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EXISTENCE OF ALMOST PERIODIC SOLUTIONS FOR
SEMILINEAR STOCHASTIC EVOLUTION EQUATIONS DRIVEN

BY FRACTIONAL BROWNIAN MOTION

PAUL H. BEZANDRY

Abstract. This article concerns the existence of almost periodic solutions to
a class of abstract stochastic evolution equations driven by fractional Brownian
motion in a separable real Hilbert space. Under some sufficient conditions, we
establish the existence and uniqueness of a pth-mean almost periodic mild
solution to those stochastic differential equations.

1. Introduction

Let (K, ‖·‖, 〈·〉) and (H, ‖·‖, 〈·〉) be real separable Hilbert spaces and (Ω,F ,P) be
a complete probability space. We denote by L(H) the Banach algebra of all linear
bounded operators on H and by L2 = L2(K; H) the space of all Hilbert-Schmidt
operators acting between K and H equipped with the Hilbert-Schmidt norm ‖ · ‖L2 .

Recall that a Wiener process {W(t), t ∈ R} defined on (Ω,F ,P) with values
in K can be obtained as follows: let {Wi(t), t ∈ R+}, i = 1, 2, be independent
K-valued Wiener processes, then

W(t) =

{
W1(t) if t ≥ 0,
W2(−t) if t ≤ 0

is a Wiener process with R as time parameter. We let Ft = σ{W(s), s ≤ t}.
Let K0 be an arbitrary separable Hilbert space and L0

2 = L2(K0; H) which is a
separable Hilbert space with respect to the Hilbert-Schmidt norm ‖ · ‖L0

2
.

We are concerned with the class of semilinear stochastic differential equations in
a real separable Hilbert space H driven by fractional Brownian motion (fBm) and
Wiener process of the general form

dX(t) = A(t)X(t)+F (t,X(t)) dt+G(t,X(t)) dW(t)+Φ(t) dBH(t), t ∈ R. (1.1) C1

Here, (A(t))t∈R is a family of densely defined closed linear operators satisfying
Acquistapace-Terreni conditions; F : R × H → H; G : R × H → L0

2; Φ : R → L2;{
BH(t) : t ∈ R

}
is a cylindrical fractional Brownian motion with Hurst parameter
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H ∈ (1/2, 1) (Section 2); and
{
W(t) : t ∈ R

}
is a standard cylindrical Wiener

process on K0. We assume that the processes W and BH are independent.
Note that Φ(·) is assumed to be deterministic. The case where Φ(·) is random

is complicated and not treated in this article.
Stochastic evolution equations (SEEs) of type (1.1) have been studied by many

authors, mostly in the case where the last term on the right-hand side of (1.1) is
zero or coefficients are deterministic or linear. The main difficulty is due to the fact
that fBm is neither a Markov process nor a semimartingale, except for H = 1

2 (in
which case BH becomes a standard Brownian motion), thus the usual stochastic
calculus does not apply. For values of the Hurst parameter H > 1

2 - the regular case
- integrals of Young’s type and fractional calculus techniques have been considered
[37]. However, for H < 1

2 this approach fails. As a result, the study of the SEE
depends largely on the definitions of the stochastic integrals involved and the results
vary.

There are essentially two different methods to define stochastic integrals with
respect to fBm:

(i) A path-wise approach that uses the Hölder continuity properties of the
sample paths, developed from the works by Ciesielski, Kerkyacharian and
Roynette [9] and Zähle [37].

(ii) The stochastic calculus of variations (Malliavin calculus) for the fBm intro-
duced by Dereusefond and Üstünel in [13].

Recently, the existence of almost periodic or pseudo almost periodic solutions to
some stochastic differential equations has been considerably investigated in lots of
publication [11, 5, 6, 7, 15, 16, 21, 17, 27] because of its significance and applications
in physics, mechanics, and mathematical biology.

In this paper, we establish the existence and uniqueness of a pth-mean almost
periodic mild solution for the stochastic evolution equation (1.1) with almost pe-
riodic coefficients. The proof of our main result, Theorem 4.4, is essentially based
on the stochastic calculus of variation (Section 2), Itô stochastic calculus, the use
of Proposition 3.15 (below), and the techniques developed by Da Prato and Tudor
[11, Proposition 4.4] adapted to our case in order to handle the last two terms of
the right-hand side of (1.1) effectively.

The rest of the paper is organized as follows. In Section 2, we briefly revisit
some basic facts regarding evolution families and fractional Brownian motion. Basic
definitions and results on the concept of almost periodic stochastic processes are
given in Section 3. Finally, in Section 4, we give some sufficient conditions for the
existence and uniqueness of a pth-mean almost periodic solution to the stochastic
evolution equation (1.1).

2. Preliminaries

In this section, (B, ‖ · ‖) denotes a separable Banach space. For a linear operator
A on a Banach space B, we denote the resolvent set of A by ρ(A) and the resolvent
(λ − A)−1 by R(λ,A). If

(
B1, ‖ · ‖B1

)
,
(
B2, ‖ · ‖B2

)
are Banach spaces, then the

notation L(B1,B2) stands for the Banach space of bounded linear operators from
B1 into B2. When B1 = B2, this is simply denoted L(B1).

2.1. Evolution families. A set U = {U(t, s) : t ≥ s, t, s ∈ R} of bounded linear
operators on a Banach space B is called an evolution family if
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(a) U(t, s)U(s, r) = U(t, r), U(s, s) = I if r ≤ s ≤ t;
(b) (t, s) → U(t, s)x is strongly continuous for t > s.

We say that an evolution family U has an exponential dichotomy (or is hyperbolic)
if there are projections P (t) (t ∈ R), being uniformly bounded and strongly con-
tinuous in t and constants δ > 0 and N ≥ 1 such that

(1) U(t, s)P (s) = P (t)U(t, s);
(2) the restriction UQ(t, s) : Q(s)B → Q(t)B of U(t, s) is invertible (we then

set ŨQ(s, t) := UQ(t, s)−1); and
(3) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) and ‖ŨQ(s, t)Q(t)‖ ≤ Ne−δ(t−s) for t ≥ s and

t, s ∈ R.
Here and below we let Q(·) = I−P (·). If P (t) = I for t ∈ R, then U is exponentially
stable. The evolution family is called exponentially bounded if there are constants
M > 0 and γ ∈ R such that ‖U(t, s)‖ ≤Meγ(t−s) for t ≥ s.

In the present work, we study operators A(t), t ∈ R, on a Hilbert space H subject
to the following hypothesis introduced by Acquistapace and Terreni in [1].

There exist constants λ0 ≥ 0, θ ∈ (π2 , π), L, K ≥ 0, and µ, ν ∈ (0, 1] with
µ+ ν > 1 such that

Σθ ∪ {0} ⊂ ρ(A(t)− λ0), ‖R(λ,A(t)− λ0)‖ ≤
K

1 + |λ|
(2.1) AT1

and

‖(A(t)− λ0)R(λ,A(t)− λ0)
[
R(λ0, A(t))−R(λ0, A(s))

]
‖ ≤ L|t− s|µ|λ|−nu, (2.2) AT2

for t, s ∈ R, λ ∈ Σθ :=
{
λ ∈ C− {0} : | arg λ| ≤ θ

}
.

This assumption implies that there exists a unique evolution family U on H such
that (t, s) → U(t, s) ∈ L(H) is continuous for t > s, U(·, s) ∈ C1((s,∞),L(H)),
∂tU(t, s) = A(t)U(t, s), and

‖A(t)kU(t, s)‖ ≤ C(t− s)−k (2.3) w1

for 0 < t− s ≤ 1, k = 0, 1, 0 ≤ α < µ, x ∈ D((λ0 − A(s))α), and a constant C de-
pending only on the constants in (2.1)-(2.2). Moreover, ∂+

s U(t, s)x = −U(t, s)A(s)x
for t > s and x ∈ D(A(s)) with A(s)x ∈ D(A(s)). We say that A(·) generates U .
Note that U is exponentially bounded by (2.3) with k = 0.

This setting requires some estimates related to U(t, s). For that, we introduce
the interpolation spaces for A(t). We refer the reader to the excellent books [20]
and [26] for proofs and further information on these interpolation spaces.

Let A be a sectorial operator on B (for that, in (2.1)-(2.2), replace A(t) with A)
and let α ∈ (0, 1). Define the real interpolation space

BAα :=
{
x ∈ B : ‖x‖Aα := sup

r>0
‖rα

(
A− δ0

)
R

(
r,A− δ0

)
x‖ <∞

}
,

which, by the way, is a Banach space when endowed with the norm ‖ · ‖Aα . For
convenience we further write

BA0 := B, ‖x‖A0 := ‖x‖, BA1 := D(A), ‖x‖A1 := ‖(δ0 −A)x‖.

Moreover, let B̂A := D(A) of B. We have the following continuous embedding

D(A) ↪→ BAβ ↪→ D((δ0 −A)α) ↪→ BAα ↪→ B̂A ↪→ B, (2.4) embeddings1

for all 0 < α < β < 1, where the fractional powers are defined in the usual way.
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In general, D(A) is not dense in the spaces BAα and B. However, we have the
following continuous injection

BAβ ↪→ D(A)
‖·‖A

α (2.5) closure

for 0 < α < β < 1.
Given the family of linear operators A(t) for t ∈ R, satisfying (2.1)-(2.2), we set

Btα := BA(t)
α , B̂t := B̂A(t)

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms. Then the embedding in
(2.4) holds with constants independent of t ∈ R. These interpolation spaces are of
class Jα ([26, Definition 1.1.1 ]) and hence there is a constant c(α) such that

‖y‖tα ≤ c(α)‖y‖1−α‖A(t)y‖α, y ∈ D(A(t)). (2.6) J

We have the following fundamental estimates for the evolution family U(t, s).

Proposition 2.1. [3] Suppose the evolution family U =
{
U(t, s), t ≥ s

}
has expo-pes

nential dichotomy. For x ∈ B, 0 ≤ α ≤ 1 and t > s, the following hold:
(i) There is a constant c(α), such that

‖U(t, s)P (s)x‖tα ≤ c(α)e−
δ
2 (t−s)(t− s)−α‖x‖. (2.7) eq1.1

(ii) There is a constant m(α), such that

‖ŨQ(s, t)Q(t)x‖sα ≤ m(α)e−δ(t−s)‖x‖. (2.8) eq2.1

For additional details on evolution families, we refer the reader to the book by
Lunardi [26].

2.2. Fractional Brownian Motion. For the convenience for the reader we recall
briefly here some of the basic results of fractional Brownian motion calculus. For
details of this section, we refer the reader to [8, 12, 14, 19, 23] and the references
therein.

A standard fractional Brownian motion (fBm) {βH(t), t ∈ R} with Hurst pa-
rameter H ∈ (0, 1) is a Gaussian process with continuous sample paths such that
E

[
βH(t)

]
= 0 and

E[βH(t)βH(s)] =
1
2
(
|t|2H + |s|2H − |t− s|2H

)
(2.9) A30

for s, t ∈ R. It is clear that for H = 1/2, the process is a standard Brownian
motion. In this paper, it is assumed that H ∈ ( 1

2 , 1).
The fBm has stationary increments: for any s ∈ R,

{
βH(t+ s)− βH(s)

}
t∈R and

{βH(t)
}
t∈R have the same law, and is self-similar: for any α > 0, βH(αt) has the

same law as αHβH(t). From (2.9) one can deduce that E
∣∣βH(t)−βH(s)

∣∣2 =
∣∣t−s∣∣2H

and, as a consequence, the trajectories of βH are almost surely locally α-Hölder
continuous for all α ∈ (0,H). In addition, for H > 1

2 , the increments are positively
correlated, and for H < 1/2, they are negatively correlated.

This process was introduced by Kolmogorov in [25] and later studied by Man-
delbrot and Van Ness in [30]. Its self-similar and long-range dependence (if H >
1
2 ) properties (that is, if we put r(n) = cov(βH(1), βH(n + 1) − βH(n)), then∑∞
n=1 r(n) = ∞) make this process a useful driving noise in models arising in

physics, telecommunication networks, finance and other fields.
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Fix a Hurst constant H, 1
2 < H < 1. Define

φ(s, t) = H(2H − 1)|s− t|2H−2; s, t ∈ R . (2.10) A1

The function φ is called fractional kernel.
Let K be a real separable Hilbert space and let Q be a self-adjoint and positive

operator on K (Q = Q? > 0). It is typical and usually convenient to assume
moreover that Q is nuclear (Q ∈ L1(K)). In this case it is well known that Q
admits a sequence (λn)n≥0 of eigenvalues with λn > 0 converging to zero and∑
n≥0 λn < ∞. The following definition provides an infinite-dimensional analogue

of the definition of a fractional Brownian motion in a finite-dimensional space with
Hurst parameter H ∈ (0, 1).

Definition 2.2. A K-valued Gaussian process
{
BH(t), t ∈ R

}
on (Ω,F ,P) is called

a fractional Brownian motion of Q-covariance type with Hurst parameter H ∈ (0, 1)
(or, more simply, a fractional Q-Brownian motion with Hurst parameter H) if

(1) E
[
BH(t)

]
= 0 for all t ∈ R,

(2) cov(BH(t), BH(s)) = 1
2

(
|t|2H + |s|2H − |t− s|2H

)
Q, for all t ∈ R

(3)
{
BH(t), t ∈ R

}
has K-valued, continuous sample paths a.s.-P,

where cov(X,Y ) denotes the covariance operator for the Gaussian random variables
X and Y and E stands for the mathematical expectation on (Ω,F ,P).

The existence of a fractional Q-Brownian motion is given in the following propo-
sition

Proposition 2.3. Let H ∈ (0, 1) be fixed and Q be a linear operator such that
Q = Q? and Q ∈ L1(K), where L1(K) denotes the space of trace class operators on
K. Then there is a fractional Q-Brownian motion with Hurst parameter H.

A fractional Brownian motion of Q-covariance type can be defined directly by
the infinite series

BH(t) :=
∞∑
n=1

√
λnβ

H
n (t)en (2.11) A35

where (en, n ∈ N) be an orthonormal basis in K consisting of eigenvectors of Q and
{λn, n ∈ N} be a corresponding sequence of eigenvalues of Q such that Qen = λnen
for all n ∈ N.

Analogically to a standard cylindrical Wiener processes in a Hilbert space, we
will define a standard cylindrical fractional Brownian motion in a Hilbert space K
by the formal series

BH(t) :=
∞∑
n=1

βHn (t)en , (2.12) A36

where {en, n ∈ N} is a complete orthonormal basis in K and {βHn (t), n ∈ N, t ∈ R} is
a sequence of independent, real-valued standard fractional Brownian motions each
with the same Hurst parameter H ∈ (0, 1). It is well known that the infinite series
(2.12) does not converge in L2(Ω,K) so BH(t) is not well defined K-valued random
variable. However, it is easy to verify (see [31]) that for any Hilbert space K1 such
that K ↪→ K1 and the embedding is a Hilbert-Schmidt operator, the series (2.12)
defines a K1-valued random variable and {BH(t), t ∈ R} is a K1-valued fractional
Brownian motion of Q-covariance type.
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Next, we outline the discussion leading to the definition of the stochastic integral
of the form ∫ T2

T1

g(t) dBH(t) , (2.13) A38

where T1, T2 ∈ R, T1 < T2, is defined for g : [T1, T2] → L(K,H) where L(K,H) is a
family of bounded linear operators from K to H. The function g is assumed to be
deterministic.

In the sequel, we will consider only H ∈ (1/2, 1). The integral (2.13) is an
H-valued random variable that is independent of the choice of K1. We need the
following lemma.

A40 Lemma 2.4 ([31]). If p > 1/H, then for a ϕ ∈ Lp([T1, T2],R) the following in-
equality is satisfied∫ T2

T1

∫ T2

T1

ϕ(u)ϕ(v)φ(u− v) du dv ≤ CT1,T2

∣∣ϕ∣∣2
Lp([T1,T2];R)

for some CT1,T2 > 0 that only depends on T1 and T2. The function φ is defined as
in (2.10).

The stochastic integral ∫ T2

T1

g(t) dβH(t) (2.14) A39

is defined for g ∈ Lp([T1, T2],H), where {βH(t), t ∈ [T1, T2]} is a scalar fractional
Brownian motion.

Let E be the family of H-valued step functions; that is,{
g : g(s) =

n−1∑
i=1

giχ[ti,ti+1)(s), T1 = t1 < t2 < · · · < tn = T2

and gi ∈ H for i ∈ {1, . . . , n− 1}
}
.

For g ∈ E , define the stochastic integral (2.14) as∫ T2

T1

g(t) dβH(t) :=
n−1∑
i=1

gi(βH(ti+1)− βH(ti))

The expectation of this random variable is zero and the second moment is

E
∥∥∫ T2

T1

g(t) dβH(t)
∥∥2

H =
∫ T2

T1

〈g(u), g(v)〉Hφ(u− v) du dv .

By Lemma 2.4, it follows that

E
∥∥∫ T2

T1

g(t) dβH(t)
∥∥2

H ≤ CT1,T2,p

( ∫ T2

T1

‖g(s)‖pH ds
)2/p

.

for some constant CT1,T2,p that only depends on T1, T2, and p. By this inequality,
the stochastic integral can be uniquely extended from E to Lp([T1, T2],H), because
E is dense in Lp([T1, T2],H).

Now we define the stochastic integral∫ T2

T1

g(t) dBH(t) (2.15) A42
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for a K-valued standard cylindrical fractional Brownian motion and for g : [T1, T2] →
L2.

Let p > 1/H be arbitrary but fixed. We will assume that for each x ∈ K,
g(·)x ∈ Lp([T1, T2]; H) and that∫ T2

T1

∫ T2

T1

‖g(s)‖L2‖g(r)‖L2φ(r − s) drds <∞ , (2.16) A41

where φ is given by (2.10).
We define the integral (2.15) as∫ T2

T1

g(t) dBH(t) :=
∞∑
n=1

∫ T2

T1

g(t)en dβHn (t) (2.17) A43

where (en, n ∈ N) and (βHn (·), n ∈ N) are given in the definition of a standard
fractional Brownian motion (2.12). Since g(·)en ∈ Lp([T1, T2],H) for each n ∈ N,
the terms in series (2.17) are well defined as stated above. The sequence of random
variables {

∫ T2

T1
g(t)en dβHn (t), n ∈ N} are clearly mutually independent Gaussian

random variables. Since

E
∥∥∫ T2

T1

g(t) dBH(t)
∥∥2

H =
∞∑
n=1

E
∥∥∫ T2

T1

g(t)en dβHn (t)
∥∥2

H

=
∞∑
n=1

∫ T2

T1

∫ T2

T1

〈g(s)en, g(r)en〉Hφ(r − s) drds

≤
∫ T2

T1

∫ T2

T1

‖g(s)‖L2‖g(r)‖L2φ(r − s) drds <∞ ,

the series in (2.17) is a H-valued Gaussian random variable.

3. Almost periodic stochastic processes

For the reader’s convenience, we review some basic definitions and results for the
notion of almost periodicity.

3.1. Almost periodic functions. Let x : R → B be a continuous function. For
a sequence α = {αn} in R, the notation Tαx = y means that for each t ∈ R,
limn→∞ x(t+ αn) = y(t).

Definition 3.1. A continuous function x : R → B is said to be (Bohr) almost
periodic if for each ε > 0 there exists l(ε) > 0 such that any interval of length l(ε)
contains at least a number τ for which

sup
t∈R

‖x(t+ τ)− x(t)‖ < ε.

We have the following characterization of almost periodicity.

IJK Proposition 3.2. Let x : R → B be a continuous function. Then the following
statements are equivalent:

(i) x is (Bohr) almost periodic.
(ii) (Bochner) For every sequence α′ = {α′n} ⊂ R there exists a subsequence

α = {αn} ⊂ {α′n} and a continuous function y : R → B such that Tαx = y
pointwise.
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(iii) For every pair of sequences (α′n) and (β′n), there exist subsequences α =
(αn) ⊂ (α′n) and β = (βn) ⊂ (β′n) respectively, with the same indexes such
that TαTβx = Tα+βx pointwise.

Definition 3.3. A function f : R × B1 → B2, (t, x) 7→ f(t, x), which is jointly
continuous, is said to almost periodic in t ∈ R uniformly in x ∈ K (K ⊂ B1 being a
compact subspace) if for any ε > 0, there exists l(ε,K) > 0 such that any interval
of length l(ε,K) contains at least a number τ for which

sup
t∈R

‖f(t+ τ, x)− f(t, x)‖B2 < ε

for each x in K.

Almost periodic stochastic processes. For a random variable X : (Ω,F ,P) →
B, we shall denote by P◦X−1 its distribution and its expectation denoted by E[X]
is defined as

E[X] =
∫

Ω

X(ω)dP(ω) .

For p ≥ 2, the collection of all strongly measurable, pth or p-th integrable B-valued
random variables, denoted by Lp(Ω,B), is a Banach space equipped with norm

‖X‖Lp(Ω,B) = (E‖X‖p)1/p .
Before we give the definition of almost periodicity in distribution we recall the
following definition:

Let us denote by P(B) the set of all probability measures on B(B) the σ-Borel
algebra of B. We shall denote by C(R; B) the class of all continuous functions
from R to B, and by Cb(B) the class of all continuous functions f : B → R with
‖f‖∞ := supt∈R |f(t)| <∞.

For f ∈ Cb(B),

‖f‖L = sup
{ |f(u)− f(v)|

‖u− v‖
;u 6= v

}
,

‖f‖BL = max{‖f‖∞, ‖f‖L} .

For µ and ν ∈ P(B), we define

dBL(µ, ν) = sup
{∣∣ ∫

B
f d(µ− ν)

∣∣ : ‖f‖BL ≤ 1
}
.

The metric dBL on P(B) is complete and generates the weak topology (see [18]).
From now on P(B) is endowed with the metric dBL.

def3.4 Definition 3.4. A stochastic process X is almost periodic in distribution if the
mapping t 7→ µ̂(t) = P ◦X(t+ ·)−1 from R to P(C(R; B)) is almost periodic.

def3.5 Definition 3.5. A stochastic process X is said to be almost periodic in probability
if for any ε > 0 and η > 0 there exists l = l(ε, η) > 0 such that any interval of
length l contains at least a number τ for which

sup
t∈R

P{‖X(t+ τ)−X(t)‖ > η} ≤ ε.

def3.6 Definition 3.6. A stochastic process X : R → Lp(Ω; B) is said to be continuous
in pth mean whenever

lim
t→s

E‖X(t)−X(s)‖p = 0.
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KK Definition 3.7. A continuous stochastic process X : R → Lp(Ω; B) is said to be
pth-mean almost periodic if for each ε > 0 there exists l(ε) > 0 such that any
interval of length l(ε) contains at least a number τ for which

sup
t∈R

E‖X(t+ τ)−X(t)‖p < ε.

The collection of all stochastic processes X : R → Lp(Ω; B) which are pth-mean
almost periodic is then denoted by AP (R;Lp(Ω; B)).

The next lemma provides with some properties of the pth-mean almost periodic
processes.

Lemma 3.8. [5] If X belongs to AP (R;Lp(Ω; B)), thenPH

(i) the mapping t→ E‖X(t)‖p is uniformly continuous;
(ii) there exists a constant M > 0 such that E‖X(t)‖p ≤M , for all t ∈ R.

Let UCB(R;Lp(Ω; B)) denote the collection of all stochastic processes X : R →
Lp(Ω; B), which are uniformly continuous and bounded. It is then easy to check
that UCB(R;Lp(Ω; B)) is a Banach space when it is equipped with the norm:

‖X‖∞ = sup
t∈R

(E‖X(t)‖p)1/p.

Lemma 3.9. [5] AP (R;Lp(Ω; B)) ⊂ UCB(R;LpΩ; B)) is a closed subspace.

In view of the above, the space AP (R;Lp(Ω; B)) of pth-mean almost periodic
processes equipped with the norm ‖ · ‖∞ is a Banach space.

Proposition 3.10. [4] If X is pth-mean almost periodic, then it is almost periodicVV
in probability. Conversely, if X is almost periodic in probability and the family{
‖X(t)‖p, t ∈ R

}
is uniformly integrable, then X is pth-mean almost periodic.

Let α = {αn} and denote TαX(ω, t) := limn→∞X(ω, t + αn) for each ω ∈ Ω
and each t ∈ R if it exists.

def3.11 Definition 3.11. A stochastic process X satisfies Bochner’s almost sure uniform
double sequence criterion if, for every pair of sequences (α′n) and (β′n), there exists
a measurable subset Ω1 ⊂ Ω with P(Ω1) = 1 and there exist subsequences α =
(αn) ⊂ (α′n) and β = (βn) ⊂ (β′n) respectively, with the same indexes (independent
of ω) such that, for every t ∈ R,

TαTβX(ω, t) = Tα+βX(ω, t), ∀ω ∈ Ω1 .

(In this case, Ω1 depends on the pair of sequences (α′n) and (β′n).)

EE Proposition 3.12 ([4]). The following properties of X are equivalent:
(i) X satisfies Bochner’s almost sure uniform double sequence criterion.
(ii) X is almost periodic in probability.

Propositions 3.10 and 3.12 give us the following property.

CC Proposition 3.13 ([4]). If X satisfies Bochner’s almost sure uniform double se-
quence criterion and the family

{
‖X(t)‖p, t ∈ R

}
is uniformly integrable, then X

is pth-mean almost periodic.

DD Proposition 3.14 ([4]). If X is almost periodic in distribution, then X satisfies
Bochner’s almost sure uniform double sequence criterion
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Combining Proposition 3.12, 3.13, and 3.14, we obtain the following important
property.

FF Proposition 3.15. If X is almost periodic in distribution and the family {‖X(t)‖p,
t ∈ R} is uniformly integrable, then X is pth-mean almost periodic.

AB Theorem 3.16 ([5]). Let F : R× B1 → B2, (t, x) 7→ F (t, x) be an almost periodic
function in t ∈ R uniformly in x ∈ K (K ⊂ B1 being a compact subspace). Suppose
that F is Lipschitz in the following sense:

E‖F (t, Y )− F (t, Z)‖pB2
≤ME‖Y − Z‖pB1

for all Y, Z ∈ Lp(Ω; B1) and for each t ∈ R, where M > 0. Then for any pth-mean
almost periodic process Φ : R → Lp(Ω; B1), the stochastic process t 7→ F (t,Φ(t)) is
pth-mean almost periodic.

4. Main Result

Throughout this paper, we require the following assumptions:
(H0) The family of operators A(t) satisfies Acquistpace-Terreni conditions and

the evolution family U =
{
U(t, s), t ≥ s

}
associated with A(t) is exponen-

tially stable, that is, there exist constant M , δ > 0 such that

‖U(t, s)‖ ≤Me−δ(t−s)

for all t ≥ s;
(H1) The function F : R × H → H, (t, x) 7→ F (t, x) is almost periodic in t ∈ R

uniformly in x ∈ O (O ⊂ H being a compact subspace). Moreover, F is
Lipschitz in the following sense: there exists K > 0 for which

E‖F (t,X)− F (t, Y )‖p ≤ KE‖X − Y ‖p

for all X,Y ∈ Lp(Ω; H) and t ∈ R;
(H2) The function G : R × H → L0

2, (t, x) 7→ G(t, x) is almost periodic in t ∈ R
uniformly in x ∈ O′ (O′ ⊂ H being a compact subspace). In addition, G
satisfies the following properties:
(i) supt∈R E‖G(t,X)‖2p

L0
2
<∞ for all X ∈ Lp(Ω,H);

(ii) G is Lipschitz in the following sense: there exists K ′ > 0 for which

E‖G(t,X)−G(t, Y )‖pL0
2
≤ K ′E‖X − Y ‖p

for all X,Y ∈ Lp(Ω; H) and t ∈ R;
(H3) The function Φ : R → L2, t 7→ Φ(t) is almost periodic.
To study (1.1) we need the following lemma which can be seen as an immediate

consequence of [29, Proposition 4.4].

C Lemma 4.1. Suppose A(t) satisfies the ‘Acquistapace-Terreni’ conditions, U(t, s)
is exponentially stable and R(λ0, A(·)) ∈ AP (R;L(H)). Let h > 0. Then, for any
ε > 0, there exists l(ε) > 0 such that every interval of length l contains at least a
number τ with the property that

‖U(t+ τ, s+ τ)− U(t, s)‖ ≤ ε e−
δ
2 (t−s)

for every t, s with |t− s| ≥ h.
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rmk Remark 4.2. Lemma 4.1 implies that for every sequence α′ = {α′n} ⊂ R there
exists a subsequence α = {αn} ⊂ α′ and a operator Ũ(·, ·) such that

lim
n→∞

U(t+ αn, s+ αn) = Ũ(t, s)

for every t, s with |t− s| ≥ h.

In the rest of the paper, let us assume that BH =
{
BHt , t ∈ R

}
is a cylindrical

fractional Brownian motion with Hurst parameter H ∈ ( 1
2 , 1) and with values in

K, and that W =
{
W(t), t ∈ R

}
is a standard cylindrical Wiener process on K0,

independent of BH . For each t ∈ R, we denote Ft the σ-field generated by the
random variables

{
BH(s),W(s), s ∈ [0, t]

}
and the P-null sets. In addition to the

natural filtration
{
Ft, t ∈ R

}
we will consider bigger filtration

{
Gt, t ∈ R

}
such

that
(1) {Gt} is right-continuous and G0 contains the P-null sets;
(2) BH is G0-measurable and W is a Gt-Brownian motion.

Note that F̂t ⊂ Gt, where F̂t is the σ-field generated by the random variables{
BH ,W(s), s ∈ [0, t]

}
and the P-null sets.

We consider mild solutions of (1.1) in the following sense.

def4.3 Definition 4.3. A mild solution of the stochastic differential equation (1.1) is a
triple

(
(X,BH ,W), (Ω,F ,P), {Gt, t ∈ R}

)
, where

(1) (Ω,F ,P) is a complete probability space, {Gt} is a right-continuous filtra-
tion such that G0 contains the P- null sets.

(2) W is a Gt- Brownian motion.
(3) BH is a fractional Brownian of Hurst parameter H which is G0- measurable.
(4) (X,BH ,W) satisfies the equation

X(t) = X(s) +
∫ t

s

U(t, r)F (r,X(r)) dr +
∫ t

s

U(t, r)G(r,X(r)) dW(r)

+
∫ t

s

U(t, r)Φ(r) dBH(r), a.s.P ,

(4.1) C3

for all t ≥ s for each s ∈ R.

Note that the first integral on the right-hand side of (4.1) is taken in the Bochner
sense, the second integral is interpreted in the Itô sense, and the third is defined
in Section 2. Also, all integrals making up the fixed point operator are defined
in terms of the given Wiener process W and fractional Brownian motion BH , and
the unique fixed point solution will be a mild solution, which is ‘strong in the
probabilistic sense’.

Now, we are ready to present our main result.

m Theorem 4.4. Under assumptions (H0)–(H3), Equation (1.1) has a unique pth-
mean almost periodic mild solution, which can be explicitly expressed as

X(t) =
∫ t

−∞
U(t, s)F (s,X(s)) ds+

∫ t

−∞
U(t, s)G(s,X(s)) dW(s)

+
∫ t

−∞
U(t, s)Φ(s) dBH(s), a.s.P ,
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for each t ∈ R whenever

Θ := Mp
(K
δp

+ CpK
′(p− 2

pδ

) p−2
2

( 1
pδ

))
< 1 ,

for p > 2 and

Θ := M2
(
2
K

δ2
+
K ′

δ

)
< 1

forp = 2.

Proof. First of all, note that

X(t) =
∫ t

−∞
U(t, s)F (s,X(s)) dr +

∫ t

−∞
U(t, s)G(s,X(s)) dW(s)

+
∫ t

−∞
U(t, s)Φ(s) dBH(s), a.s. P

is well-defined and satisfies

X(t) = X(s) +
∫ t

s

U(t, r)F (r,X(r)) dr +
∫ t

s

U(t, r)G(r,X(r)) dW(r)

+
∫ t

s

U(t, r)Φ(r) dBH(r), a.s. P

for all t ≥ s for each s ∈ R, and hence X given by (4.1) is a mild solution to (1.1).abab
Define ΛX(t) = Γ1X(t) + Γ2X(t), where

Γ1X(t) :=
∫ t

−∞
U(t, σ)ϕX(σ)dσ,

Γ2X(t) :=
∫ t

−∞
U(t, σ)ψX(σ)dW(σ) +

∫ t

−∞
U(t, σ)Φ(σ)dBH(σ) ,

with ϕX(t) = F (t,X(t)) and ψX(t) = G(t,X(t)).
To prove Theorem 4.4 we need the following key lemmas.

m1 Lemma 4.5. Assume that the hypotheses (H0)–(H1) hold. Then Γ1X(·) is pth-
mean almost periodic.

Proof. We need to show that Γ1X(·) is pth-mean almost periodic whenever X is.
Indeed, assuming that X is p-th mean almost periodic and using assumption (H1),
Theorem 3.16, and Lemma 4.1, given ε > 0, one can find lε > 0 such that any
interval of length lε contains at least τ with the property that

‖U(t+ τ, s+ τ)− U(t, s)‖ ≤ εe−
δ
2 (t−s)

for all t− s ≥ ε, and
E‖ϕX(σ + τ)− ϕX(σ)‖p < η

for each σ ∈ R, where η(ε) → 0 as ε→ 0.
Moreover, it follows from Lemma 3.8 (ii) that there exists a positive constant

K1 such that
sup
σ∈R

E‖ϕX(σ)‖p ≤ K1 .

Now, using assumption (H0) and Hölder’s inequality, we obtain

E‖Γ1X(t+ τ)− Γ1X(t)‖p
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≤ 3p−1E
[ ∫ ∞

0

‖U(t+ τ, t+ τ − s)‖ ‖ϕX(t+ τ − s)− ϕX(t− s)‖ds
]p

+ 3p−1E
[ ∫ ∞

ε

‖U(t+ τ, t+ τ − s)− U(t, t− s)‖ ‖ϕX(t− s)‖ds
]p

+ 3p−1E
[ ∫ ε

0

‖U(t+ τ, t+ τ − s)− U(t, t− s)‖ ‖ϕX(t− s)‖ds
]p

≤ 3p−1MpE
[ ∫ ∞

0

e−δs‖ϕX(t+ τ − s)− ϕX(t− s)‖ds
]p

+ 3p−1εpE
[ ∫ ∞

ε

e−
δ
2 s‖ϕX(t− s)‖ds

]p
+ 3p−1MpE

[ ∫ ε

0

2e−δs‖ϕX(t− s)‖ds
]p

≤ 3p−1Mp
( ∫ ∞

0

e−δs ds
)p−1( ∫ ∞

0

e−δsE‖ϕX(t+ τ − s)− ϕX(t− s)‖pds
)

+ 3p−1εp
( ∫ ∞

0

e−δs ds
)p−1( ∫ ∞

ε

e−
δps
2 E‖ϕX(t− s)‖pds

)
+ 6p−1Mp

( ∫ ε

0

e−δs ds
)p−1( ∫ ε

0

e−
δps
2 E‖ϕX(t− s)‖pds

)
≤ 3p−1Mp

( ∫ ∞

0

e−δs ds
)p

sup
s∈R

E‖ϕX(t+ τ − s)− ϕX(t− s)‖p

+ 3p−1εp
( ∫ ∞

ε

e−δs ds
)p

sup
s∈R

E‖ϕX(t− s)‖p

+ 6p−1Mp
( ∫ ε

0

e−δs ds
)p

sup
s∈R

E‖ϕX(t− s)‖p

≤ 3p−1Mp
( 1
δp

)
η + 3p−1MpK1

( 1
δp

)
εp + 6p−1MpεpK1ε

p,

which implies that Γ1X(·) is pth-mean almost periodic. �

The next lemma concerns Γ2X(·). For that, let us fix h > 0 and write Γ2X(t)
as

Γ2X(t) = Γh21X(t) + Γh22X(t) ,

where

Γh21X(t) :=
∫ t

t−h
U(t, σ)ψX(σ)dW(σ) +

∫ t

t−h
U(t, σ)Φ(σ)dBh(σ)

and

Γh22X(t) :=
∫ t−h

−∞
U(t, σ)ψX(σ)dW(σ) +

∫ t−h

−∞
U(t, σ)Φ(σ)dBH(σ) .

m2 Lemma 4.6. Let us assume that (H0)–(H2) are satisfied. The following holds.

(i) Let α ∈ (0, 1/2 − 1/p) if p > 2 and α ∈ (0, 1/2) if p = 2. The family
{‖Γh22X(t)‖pα, t ∈ R} is uniformly integrable. In particular the family of
distributions {P ◦

[
Γh22X(t)

]−1
, t ∈ R} is tight.

(ii) Γh22X(·) is almost periodic in distribution.
(iii) Γh22X(·) is pth-mean almost periodic.
(iv) Γh21X(·) is pth-mean almost periodic.
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Proof. (i) We split the proof of (i) in two cases: p > 2 and p = 2. We start
with the case where p > 2. For that, we use the following theorem due to de la
Vallée-Poussin.

R Theorem 4.7. The family {X(t), t ∈ R} of real random variables is uniformly
integrable if and only if there exists a nonnegative increasing convex function Ψ(·)
on [0,∞) such that limx→∞

Ψ(x)
x = ∞ and supt∈R E

[
Ψ(|X(t)|)

]
<∞.

To show the uniform integrability of the family {‖Γh22X(t)‖pα, t ∈ R}, it suffices,
by Theorem 4.7, to show that

sup
t∈R

E‖Γh22X(t)‖2p
α <∞ .

To this end, we use the factorization formula of the stochastic convolution integral

Γh22X(t) =
sin(πξ)
π

[
RhξSψ +RhξSΦ

]
(t) a.s.

where

(RhξSψ)(t) =
∫ t−h

−∞
(t− σ)ξ−1U(t, s)Sψ(s) ds

and

(RhξSΦ)(t) =
∫ t−h

−∞
(t− σ)ξ−1U(t, s)SΦ(s) ds

with

Sψ(s) =
∫ s

−∞
(s− σ)−ξU(s, σ)ψX(σ) dW(σ) ,

SΦ(s) =
∫ s

−∞
(s− σ)−ξU(s, σ)Φ(σ) dBH(σ) ,

and ξ satisfying α+ 1
p < ξ < 1

2 .
We then have

E‖Γh22X(t)‖2p
α

≤ 22p−1| sinπξ
π

|2p
{
E

[ ∫ t−h

−∞
(t− s)ξ−1‖U(t, s)Sψ(s)‖α ds

]2p

+ E
[ ∫ t−h

−∞
(t− s)ξ−1‖U(t, s)SΦ(s)‖α ds

]2p}
≤ 22p−1M(α)2p

∣∣∣ sinπξ
π

∣∣∣2p{E
[ ∫ t

−∞
(t− s)ξ−α−1e−δ(t−s)‖Sψ(s)‖ ds

]2p

+ E
[ ∫ t

−∞
(t− s)ξ−α−1e−δ(t−s)‖SΦ(s)‖ ds

]2p}
≤ 22p−1M(α)2p

∣∣∣ sinπξ
π

∣∣∣2p[( ∫ t

−∞
(t− s)

2p
2p−1 (ξ−α−1)e−δ(t−s) ds

)2p−1

×
( ∫ t

−∞
e−δ(t−s)E‖Sψ(s)‖2p ds

)
+

( ∫ t

−∞
(t− s)

2p
2p−1 (ξ−α−1)e−δ(t−s) ds

)2p−1( ∫ t

−∞
e−δ(t−s)E‖SΦ(s)‖2p ds

)]
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≤ C1(Γ, α, ξ, δ, p)
[
sup
s∈R

E‖Sψ(s)‖2p + sup
s∈R

E‖SΦ(s)‖2p
]
,

where C1(Γ, α, ξ, δ, p) is a constant depending only on Gamma function Γ(·) and
constants α, ξ, δ, and p.

Now, let us evaluate sups∈R E‖Sψ(s)‖2p and sups∈R E‖SΦ(s)‖2p. Since∫ s

−∞
E‖(s− σ)−ξU(s, σ)ψX(σ)‖2 ds

≤M2

∫ s

−∞
(s− σ)−2ξe−2δ(s−σ)E‖ψX(σ)‖2

L0
2
ds <∞

for all s ∈ R, then by [32, Lemma 2.2]

E‖Sψ(s)‖2p ≤ CpE
( ∫ s

−∞
‖(s− σ)−ξU(s, σ)ψX(σ)‖2 dσ

)p
≤M2pCpE

( ∫ s

−∞
(s− σ)−2ξe−2δ(s−σ)‖ψX(σ)‖2

L0
2
dσ

)p
≤M2pCp

( ∫ s

−∞
(s− σ)−

2pξ
p−1 e−2δ(s−σ) dσ

)p−1

×
( ∫ s

−∞
e−2δ(s−σ)E‖ψ(σ)‖2p

L0
2
dσ

)
≤ C2(Γ, ξ, δ, p) sup

σ∈R
E‖ψ(σ)‖2p

L0
2
,

where C2(Γ, ξ, δ, p) is a constant depending only on Gamma function Γ(·) and con-
stants ξ, δ, and p.

For sups∈R E‖SΦ(s)‖2p, since for every s ∈ R,
∫ s
−∞(s−σ)−ξU(s, σ)Φ(σ) dBH(σ)

is a centered Gaussian random variable and using Kahane-Khintchine inequality,
there exists a constant Cp such that

E‖
∫ s

−∞
(s− σ)−ξU(s, σ)Φ(σ) dBH(σ)‖2p

≤ Cp

(
E‖

∫ s

−∞
(s− σ)−ξU(s, σ)Φ(σ) dBH(σ)‖2

)p
.

Now, write

E‖
∫ s

−∞
(s− σ)−ξU(s, σ)Φ(σ) dBH(σ)‖2

=
∞∑
n=1

E‖
∫ s

−∞
(s− σ)−ξU(s, σ)Φ(σ)en dβHn (σ)‖2 ,

where {en, n ∈ N} is a complete orthonormal basis in K and {βHn (t), n ∈ N, t ∈ R} is
a sequence of independent, real-valued standard fractional Brownian motions each
with the same Hurst parameter H ∈ 1

2 , 1).
Thus, using fractional Itô isometry one can write

E‖
∫ s

−∞
(s− σ)−ξU(s, σ)Φ(σ) dBH(σ)‖2

=
∞∑
n=1

∫ s

−∞

∫ s

−∞

〈
(s− σ)−ξU(s, σ)Φ(σ)en, (s− r)−ξU(s, r)Φ(r)en

〉
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×H(2H − 1)|σ − r|2H−2 dσ dr

≤ H(2H − 1)
∫ s

−∞
(s− σ)−ξ

{
‖U(s, σ)Φ(σ)‖

×
∫ s

−∞
(s− r)−ξ‖U(s, r)Φ(r)‖|σ − r|2H−2 dr

}
dσ

≤ H(2H − 1)M2

∫ s

−∞
(s− σ)−ξ

{
e−δ(s−σ)‖Φ(σ)‖L2

×
∫ s

−∞
(s− r)−ξe−δ(s−r)‖Φ(r)‖L2 |σ − r|2H−2 dr

}
dσ .

Since Φ is bounded, one can then conclude that

E‖
∫ s

−∞
(s− σ)−ξU(s, σ)Φ(σ) dBH(σ)‖2

≤ H(2H − 1)M2
(

sup
t∈R

‖Φ(t)‖L2

)2
∫ s

−∞
(s− σ)−ξe−δ(s−σ)

×
{∫ s

−∞
(s− r)−ξe−δ(s−r)|σ − r|2H−2 dr

}
dσ .

Make the following change of variables, u = s−r for the first integral and v = s−σ
for the second integral. One can then write

E‖
∫ s

−∞
(s− σ)−ξU(s, σ)Φ(σ) dBH(σ)‖2

≤ H(2H − 1)M2
(
sup
t∈R

‖Φ(t)‖L2

)2
∫ ∞

0

v−ξe−δv
{∫ ∞

0

u−ξe−δu|u− v|2H−2 du
}
dv

≤ H(2H − 1)M2
(
sup
t∈R

‖Φ(t)‖L2

)2(A1 +A2) ,

where

A1 =
∫ ∞

0

v−ξe−δv
{∫ ∞

v

u−ξe−δu(u− v)2H−2 du
}
dv,

A2 =
∫ ∞

0

v−ξe−δv
{∫ v

0

u−ξe−δu(v − u)2H−2 du
}
dv .

To evaluate A1, we make change of variables w = u − v and use the fact that
(w + v)−ξ ≤ v−ξ to obtain

A1 =
∫ ∞

0

v−ξe−2δv
{∫ ∞

0

(w + v)−ξe−δww2H−2 dw
}
dv

≤
( ∫ ∞

0

v−2ξe−2δv dv
)( ∫ ∞

0

w2H−2e−δw dw
)

= Γ(1− 2ξ)
( 1
2δ

)1−2ξΓ(2H − 1)
(1
δ

)2H−1

.

As to A2, we first evaluate the integral
∫ v
0
u−ξe−δu(v − u)2H−2 du. For that, we

make change of variables w = u
v to obtain∫ v

0

u−ξe−δu(v − u)2H−2 du ≤
∫ v

0

u−ξ(v − u)2H−2 du
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= v1−ξ+2H−2

∫ 1

0

w(1−ξ)−1(1− w)(2H−1)−1 dw

= v1−ξ+2H−2 Γ(1− ξ)Γ(2H − 1)
Γ(2H − ξ)

Thus,

A2 ≤
Γ(1− ξ)Γ(2H − 1)

Γ(2H − ξ)

∫ ∞

0

e−δvv1−2ξ+2H−2 dv

=
Γ(1− ξ)Γ(2H − 1)

Γ(2H − ξ)
Γ(2H − 2ξ)

(1
δ

)2H−2ξ
.

Combining, we obtain

E‖SΦ(s)‖2p ≤ C3(Γ, ξ, δ,H, p) sup
σ∈R

‖Φ(σ)‖2p
L2
,

where C3(Γ, ξ, δ,H, p) is a constant depending only on Gamma function Γ(·) and
constants α, ξ, δ, H, and p. Thus,

E‖Γh22X(t)‖2p
α ≤ C1(Γ, α, ξ, δ, p)

[
C2(Γ, ξ, δ, p) sup

σ∈R
E‖ψ(σ)‖2p

L0
2

+ C3(Γ, ξ, δ,H, p) sup
σ∈R

‖Φ(σ)‖2p
L2

]
<∞ ,

and true for any t ∈ R. For the case p = 2, a similar computation shows that

sup
t∈R

E‖Γh22X(t)‖4
α <∞.

Moreover, using the Chebyshev inequality, one can easily show that the family of
distributions

{
P ◦ [Γh22X(t)]−1, t ∈ R

}
is tight.

(ii) To show the almost periodicity in distribution of Γh22X(·), we follow closely
the work done by Da Prato and Tudor [11]. To this end, we state without proofs
some of their results and adapt them to our case.

m3 Proposition 4.8. [11] Let A, G, Φ, {An, Gn,Φn}n∈N satisfy (H0), (H2), (H3)
with the same constants δ, K ′. Let U , Un be the evolution operators generated
by A, An, and let {ΓX(t)}t∈R, {ΓXn(t)}t∈R be the stochastic convolution integrals
corresponding to A, G, Φ, and An, Gn, Φn respectively. Assume in addition that

(i) limn→∞ Un(t, s)x = U(t, s)x for all x ∈ H and for every |t− s| ≥ h.
(ii) limn→∞Gn(t, x) = G(t, x) for all x ∈ H and for every t ∈ R.
(iii) limn→∞ Φn(t) = Φ(t) for every t ∈ R.
(iv) For each t ∈ R, the family of distributions {P ◦ [ΓXn(t)]−1}n∈N is tight.

Then
lim
n→∞

dBL

(
P ◦ [ΓXn(t+ ·)]−1,P ◦ [ΓX(t+ ·)]−1

)
= 0

in P
(
C(R; H)

)
for all t ∈ R.

We can now prove (ii). Let α′ = (α′) ⊂ R, β′ = (β′) ⊂ R and by (H2) and (H3),
choose common subsequences α = (α) ⊂ α′, β = (βn) ⊂ β′ such that

Tα+βΦ(t) = TαTβΦ(t) for each t ∈ R, (4.2) a0

Tα+βG(t, x) = TαTβG(t, x) (4.3) a1
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uniformly on R × O′, where O′ is any compact set of H. Also, by Lemma 4.1, we
have:

lim
n→∞

U(t+ αn, s+ αn)x = U(t+ σ1, s+ σ1)x (4.4) a2

lim
n→∞

U(t+ βn + σ1, s+ βn + σ1)x = U(t+ σ2 + σ1, s+ σ2 + σ1)x (4.5) a3

lim
n→∞

U(t+ αn + βn, s+ αn + βn)x = U(t+ σ1 + σ2, s+ σ1 + σ2)x (4.6) a4

for all x ∈ H, for every |t− s| ≥ h.
By using (4.2)-(4.6), Lemma 4.6 (i), and Proposition 4.8, applied successively

to {Γh22X(t + βn)}t∈R, {Γ̃h22X(t + αn)}t∈R ({Γ̃h22X(·)}t∈R is the stochastic con-
volution integral associated with U(t + σ2 + αn, s + σ2 + αn), TβG, TβΦ), and{
Γh22X(t+ αn + βn)

}
t∈R, we obtain common sequences α′′ ⊂ α, β′′ ⊂ β such that

Tα′′+β′′ µ̂h(t+ ·) = Tα′′Tβ′′ µ̂h(t+ ·)

for every t ∈ R. Here, µ̂h(t + ·) = P ◦ [Γh22X(t + ·)]−1. By Proposition 3.2, we
deduce that the mapping R → P(C(R; H)) : t→ µ̂h(t+ ·) is almost periodic.

(iii) We now prove the pth-mean almost periodicity of Γh22X(·). The latter follows
immediately from (i), (ii), and Proposition 3.15.

(iv) For this, we use Definition 3.7. Fix ε > 0 and choose h = h(ε) > 0 such that
h(ε) → 0 as ε→ 0.

E‖Γh21X(t+ τ)− Γh21X(t)‖p

≤ 2p−1E‖
∫ t+τ

t+τ−h
U(t+ τ, σ)ψX(σ)dW(σ)−

∫ t

t−h
U(t, σ)ψX(σ)dW(σ)‖p

+ 2p−1E‖
∫ t+τ

t+τ−h
U(t+ τ, σ)Φ(σ)dBH(σ)−

∫ t

t−h
U(t, σ)Φ(σ) dBH(σ)‖p

≤ 4p−1
{
E‖

∫ t+τ

t+τ−h
U(t+ τ, σ)ψX(σ)dW(σ)‖p + E‖

∫ t

t−h
U(t, σ)ψX(σ) dW(σ)‖p

}
+ 4p−1

{
E‖

∫ t+τ

t+τ−h
U(t+ τ, σ)Φ(σ) dBH(σ)‖p + E‖

∫ t

t−h
U(t, σ)Φ(σ) dBH(σ)‖p

}
≤ 4p−1I1 + 4p−1I2 .

First, let us evaluate I1. Since∫ t

t−h
E‖U(t, σ)ψX(σ)‖2 dσ ≤M2

∫ t

t−h
e−2δ(t−σ)E‖ψX(σ)‖2

L0
2
dσ <∞ ,

for each t ∈ R, the application of [32, Lemma 2.2] gives us

I1 ≤ 2p−1Cp

{
E

( ∫ t+τ

t+τ−h
‖U(t+ τ, σ)ψX(σ)‖2dσ

)p/2
+ E

( ∫ t

t−h
‖U(t, σ)ψX(σ)‖2dσ

)p/2}
≤ 2p−1MpCp

{
E

( ∫ t+τ

t+τ−h
e−2δ(t+τ−s)‖ψX(σ)‖2

L0
2
dσ

)p/2
+ E

( ∫ t

t−h
e−2δ(t−s)‖ψX(σ)‖2dσ

)p/2}
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≤ 2pCp sup
s∈R

E‖ψX(s)‖pL0
2
hp .

A similar computation using Kahana-Khintchine inequality and fractional Ito iden-
tity shows that

I2 ≤ 2pCp sup
s∈R

‖Φ(s)‖2p
L2
hp .

Hence, Γh21X(·) is pth-mean almost periodic. �

In view of Lemmas 4.5 and 4.6 (i)–(iv), it is clear that Λ maps AP (R;Lp(Ω,H))
into itself. To complete the proof, it suffices to show that Λ is a contraction.

Let X and Y be in AP (R;Lp(Ω,H)). Proceeding as before starting with the
case where p > 2 and using (H0), an application of Hölder’s inequality, [32, Lemma
2.2], followed by (H1) and (H2) gives

E‖ΛX(t)− ΛY (t)‖p

≤ 2p−1E
[ ∫ t

−∞
‖U(t, σ)‖ ‖ϕX(σ)− ϕY (σ)‖ dσ

]p
+ 2p−1CpE

[ ∫ t

−∞
‖U(t, σ)‖2‖ψX(σ)− ψY (σ)‖2

L0
2
dσ

]p/2
≤ 2p−1Mp

( ∫ t

−∞
e−δ(t−s)

)p−1( ∫ t

−∞
e−δ(t−s)E‖ϕX(σ)− ϕY (σ)‖p dσ

)
+ 2p−1Cp

( ∫ t

−∞
e−

p
p−2 δ(t−s) dσ

) p−2
2

( ∫ t

−∞
e−

p
2 δ(t−s)E‖ψX(σ)− ψY (σ)‖pL0

2
dσ

)
≤ 2p−1MpK

( ∫ t

−∞
e−δ(t−σ) dσ

)p
‖X − Y ‖p∞

+ 2p−1CpM
pK ′

( ∫ t

−∞
e−

pδ
p−2 (t−σ) dσ

) p−2
2

( ∫ t

−∞
e−

pδ
2 (t−σ) dσ

)
‖X − Y ‖p∞

= 2pMp
[
K

( 1
δp

)
+ CpK

′
(p− 2

pδ

) p−2
2

( 1
pδ

)]
‖X − Y ‖p∞ = Θ · ‖X − Y ‖p∞.

As to the case p = 2, we have

E‖ΛX(t)− ΛY (t)‖2

≤ 2M2
( ∫ t

−∞
e−δ(t−s) ds

)( ∫ t

−∞
e−δ(t−s)E‖ϕX(s)− ϕY (s)‖2 ds

)
+ 2M2

∫ t

−∞
e−2δ(t−s)E‖ψX(s)− ψY (s)‖2

L0
2
ds

≤ 2M2 ·K
( ∫ t

−∞
e−δ(t−s) ds

)( ∫ t

−∞
e−δ(t−s)E‖X(s)− Y (s)‖2 ds

)
+ 2M2 ·K ′

∫ t

−∞
e−2δ(t−s)E‖X(s)− Y (s)‖2 ds

≤ 2M2 ·K
( ∫ t

−∞
e−δ(t−s) ds

)2

sup
s∈R

E‖X(s)− Y (s)‖2
)

+ 2M2 ·K ′
( ∫ t

−∞
e−2δ(t−s) ds

)
sup
s∈R

E‖X(s)− Y (s)‖2
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≤ 2M2
(K
δ2

+
K ′

δ

)
‖X − Y ‖2

∞

≤ Θ · ‖X − Y ‖2
∞ .

Consequently, if Θ < 1, then Λ has a unique fixed-point, which obviously is the
unique pth-mean almost periodic solution to (1.1). �
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DU [13] L. Decreusefond and A. S. Üstünel; Stochastic analysis of the fractional Brownian motion,
Potential Anal. 10 (1998), 177-214.
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