:acz;c||1/12||Unx||11/12.

Therefore,
k 5|b
b((unm)Qaunx:cacx) 10||unxacx:c||2+ |2k| ” nx||4_ 5“'“%363:9090” +C(02)
On the other hand, we have
((un)3 una:m:vz) < sup ‘un|3 ||un1::vzzH1 > 1O||unzx93m|| (64)7
z€[0,1
k‘ 10
k 5M2
B nrrrx < B nrrxrx nrrxrx 2 .
(B tasars) < [Bltnsarel] € 2 sl + 2o
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Summing up,

d

20 5M?
%Hum&w||2 + kHunwmzHQ < (? + 2|a|)H“anH2 +

+ 2¢(ea) + 2¢(eq).

Using Gronwall’s inequality, we derive that
5M?2 + 2k(c(c2) + c(cq))

20
tnael|* < eCFF21D i (0)1 +

20 + 2k|a
5M? + 2k(c(c2) + c(cq)) (2.11)
< (22 42a)T 02
=er lunza (O)I + 20 + 2k|a|
=ci, Vtel0,T).
It then follows from (2.5, (2.6) and (2.11)) that
[ttnzlloo < co- (2.12)

Notice that

(Unzzzzs M) = (Unzas Nex) < Humﬂx””nzw” < ”unww”HnHV’

(|Unz|2a77) < sup |une| - (Unz, 1) < colltunel||I0]] < colltnell 7]V,

z€[0,1]

((un)®m) < sup [unl* - (un,n) < cillunlllinll < cillunlllinllv,
xe|0,

(tngz,n) = (n, Nez) < lfunlllzall < llunlllinllv,  (un,n) < funlllinl] < luallllnllv,

Therefore,
[untllv: < Ellwnsll + 2llunll + lalllunll + [bles|luns | + €illunll + | Buwl|
< (kes 4 2¢1 + |aler + |bleges + cer + M).
Hence,
ltnt|lL2(0,3v) < (kes 4 2¢1 + |aler + |blcges + cey + M)T = ;. (2.13)

Collecting the previous results, we obtain:

(1) For every t € [0,T], the sequence {u, }nen is bounded in L?(0,T; V), which
is independent of the dimension of ansatz space n.

(2) For every t € [0, 71, the sequence {u + }nen is bounded in L2(0,T; V'), which
is independent of the dimension of ansatz space n.

By the above discussion, we obtain u(x,t) € W(0,T;V). It is easy to check
that W(0,T;V) is compactly embedded into C(0,T’; H) which denote the space of
continuous functions. We concludes convergence of a subsequences, again denoted
by {u,} weak into W (0,T; V), weak-star in L>(0,T; H) and strong in L?(0,T; H)
to functions u(z,t) € W(0,T;V).

Since the proof of uniqueness is easy, we omit it. Then, Theorem 2.2 is proved.

O

Now, we shall discuss the relation among the norm of the weak solution, the
initial value, and the control item.

Theorem 2.3. Suppose that k is sufficiently large, ug € V, Bw € L?(0,T; H),
then there exists positive constants Cy and Cy such that

[ullfy o.7vy < Crllluolly + lwll72(qy) + Co, (2.14)
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Proof. Clearly, (2.14) implies

[l F2g0,7v) + 1uellzo, vy < Crllluolly + 1 BwlZe () + Co. (2.15)
Passing to the limit in (2.3)), we obtain
1d
5 g1l + Kllwae” + llulli < lallull® + 2l + bl(jual*, u) + (Bw,u).  (2.16)
Using the same method as in the proof of the above theorem, we derive that
d 2 Cng 2 2 2
g 1l + 2k = == = D)jues [|° < (2lal + 3)|[ull” + | Bwl”. (2.17)
Then, by Gronwall’s inequality,
2 (2lal+3)t 2 2
ull“<e Up ||~ + | Bw||
el ol + 57773 019
< C8““‘0“2 + CQHBw”Za vt € [O7T]
Therefore,
||u||2L2(0,T;H) < CST||u0H2 + 09||Bw||2L2(0,T;H)- (2.19)
Integrating ([2.17) with respect to ¢t on [0,T], we obtain
2 2 CébQ 2
[T = lluoll® + (2k = == = Dlluws ()

< ||BWH%2(H) + (2[al + 3)”“”%2(11)-
By (2.19) and the above inequality,

”umH%?(H)
< 2
4k — cib? — 4

< c10]| Bwl|F2 gy + canlluoll®.

(1Bl (i) + (2la] + 3)(esTlluol> + coll Buol2a(ry) + l1uo]|?)

(2.20)

Passing to the limit in , we obtain
1d
2dt
= 2||u33$||2 - CLHU:EHZ + ((u)gvumc) + b(|“x|2vux:c) — (Bw, Ugy).

||UxH2 +k||umx||2

Using the same method as in the proof of the above theorem, we derive that
3

%H%HQ + kg < 2¢(er) + | Bw* + (% +2lal + ﬁ)”quQ-
By Gronwall’s inequality,
s | < e HAEE 3 g |2 + T ik:;/(:iz)l T3 TaaT EZIaI Bl (2.21)
< c1a||ugol® + e1s|| Bw||® + cia.
Therefore,
[ulloo <€ NuallZoary < raTlluaoll* + 13l Bwl[ 2 sy + c1aT. (2.22)

Adding (Z19), (220) and (2:2) gives

lullZ2 0 7o) < exs(1BwlZzo 2oy + luollE) + cs. (2.23)
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On the other hand, passing to the limit in (2.10)), a simple calculation shows that

d 20 S
a\lumll2 + kl[tzoea | < (5 + 2al)llugs||* + %llell2 + 2¢(ca) + 2¢(ca).

Using Gronwall’s inequality,
5|| Bw||? kc(e2) + ke(ey)
20 + 2k|al 10 + |k|al (2.24)
< cir([Bwll® + l[uasol*) + c1s.
It then follows from (2.18)), (2.21)) and (2.24) that
[[uz (2, B[] < c.

20
HumIHQ < % +2‘a‘)t|‘“110”2 +

On the other hand, we have

(|ual®,m) < sup |t | - (uey ) < clluallllnl] < clluelllinlv,
x€|0,

(@) m) < sup ful*- (u,n) < Eullllnll < {lulllnllv-
xz€[0,1]

(Uazzs 1) = (U Nzz) < [[ulllnzall < ulllinllv,  (wn) < llullllnll < llulllinllv,
Therefore,
e[ v
< Kl || + 2[lull + lalllull + [Blellue || + [l + || Bwl|
< k(err (|| Bw])? + [[uaxol®) + c18)"? + (2 + lal + ¢*) (csluol|* + col| Bw|[*)"/?
+ [ble(crzlluaoll® + cas|| Bwl|® + c14)'/? + || Bw||

Hence,

[n, el F2 0,750y < cr9(lluolli + [ Bwll*) + e20. (2.25)
By (2.23), (2.25) and the definition of extension operator B, we obtain (2.15).
Then, Theorem is proved. O

3. OPTIMAL CONTROL PROBLEM

In this section, we consider the optimal control problem associated with the
fourth-order parabolic equation and prove the existence of optimal solution basing
on J. L. Lions’ theory (see [1]).

In the following, we suppose L?(Qp) is a Hilbert space of control variables, we
also suppose B € L(L?(Qo), L2(0,T; H)) is the controller and a control w € L?(Qo),
consider the following control system

0
8—1; + Kgppr + 2Uge + au + blug|? +u® = Bw, (x,t) € (0,1) x (0,T),

w(z,t) = Ugy(z,t) =0, x=0,1, (3.1)

u(z,0) =up(z), =€ (0,1).
Here, it is assumed that ug € V. By Theorem we can define the solution map
w — u(w) of L2(Qp) into W(0,T;V). The solution u is called the state of the

control system (3.1). The observation of the state is assumed to be given by Cu.
Here C € L(W(0,T;V),S) is an operator, which is called the observer, S is a real
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Hilbert space of observations. The cost function associated with the control system
(3.1) is given by
1 1)
T(u,w) = 51Cu = zall} + Sl gy, (32)

where z4 € S is a desired state and § > 0 is fixed. An optimal control problem
about problem is
minimize J(u,w). (3.3)
Let X = W(0,T;V) x L?(Qo) and Y = L?(0,T;V) x H. We define an operator
e =ce(e1,e2) : X =Y, where
er=G= (A2)_1(% + ktgpzrr + 2Uzy + au + b|u35|2 +ud — Buw),

ez = u(x,0) — up.
Here A2 is an operator from V to V. Then, we write (3.3) in the form
minimize J(u,w) subject to e(u,w) = 0.

Theorem 3.1. Suppose that k is sufficiently large, ug € V, Bw € L*(0,T; H),
then there exists an optimal control solution (u*,w*) to problem (3.1).

Proof. Suppose (u,w) satisfy e(u, w) = 0. In view of (3.2)), we deduce that
)
J(u,w) > §||1UH%2(QO)
By Theorem we obtain |lulw (o,r;v) — oo yields ||w||z2(q,) — oo. Therefore,

J(u,w) — oo, when |[(u,w)||x — oc. (3.4)

As the norm is weakly lower semi-continuous, we achieve that J is weakly lower
semi-continuous. Since, for all (u,w) € X, J(u,w) > 0, there exists A > 0 defined
by
A = inf{J(u, w)|(u, w) € X, e(u,w) = 0},
which imlies the existence of a minimizing sequence {(u"™,w")},en in X such that
A= lim J(u",w") and e(u",w")=0, VneNlN

n—oo

From , there exists an element (u*, w*) € X such that when n — oo,
u" —u*, weakly, weW(0,T;V), (3.5)
w" — w*, weakly, w € L*(Qo).
Using (3.5), we obtain

T
lim (uy(x,t) —up,¥()y vdt =0, Yy € L2(07T; V),

n—oo 0
T
lim (u"(x,t) — u*, () vdt =0, Yy € L*0,T;V),

n—oo 0
T
lim (’LL;LI(LL', t) - uva ¢(t))V’,th =0, W/} € L2(0, T7 V)7
n—oo 0
Since W(0,T; V) is compactly embedded into L?(0,7; L°°), we have u" — u*
strongly in L?(0,T;L>). On the other hand, we know that w, € L®(0,T;V)
and u,; € L*(0,T;V*). Hence by [I3, Lemma 4] we have u" — u* strongly in
C(0,T; L), ull — u’ strongly in C(0,T; H), as n — oc.
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As the sequence {u"},cn converges weakly, then ||u™||y (o 7,1y is bounded. And
lu™ | 2 (0, 1;15¢) is also bounded based on the embedding theorem.
Because u! — u} in L*(0,T;L>) as n — oo, we know that ||u}| 12011 is

bounded too.
By (3.5), we deduce that

‘/OT/Ol ((u)? = (u)?)n e dt| = ’/OT/Ol(U§+U;)(U§—u;‘,)ndxdt‘

T
<| [z e = |
0

< lug +ugllrz e luy — uzlloen lnll e
—0, n— oo, VneL*0,T;H).

‘/OT /01 ((u”)?’ — (u*)‘s) ndxdt‘
< ‘ /OT /01((u")2 +upu* + (u*)?) (u" — u*)nde dt‘

and

T
<| [0+ @2l =l
< (™) + unu® + (w*)?[| L2 o) ™ — w*le Inll L2
—0, n— oo, VneL*0,T;H).

Using (3.6) again,

T 1
‘/ / (Bw — Bw*)ndxdt| — 0, asn — oo, Vn € L*(0,T; H).
o Jo

In view of the above discussions,
er(u*,w*) =0, VneN.
Noticing that u* € W(0,T;V), we derive that v*(0) € H. Since u" — u* weakly
in W(0,T;V), we can infer that v"(0) — u*(0) weakly as n — oo. Thus,
(u™(0) —u*(0),n) = 0, asn — oo, Vn € H,
which means es(u*, w*) = 0. Therefore, we obtain
e(u*,w*)=0, inY.

So, there exists an optimal solution (u*,w*) to problem (3.1]). Then, Theorem
is proved. O

4. CONCLUSIONS

The modified Swift-Hohenberg equation is an important mathematical physical
model. Because of the complexity of nonlinear parts of the equation, there has
been no research on the optimal control and boundary control of this equation. In
this paper, we study the distributed optimal control problem for problem —
using a series of mathematical estimates. Our research is motivated by the
study of the optimal control problem for the viscous Degasperis-Procesi equation,
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viscous Camassa-Holm equation [I7] [I8], and the existence theory of optimal con-
trol of distributed parameter systems. We also prove the existence of an optimal
solution to problem —. In order to realize optimal solutions of optimal
control problems in practice one must be able to recompute the optimal solutions
in the presence of disturbances in real time unless one gives up optimality. We
will use mathematical theory and related numerical methods to solve that problem
numerically, which is our intention in the future.

Acknowledgements. The author would like to thank the anonymous referee for
the valuable comments and suggestions on the original manuscript.
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