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PATTERN FORMATION IN A MIXED LOCAL AND NONLOCAL
REACTION-DIFFUSION SYSTEM

EVELYN SANDER, RICHARD TATUM

Abstract. Local and nonlocal reaction-diffusion models have been shown to
demonstrate nontrivial steady state patterns known as Turing patterns. That
is, solutions which are initially nearly homogeneous form non-homogeneous
patterns. This paper examines the pattern selection mechanism in systems
which contain nonlocal terms. In particular, we analyze a mixed reaction-
diffusion system with Turing instabilities on rectangular domains with periodic
boundary conditions. This mixed system contains a homotopy parameter β
to vary the effect of both local (β = 1) and nonlocal (β = 0) diffusion. The
diffusion interaction length relative to the size of the domain is given by a
parameter ε. We associate the nonlocal diffusion with a convolution kernel,
such that the kernel is of order ε−θ in the limit as ε → 0. We prove that as
long as 0 ≤ θ < 1, in the singular limit as ε → 0, the selection of patterns is
determined by the linearized equation. In contrast, if θ = 1 and β is small, our
numerics show that pattern selection is a fundamentally nonlinear process.

1. Introduction

Turing in 1952 first suggested a mechanism in which chemicals, through the
process of diffusion, could form highly developed patterns [35]. Now referred to
as Turing patterns, they have been experimentally shown in several well-known
reaction-diffusion systems such as the chlorite-iodide-malonic acid (CIMA) reaction
[24], and more recently, the Belousov-Zhabotinsky (BZ) reaction using a water-in-
oil aerosol micro-emulsion [36]. Prior to this important discovery, Field and Noyes
devised the well-known Oregonator reaction-diffusion equation for the Belousov-
Zhabotinsky (BZ) reaction [13]. However, these models do not account for any
nonlocal interactions. Using a nonlocal feedback illuminating source, Hildebrand,
Skødt and Showalter [19] experimentally showed the existence of novel spatiotempo-
ral patterns in the BZ reaction. This system is similar to System (1.1) the equation
we consider in this paper, except that the version we consider does not contain a
thresholding function. In particular, we consider the following system of equations
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subject to periodic boundary conditions:

ut = ε(β∆u+ (1− β)(J ∗ u− Ĵ0 · u)) + f(u, v),

vt = dε(β∆v + (1− β)(J ∗ v − Ĵ0 · v)) + g(u, v)
, (1.1)

where Ω ⊂ Rn is a rectangular domain for n ∈ {1, 2, 3} and u and v model concen-
trations of activator and inhibitor populations, respectively. This equation contains
a homotopy between pure local diffusion and a nonlocal counterpart with the ho-
motopy parameter β ∈ [0, 1]. The convolution is defined by

J ∗ u(x, t) =
∫

Ω

J(x− y)u(y, t)dy, (1.2)

Ĵ0 =
1
|Ω|

∫
Ω

J(x)dx, (1.3)

where the kernel J : Rn → R of the convolution is periodic. The kernel J is
assumed to be such that for some 0 ≤ θ ≤ 1, εθJ(x) limits uniformly to a smooth ε-
independent function K(x) as ε→ 0. For our simulations, we use a Gaussian kernel
that is modified by a smooth cut-off function similar to the kernel used in [17]. See
Appendix A for more details about the kernel choice. In System (1.1), diffusion
is modeled by the local and nonlocal operators, while the nonlinearities model
the associated reaction kinetics. System (1.1) includes both local and nonlocal
operators to model both short and long range diffusion effects [28]. The inclusion
of both operators in the model is important for those physical systems in which both
effects are present. Again, see [19]. The parameter d is the ratio of the diffusion
coefficients of u and v, in which higher values of d indicate higher diffusion rates
for the inhibitor species. The parameter ε is a scale parameter that regulates the
effects of the reaction kinetics over the domain Ω.

For a large range of nonlinear functions f and g, the system above has an unstable
spatially homogeneous equilibrium (ū0, v̄0) (See Lemma 2.13). This corresponds
to an experimental or naturally occurring setting in which the uniformly mixed
starting state is destabilized by small fluctuations. In order to study how these
natural fluctuations impact the evolving mixture, one studies the time evolution
of solutions starting at initial conditions close to the homogeneous equilibrium.
After a rather short time, such solutions form patterns. However, even for a fixed
set of parameters, every initial condition results in different pattern formation.
Thus through the initial condition, randomness enters an otherwise deterministic
process of pattern formation. Although the fine structure of these patterns differ,
the patterns exhibit common characteristic features and similar wavelength scales.
In this paper, we concentrate on understanding the key features of these patterns
under nonlocal diffusion.

This paper focuses on short term pattern formation rather than asymptotic
behavior. See Figure 1. In most natural systems, not only the asymptotic behavior
but also the transient patterns that occur dynamically are critically important for
understanding the behavior of the system. For example, in cases of metastability [2],
the convergence to the global minimizers is exponentially long, and thus from a
practical point of view not viable. More generally, many systems simply never
reach equilibrium on the time scale of the natural problems. To quote Neubert,
Caswell, and Murray [30]: “Transient dynamics have traditionally received less
attention than the asymptotic properties of dynamical systems. This reflects the
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difficulty in studying transients, the belief that dynamics are more important than
history, and the mistaken belief that asymptotic properties completely characterize
the solution. . . . There is, however, a growing recognition that transient dynamics
deserve more study.”

We specifically consider the pattern formation occurring in the limit as ε ap-
proaches zero. The parameter ε is a measure of the interaction length of diffu-
sion on a fixed domain. A rescaling of the time t̃ = εt and setting γ = 1/ε,
where we drop the tilde after rescaling, results in the system of equations: ut =
(β∆u+(1−β)(J ∗u−Ĵ0 ·u))+γf(u, v), vt = d(β∆v+(1−β)(J ∗v−Ĵ0 ·v))+γg(u, v).
In this form, γ is viewed as a measure of the domain size. See for example Mur-
ray [28].

A standard heuristic explanation of the pattern formation starting near the ho-
mogeneous equilibrium is to say that the patterns can be fully explained by con-
sidering only the eigenfunction corresponding to the most unstable eigenvalue of
the linearization (which we will refer to as the most unstable eigenfunction). For
example, such an explanation was given by Murray [28] for the above equation in
the case that β = 1. The same explanation was given for spinodal decomposi-
tion for the Cahn-Hilliard equation by Grant [15]. However, this explanation does
not explain the patterns that are seen: most unstable eigenfunctions are regularly
spaced periodic patterns, whereas the patterns seen are irregular snake-like pat-
terns with a characteristic wavelength. This discrepancy arises because the most
unstable eigenfunction only describes pattern formation for solutions that start
exponentially close to the homogeneous equilibrium, whereas both numerical and
experimental pattern formation can at best be considered as polynomially close to
the equilibrium. Sander and Wanner [33] gave an explanation for the irregular pat-
terns for solutions for the above equation in the case of purely local diffusion (i.e.
for β = 1), and in this paper, we have extended these results to the case of nonlocal
diffusion. See Fig. 2. By applying [25, 26], Sander and Wanner showed that the
observed patterns arise as random superpositions of a finite set of the most unstable
eigenfunctions on the domain called the dominating subspace. These results are not
merely a use of simple linearization techniques, which would give only topological
rather than quantitative information as to the degree of agreement between linear
and nonlinear solutions. Using “most nonlinear patterns” approach of Maier-Paape
and Wanner [25], it is possible to show both the dimension of the dominating sub-
space, and the degree to which linear and nonlinear solutions agree. In particular,
the technique shows there exists a finite-dimensional inertial manifold of the local
reaction-diffusion system which exponentially attracts all nearby orbits. The orbit
can be projected onto this finite-dimensional manifold. In this paper, we extend
their results to the mixed local-nonlocal equation given in (1.1). Our results are
the first generalization of the results obtained in [33] to nonlocal reaction-diffusion
systems.

We now state our main theoretical result. In order to compare solutions to the
nonlinear equation (1.1) and of the linearization of this equation linearized at the
homogeneous equilibrium (ū0, v̄0), let (u, v) denote a solution to the full nonlinear
equation starting at initial condition (u0, v0), and let (ulin, vlin) denote a solution
to the linearized equation starting at the same initial condition. We consider initial
conditions which are a specified distance rε from the homogeneous equilibrium
depending only on ε. We refer to this value rε as the initial radius. The subscript
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(a) Initial condition t = 0 (b) Time ti

(c) Time 2ti (d) Time 3ti

(e) Time 4ti (f) Time 8ti

Figure 1. Early and later pattern formation with β = 0. Start-
ing with an initial random perturbation about the homogeneous
equilibrium (a), the system evolves to show pattern formation af-
ter ti = 2.23 × 10−3 time units. The behavior seen in (b)-(c) is
the focus of our results. Further pattern formation development
occurs in (d)-(e).

denotes the fact that the choice of initial radius varies with ε. We compare the
trajectories of (u, v) and (ulin, vlin) until the distance between the solution (u, v)
and the homogeneous equilibrium (u0, v0) reaches the exit radius value Rε. Clearly
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we choose Rε > rε. When the solution has reached the exit radius, we measure the
relative distance

Dε :=
‖(u(t), v(t))− (ū0, v̄0)− (ulin, vlin)‖∗∗

‖(ulin(t), vlin(t))‖∗∗
.

The ‖ · ‖∗∗-norm is equivalent to the standard Sobolev norm. See Lemma 4.5 of
Section 4. If it is possible to choose the initial radius such that rε → 0 as ε → 0
and the exit radius such that Rε → ∞ as ε → 0, such that Dε → 0 as ε → 0, this
implies that as ε limits to zero, the nonlinear behavior of solutions is progressively
closer to linear as ε→ 0. We refer to this as almost linear behavior.

Extending techniques in [25, 26, 33], we give conditions such that the mixed
system given by System (1.1) displays almost linear behavior. Our main theoretical
result is summarized in the following theorem.

Theorem 1.1. Let ε < ε0 and choose α such that dim Ω/4 < α < 1. Assume that
System (1.1) satisfies the following conditions:

(1) Ω is a rectangular domain of Rn, where n = {1, 2, 3}.
(2) The nonlinearities f and g are sufficiently smooth and satisfy Turing in-

stability conditions with real eigenvalues. Namely, they satisfy conditions
such that the eigenvalues of the linearized right hand side of System (1.1)
are real; in addition, f are g are assumed to be such that for ε = 0, the
system is stable, and there exists an ε0 > 0 such that for all 0 < ε ≤ ε0, the
homogeneous equilibrium (ū0, v̄0) is unstable. (These conditions are given
in Lemma 2.13 and Assumption 2.14).

(3) For some constant 0 ≤ θ ≤ 1, the limit of the kernel function

K(x) = lim
ε→0

εθJ(x)

is a uniform limit to a C1 smooth ε−independent function, which is smoothly
periodic with respect Ω.

(4) Define K̂0 =
∫
Ω
K(x) dx. For β satisfying 0 < β < 1 and two constants

s` < sr determined by the functions f and g (defined in 3.14), we assume
that K̂0 satisfies the condition

sr < K̂0 <
s`

ε1−θ · (1− β)
.

as ε→ 0.
We define the constant χ to be a measure of the order of the nonlinearity of the
functions f and g (defined in 4.12). Then there is almost linear behavior with the
following values of the constants rε, Rε, Dε defined above:

0 < rε ∼ min(1, (ε−(α−dim Ω/4)+α/χ+ξ)1/(1−ξ)),

0 < Rε ∼ ε−(α−dim Ω/4)+α/χ+ξ,

Dε ∼ εα−dim Ω/4.

The results of the above theorem are schematically depicted in Figure 3. The
value θ describes the asymptotic ε-dependent relationship between J(x) and an
ε-independent kernel K(x). Hypothesis 4 of the theorem states that for fixed K̂0,
f , and g, if 0 ≤ θ < 1 then any β value between 0 and 1 is sufficient for the results
of the theorem to hold. However, if θ = 1, then β must be sufficiently close to
1 for the results to follow. This can be clearly seen numerically in Figures 4-6.
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The parameters of the nonlinearity featured in Figure 4 can be found in [33] and
are known to give rise to Turing instability under the appropriate choice for ε and
d. See [29]. Figures 5-6 use random perturbations of the nonlocal parameters in
Figure 4 that also give rise to Turing instability. Since the results are asymptotic in
ε, the values of r,R, and D are independent of θ. As ε→ 0, the size of θ determines
how quickly the solutions display almost linear behavior.

This theorem does not mention the case in which θ > 1. In this case the homo-
geneous equilibrium is asymptotically stable independent of any other parameter
values. Therefore all random fluctuations sufficiently close to the homogeneous
equilibrium converge to the homogeneous equilibrium, and there is no pattern for-
mation. We performed numerics to see what size of fluctuations are possible in
this case. Our numerics show that for fluctuations of .1, the solutions converge to
the homogeneous equilibrium. The details and proof of this theorem are given in
Section 4 as a combination of Theorems 4.8 and 4.10. The case of β = 1 in the
above theorem is analogous to the homogeneous Neumann case considered in [33].
For β < 1, our results are new.

The numerical results in Figure 4-6 as well as our other numerical investigations
(not shown here) indicate that the estimates for θ → 1 of the above theorem remain
true as long as β remains in an interval [β0, 1], where β0 > 0. Indeed, in the numerics
the nonlinear behavior of solutions becomes more and more pronounced for small
ε as θ → 1 outside of [β, 1]. Our numerics indicate an additional conclusion for
small β (cf. Figures 4-6). Specifically, they indicate that the results of the above
theorem cannot be generalized to include the case of purely nonlocal systems. For
systems close to purely nonlocal (ie. β < β0), the behavior becomes fundamentally
nonlinear. The thesis of Hartley [16] included numerical observations of a similar
distinction between local and nonlocal behavior for a phase field model with a
homotopy between purely local and nonlocal terms.

Note that in the above theorem and numerics, we have used the ∗∗-norm to study
distances since it is the natural mathematical choice. The natural physical choice
is the L∞-norm, by which measure our results are only polynomial in ε rather than
order one. See Sander and Wanner [33] for a more detailed discussion of theoretical
and numerical measurements in the two norms.

Mixed local and nonlocal equations have been considered previously. The Fisher-
KPP was shown to generate traveling waves [7]. A similar model also appears in
the survey article of Fife [14] and in Lederman and Wolanski [23] in the context
of the propagation of flames. Hartley and Wanner also studied pattern formation
for a mixed phase field model with a homotopy parameter like Eqn. (1.1) [17].
Specifically, for the stochastic nonlocal phase-field model, they used functional-
analytic structure to prove the existence and uniqueness of mild solutions [17]. We
use a related method here to describe the early pattern selection for Eqn. (1.1).

This paper is organized as follows. Section 2 contains our assumptions. Section
3 describes the properties of the linearization of the right hand side. The full
spectrum of the linearization is given in Section 3.1. The almost linear results for
System (1.1) are found in Section 4. The final section includes a summary with
some conjectures.
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(a) β = 1.0 (b) β = 0.99

(c) β = 0.98 (d) β = 0.97

(e) β = 0.96

Figure 2. Examples of the patterns produced using various β
values and ε = 1 × 10−5 over the domain [0, 1]2. These patterns
occur when the relative distance between the nonlinear and linear
solution reaches a threshold value Dε of 0.01. As β decreases,
the characteristic size of the patterns becomes larger. Note that
(s`, sr) ≈ (.0071, .8806). See Appendix 6 for a description of the
kernel.
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Figure 3. A summary of behavior in each parameter region given
by Theorem 1.1.

2. Preliminaries

In this section, we describe in detail our assumptions for the domain, kernel type,
smoothness of the nonlinearity, and type of instability exhibited by the homoge-
neous equilibrium.

Assumption 2.1 (Rectangular domain). Let Ω be a closed rectangular subset of
Rn for n ∈ {1, 2, 3}.

Definition 2.2 (Spectrum of −∆). Suppose that Ω satisfies Assumption 2.1. Let
L2

per(Ω) be the space of functions which are periodic with respect to Ω and belong
to L2(Ω). For ∆ : L2

per(Ω) → L2
per(Ω), denote the ordered sequence of eigenvalues

of −∆ as 0 = κ0 < κ1 ≤ · · · → ∞ [3, Section 1.3.1]. Denote the corresponding
real-valued L2−orthonormalized eigenfunctions by ψk, for k ∈ N.

Assume that K ∈ L2
per(Ω). An important aspect of Definition 2.2 is that we can

define the Fourier series for functions J and K as

JN (x) =
N∑

k=0

Ĵkψk(x), and KN (x) =
N∑

k=0

K̂kψk(x), (2.1)

where

Ĵk =
∫

Ω

J(x)ψk(x)dx, and K̂k =
∫

Ω

K(x)ψk(x)dx. (2.2)

Note that if J,K ∈ C1(Ω̄), then JN → J and KN → K uniformly as N →∞. See
[22]. Observe that Ĵ0 =

∫
Ω
J(x)dx/|Ω| since ψ0 = 1/|Ω| by Definition 2.2.

Definition 2.3 (Smooth periodicity on Ω). Suppose that Ω satisfies Assumption
2.1. A function f : Ω → R is said to be smoothly periodic on Ω if it is periodic
with respect to the boundary ∂Ω and can be extended to a smooth function on Rn.

Assumption 2.4 (The kernel function J and its limit K). Suppose that Ω satisfies
Assumption 2.1. Let the kernel J ∈ C1(Ω̄) be such that for some 0 ≤ θ ≤ 1, there
is an ε-independent function K(x) such that K(x) = limε→0 ε

θ · J(x), where the
limit is a uniform limit. Assume that J(x) and K(x) are smoothly periodic on Ω.
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(a) ε = .01 (b) ε = .001

(c) ε = .0001 (d) ε = .00001

Figure 4. Exit radius Rε for relative distance 0.01, varied β and
nonlinearity parameters a = 150.0, b = 100.0, ρ = 13.0, A = 1.5,
and K = 0.050. For each simulation, we used random initial condi-
tions with initial radius rε < ε1/4. As β → 0, the measured values
are smaller, meaning that the behavior of solutions is determined
by nonlinear effects. This is more pronounced for smaller ε values.
For each β and ε value depicted we performed 20 distinct simula-
tions. Distances are measured in the ‖ · ‖∗∗ norm, as defined in
Section 4. To capture the rapid change in the graph, a refined grid
is used near β = 1. In all simulations, we used a Galerkin spectral
method with a semi-implicit 2D integration scheme that used 1282

nodes. Note that (s`, sr) ≈ (.0071, .8806). See Appendix 6 for a
description of the kernel.

Furthermore, assume the Fourier coefficients are such that K̂0 > K̂k for all k > 0,
and thus Ĵ0 > Ĵk for ε sufficiently small.

The meaning of the convolution operator on Rn is well established, but con-
volution on Ω is not. The following definition specifies what is meant here by
convolution of functions on Ω.

Definition 2.5 (Convolution on Ω). Suppose that K and J satisfy Assumption 2.4
and that the periodic extension of K and J are given as Kper and Jper, respectively.
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(a) ε = .01 (b) ε = .001

(c) ε = .0001 (d) ε = .00001

Figure 5. Exit radius Rε for relative distance 0.01, varied β and
nonlinearity parameters a = 127.0, b = 81.0, ρ = 29.0, A = 1.5,
and K = 0.040. For each simulation, we used random initial con-
ditions with initial radius rε < ε1/4. As with the nonlinearity
parameters associated with Figure 5, we see that the solutions are
dominated by nonlinearity effects as β → 0. This is more pro-
nounced for smaller ε values. For each β and ε value depicted we
performed 20 distinct simulations. Distances are measured in the
‖ · ‖∗∗ norm, as defined in Section 4.

The convolution of K and u is defined as

Kc(u) = K ∗ u =
∫

Ω

Kper(x− y)u(y)dy,

where Kc : L2
per(Ω) → L2

per(Ω) and the convolution of J and u is defined as

Jc(u) = J ∗ u =
∫

Ω

Jper(x− y)u(y)dy,

where Jc : L2
per(Ω) → L2

per(Ω)

We now consider the adjoints of Kc and Jc. In particular, the adjoint of Jc will
be used in Section 3 to describe the spectrum of the linearization of System (1.1),
while the adjoint of Kc will be used in Section 4 to describe the unstable interval for
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(a) ε = .01 (b) ε = .001

(c) ε = .0001 (d) ε = .00001

Figure 6. Exit radius Rε for relative distance 0.01, varied β and
nonlinearity parameters a = 125.5, b = 76.0, ρ = 15.2, A = 1.68,
and K = 0.053. For each simulation, we used random initial con-
ditions with initial radius rε < ε1/4. Qualitatively, we again see
that the results do not change with changing the parameters of
the nonlinearities. For each β and ε value depicted we performed
20 distinct simulations. Distances are measured in the ‖·‖∗∗ norm,
as defined in Section 4.

which our main results hold. Let Kper and Jper be the smooth periodic extensions
of K and J , respectively. We begin by defining AK

per such that

AK
per(x) = Kper(−x) (2.3)

and AJ
per such that

AJ
per(x) = Jper(−x) (2.4)

The convolution of AK with u and AJ with u are given by

AK
c (u) = AK ∗ u =

∫
Ω

AK
per(y − x)u(x)dx, (2.5)

AJ
c (u) = AJ ∗ u =

∫
Ω

AJ
per(y − x)u(x)dx, (2.6)
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Lemma 2.6. Suppose that Assumptions 2.1 - 2.4 are satisfied with AK
c is defined

as in (2.5) and AJ
c is defined as in (2.6). The adjoint of Kc is AK

c and the adjoint
of Jc is AJ

c .

Proof. As the computation of the adjoints of Kc and Jc are similar, we only show
the computation of the adjoint of Kc. Let u, v ∈ L2

per(Ω). Computing the inner
product directly gives

(Kc(u), v) =
∫

Ω

Kc(u(x)) · v(y) dy,

=
∫

Ω

∫
Ω

Kper(y − x) · u(x) · v(y) dx dy.

Switching the order of integration, we have

(Kc(u), v) =
∫

Ω

∫
Ω

Kper(y − x) · u(x) · v(y) dy dx,

=
∫

Ω

u(x)
( ∫

Ω

Kper(y − x) · v(y) dy
)
dx,

=
∫

Ω

u(x)
( ∫

Ω

AK
per(x− y) · v(y) dy

)
dx,

= (u,AK
c (v)).

�

By Lemma 2.6, in order to guarantee that Kc is self-adjoint, we must use an
even kernel function.

Definition 2.7. Let T : Rn → R and x = (x1, x2, . . . , xn) ∈ Rn. The function T
is even if for each xi < 0, 0 ≤ i ≤ n,

T (x1, x2, . . . , xi, . . . , xn) = T (−x1,−x2, . . . ,−xi, . . . ,−xn).

Assumption 2.8. Suppose that Jper is even.

Lemma 2.9. Suppose that Assumptions 2.1 - 2.8 are satisfied, and AK
c and AJ

c

are defined as in (2.5) and (2.6), respectively. Then Kc and Jc are self-adjoint
operators.

Proof. By Lemma 2.6, AK
c is the adjoint operator of Kc. Since J is such that Jper

satisfies Assumption 2.8 andK is defined as the limit function of εθ ·J in Assumption
2.4, Kper(x) = Kper(−x). Thus AK

c = Kc and Kc is self-adjoint. Since Jper is also
even by Assumption 2.8, the same reasoning shows that Jc is also self-adjoint. �

As pointed out in [17], the convolution of K with u has the same eigenfunctions
as −∆.

Lemma 2.10 (Spectrum of Jc and Kc). Suppose that Ω satisfies Assumption 2.1,
and that K satisfies Assumptions 2.4 - 2.8. Then the following statements are true:

(1) K̂k → 0 as k →∞.
(2) The spectrum of Kc contains only the K̂k and 0, where 0 is a limit point of

the K̂k.
(3) For each fixed ε, the above statements hold for Jc as well.
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Proof. For part 1, K ∈ C1(Ω̄) implies that K̂k → 0 as k → ∞. See [22, Chapter
1, Section 4.3]. We have that Kc is a compact operator on a Banach space [32,
Theorem 8.3]. Therefore, the spectrum of Kc contains only the eigenvalues K̂k and
its limit point 0 [1, Theorem 7.3]. If we fix ε, observe that part (3) follows using the
same reasoning of parts (1) and (2) since J ∈ C1(Ω̄) and Jc is also compact. �

In what follows, we will use the fact that the spectra of Kc− K̂0 and Jc− Ĵ0 are
just shifted versions of the spectra in the above lemma.

Assumption 2.11. (Smoothness of the nonlinearity and a homogeneous equilib-
rium). Let χ ∈ N be arbitrary. Assume that f, g : R2 → R are C1+χ-functions,
and that there exists a point (ū0, v̄0) ∈ R2 with f(ū0, v̄0) = g(ū0, v̄0) = 0. That is,
(ū0, v̄0) is a homogeneous equilibrium for System (1.1). If χ ≥ 2, assume further
that the partial derivatives of f and g of order 2, 3, . . . , χ at the (ū0, v̄0) vanish.

Assumption 2.12 (Turing instability). Assume that f and g satisfy the smooth-
ness conditions of Assumption 2.11 and that the homogeneous equilibrium of Sys-
tem (1.1) exhibits Turing instability. That is, in the absence of nonlocal and local
diffusion terms, the homogeneous equilibrium is stable, but in the presence of the
nonlocal and local diffusion terms, it is unstable.

Lemma 2.13 (Turing Instability Conditions). The homogeneous equilibrium of
System (1.1) exhibits Turing instability. This is true if and only there exists d > 0
be such that

(1) fu + gv < 0,
(2) fugv − fvgu > 0,
(3) dfu + gv > 0,
(4) (dfu + gv)2 − 4d(fugv − fvgu) > 0 ,

where the partials are evaluated at the homogeneous equilibrium (ū0, v̄0).

For a proof of the above lemma, see [27]. In particular, the first two conditions
in this lemma ensure the stability of the homogeneous equilibrium in the absence
of diffusion. The next two conditions ensure that the homogeneous equilibrium is
unstable when diffusion is present. Note that the first and third conditions show
that d > 1.

Assumption 2.14 (Real eigenvalues for the nonlinearity). Suppose that f and g
satisfy Assumption 2.11. Assume that the eigenvalues of the linearization are real.

This section is concluded with definitions of the function spaces that provide the
context for the results of this chapter.

Definition 2.15 (Function Spaces). Let L2
per(Ω) be the space of smoothly periodic

functions on Ω that belong to L2(Ω) as defined by Definition 2.2. Let

L2
per(Ω) = L2

per(Ω)× L2
per(Ω). (2.7)

For s > 0, let Hs(Ω) be the standard fractional Sobolev space for real-valued
functions and let Hs

per(Ω) be the space of periodic functions in Hs
per(Ω). Let

Hs
per(Ω) = Hs

per(Ω)×Hs
per(Ω). (2.8)
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3. Properties of the linearization

In this section, we state and derive explicit representations for the eigenvalues
and eigenfunctions of the linearized right hand side of System (1.1). For 0 < β ≤ 1
and 0 ≤ θ < 1, we show that if Assumptions 2.1 - 2.14 are satisfied, then there
exists an ε0 such that for 0 < ε ≤ ε0, the homogeneous equilibrium will be unstable.

The following system is the linearized form of System (1.1):

U ′ = DJεU +BU, (3.1)

where

D =
(

1 0
0 d

)
, (3.2)

Jε = εJ1 + ε1−θJ2 (3.3)

J1 = β

(
∆ 0
0 ∆

)
(3.4)

J2 = (1− β)εθ
(
Jc − Ĵ0 0

0 Jc − Ĵ0

)
, (3.5)

B =
(
fu(ū0, v̄0) fv(ū0, v̄0)
gu(ū0, v̄0) gv(ū0, v̄0)

)
, (3.6)

for U = (u, v)T . For the sake of notation, we shall denote this operator as

Hε = DJε +B, (3.7)

where Hε : L2
per(Ω) → L2

per(Ω). The domains for the local and nonlocal operators
are given respectively as D(∆) = H2

per(Ω) and D(Jc) = L2
per(Ω). Thus, for 0 < β ≤

1, the domain of Hε is given as D(Hε) = H2
per(Ω) and for β = 0, D(Hε) = L2

per(Ω).
The asymptotic growth of the eigenvalues of the negative Laplacian and Jc is

important for our results. Since both the negative Laplacian and Jc have the same
set of eigenfunctions, the eigenvalues of −β∆− (1− β)(Jc − Ĵ0) are given as

νk,ε = βκk + (1− β)(Ĵ0 − Ĵk), (3.8)

where k ∈ N. Here, the κk are the eigenvalues of −∆ as defined in Definition 2.2
and the Ĵk are the eigenvalues of Jc as defined by Equation 2.2. Note that νk,ε is
real since κk and Ĵk are real. For rectangular domains, the growth of eigenvalues
of the negative Laplacian are given as

lim
k→∞

κk

k2/n
= CΩ, (3.9)

where n = dim Ω and 0 < CΩ < ∞ [10]. Since J ∈ C1(Ω̄), by Lemma 2.10,
limk→∞(Ĵ0 − Ĵk) = Ĵ0. Thus, we see that for fixed ε, if β > 0,

lim
k→∞

νk,ε

k2/n
= β · CΩ, (3.10)

whereas if β = 0, limk→∞ νk,ε = Ĵ0. Note that Ĵ0 depends on ε.

Lemma 3.1 (Eigenvalues ofHε). Suppose that Assumptions 2.1 - 2.14 are satisfied.
The eigenvalues of Hε are

λ±k,ε = λ±(ενk,ε) =
b(ενk,ε)±

√
(b(ενk,ε)2 − 4c(ενk,ε)

2
, (3.11)
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where λ±k,ε ∈ R and

b(s) = (fu + gv)− (d+ 1)s (3.12)

c(s) = (fugv − gufv)− (dfu + gv)s+ ds2, (3.13)

and νk,ε are the eigenvalues of −β∆ − (1 − β)(Jc − Ĵ0) associated with λ±k,ε. The
normalized eigenfunctions of Hε are given as Ψ±

k,ε = E±(ενk,ε)·ψk, where E±(ενk,ε)
are eigenfunctions of B − ενk,εD. If β = 0, then for each fixed ε, λ±(ε · νk,ε) →
λ±(ε · Ĵ0) as k →∞.

Proof. Fix ε > 0. We begin by showing that any eigenvalue of Hε is expressible as
λ±k,ε for some k. Let λ and U be an eigenvalue and corresponding eigenfunction of
Hε, respectively, where U ∈ L2

per(Ω) and U 6= (0, 0). We can write U ∈ L2
per(Ω) as

U =
∞∑

j=0

ψjrj ,

where rj = (sj , tj)T and sj , tj ∈ R. Since U is nontrivial, then for j = k, rj 6=
(0, 0)T . Since λ is an eigenvalue of Hε, and U is the corresponding eigenfunction,

HεU − λU = 0.

Using 3.7, we evaluate the left hand side as

HεU − λU =
∞∑

j=0

(DJε +B − λI)ψjrj =
∞∑

j=0

(−ενj,εD +B − λI)ψjrj .

Since the ψj are linearly independent,

(−ενj,εD +B − λI)rj = 0,

for all j. For j = k, we see that rk is nontrivial, which implies that
−ενk,εD +B − λI must be singular for some k. Therefore, we have that

| − ενk,εD +B − λI| = 0.

Solving for λ gives the result.
Let λ±k,ε be as given by Equation 3.11 and E±(ενk,ε) be the associated eigen-

function of B − ενk,εD. To show that λ±k,ε is an eigenvalue of Hε and Ψ±
k,ε is an

eigenvector of Hε, we compute

HεΨ±
k,ε = DJεΨ±

k,ε +BΨ±
k,ε

= λ±k,εE
±(ενk,ε)ψk

= λ±k,εΨ
±
k,ε

Since the λ±k,ε are distinct and the algebraic multiplicity is 1, the geometric multi-
plicity is also 1. Thus, each eigenvalue corresponds to one and only one eigenfunc-
tion. As k → ∞, Lemma 2.10 shows that Ĵk → 0. If β = 0, λ±(ενk,ε) → λ±(εĴ0)
as k →∞. Assumption 2.14 implies that λ±k,ε ∈ R. �

We now give a useful, sufficient condition that describes when the eigenvalues of
the linearization are real.
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Lemma 3.2. Suppose that Assumptions 2.1 - 2.13 are satisfied. A sufficient con-
dition on f and g for the eigenvalues of our system to be real:

(fu + gv)2 − 4(fugv − fvgu) > 0.

Proof. Suppose that (fu +gv)2−4(fugv−fvgu) > 0. Using Equations (3.11), (3.12)
and (3.13), we see that the eigenvalues are real if and only if b2(s)− 4c(s) ≥ 0, for
which s = ενk,ε > 0. Expanding the left hand side of the inequality, we have

b2(s)−4c(s) = (fu+gv)2−4(fugv−fvgu)+(d−1)2s2−2(d+1)(fu+gv)s+4(dfu+gv)s.

For the Turing instability conditions in Lemma (2.13), we have

(d− 1)2s2 − 2(d+ 1)(fu + gv)s+ 4(dfu + gv)s ≥ 0.

Thus, the eigenvalues are real. �

Figure 7 shows eigenvalues λ±k,ε for fixed β = 0 and 0 ≤ θ < 1. In particular,
as ε → 0, limk→∞ νk,ε = 0. The convergence to 0 becoming slower as θ → 1, and
the expression does not converge to zero for θ = 1. In contrast, for all β > 0 and
0 ≤ θ ≤ 1, νk,ε limit to ∞ for k → ∞. Thus for 0 ≤ θ < 1, the eigenvalues
of the mixed diffusion operator as ε → 0 have the property that ενk,ε behave
asymptotically like εκk for 0 < β ≤ 1.

In the following lemma, we analyze the behavior of the eigenvalues λ±k,ε = λ(ενk,ε)
by replacing ενk,ε in Eqn. 3.11 with the continuous real variable s.

Lemma 3.3. Under Assumptions 2.12 and 2.14, the following properties of λ±(s)
are true for s ≥ 0:

• λ−(s) < λ+(s).
• λ+(0) < 0.
• λ+(s) has a unique maximum λ+

max.
• λ+(s) has two real roots, s` and sr.
• λ−(s) is strictly decreasing with λ−(s) < 0.
• lims→∞(λ+(s)/s) = −1.
• lims→∞(λ−(s)/s) = −d.

Proof. The proof follows exactly as that given in [33, Lemma 3.4]. Application of
Inequalities (1), (3) of Lemma 2.13 and Assumption 2.14 give that b(s)2−4c(s) > 0
for every s ≥ 0. Part (1) of Lemma 2.13 shows that b(s) < 0 for all s ≥ 0, and
therefore, λ−(s) < 0. Consequently, we have that λ−(s) < λ+(s) for all s ≥ 0. We
also have that λ+(0) < 0. For λ+(s) > 0, then c(s) < 0. Parts (2) – (4) of Lemma
2.13 show that c(s) < 0 is equivalent to s` < s < sr, where

sl/r =
1
2d

(
(dfu + gv)∓

√
(dfu + gv)2 − 4d(fugv − fvgu)

)
. (3.14)

Since λ+ is continuous on [s`, sr], it achieves a maximum value, denoted as λ+
max.

Computing the asymptotic limits for λ±(s)/s gives the final part of the lemma. �

Lemma 3.4. Suppose that Assumptions 2.1 - 2.14 are satisfied. For 0 ≤ β ≤ 1, the
eigenfunctions of Hε form a complete set for X. The angle between E±k,ε is bounded
away from π and 0.

Proof. The eigenfunctions are given by Ψ±
k,ε = E±k,ε · ψk, where E±k,ε = E±(ε · νk,ε)

and E±(·) is defined by Lemma 3.1. By Lemma 3.3, we see that for each s ≥ 0,
λ+(s) < λ−(s). Thus, the eigenvectors E±(s) are linearly independent for all s ≥ 0.
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(a) Large ε (b) Medium ε

(c) Small ε

Figure 7. The eigenvalue dispersion curve for System (1.1), β =
0. This figure shows a plot of the eigenvalues λ+(ενk,ε) versus
νk,ε, where the νk,ε are the eigenvalues of the nonlocal diffusion
operator. Parameters ε and 0 ≤ θ < 1, are fixed (with θ defined
in Assumption 2.4). The points are plotted as black asterisks, and
(Ĵ0, λ

+(εĴ0)) is given as a red asterisk. In Part (a), the eigenvalues
are sparsely distributed on the curve when ε is large. In Part (b), as
ε decreases, the eigenvalues are more closely spaced. Since β = 0,
the plotted points limit on the point (Ĵ0, λ

+(ε · Ĵ0)). As ε → 0 in
Subfigure (c), the eigenvalues lie on the leftmost part of the curve
where all of the eigenvalues are negative.

However, we are only interested in the discrete points of s in which s = ε · νk,ε.
All that is left to show is that ε · νk,ε ≥ 0 for all k ≥ 0. By Assumption 2.4,
ε(1− β)(Ĵ0− Ĵk) ≥ 0 for 0 ≤ β ≤ 1. Definition 2.2 shows that κk ≥ 0 for all k ≥ 0.
Since νk,ε = βκk +(1−β)(Ĵ0− Ĵk) ≥ 0, we have shown the first part of this lemma.
The Ψ±

k,ε form a complete set in X since the ψk form a complete set for L2(Ω) and
the E±k,ε are linearly independent.

For β = 0, fix ε0 > 0. As k → ∞, we have that ε0νk,ε0 → ε0Ĵ0 < ∞. Thus,
all νk,ε0 are contained in some compact interval [0, s∗r ]. Since 0 ≤ θ ≤ 1, clearly
ενk,ε ∈ [0, s∗r ] for all 0 < ε ≤ ε0. Since the eigenvectors E±k,ε are linearly independent
and the angle between the E±k,ε is bounded away from 0 and π. For β > 0, we need
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to consider the limit as s → ∞. The eigenfunctions of B − sD are the same as
s−1B − D, and we see that as s → ∞, s−1B − D approaches a diagonal matrix.
Hence, the eigenfunctions become orthogonal as s → ∞ and are bounded away
from 0 and π. �

Lemma 3.5. Suppose that Assumptions 2.4, 2.12 and 2.14 are satisfied. For 0 <
β ≤ 1, there exists ε0 > 0, such that for all ε ≤ ε0, the homogeneous equilibrium of
System (1.1) is unstable.

Proof. The details follow the proof given in [33, Lemma 5.1]. Let 0 < β ≤ 1,
0 ≤ θ < 1, and choose 0 < c1 < c2 < λ+

max, where λ+
max is given in Lemma 3.3.

By Lemma 3.3 and Lemma 3.4, there exists a set of two compact intervals, which
we call I, such that λ+

k,ε ∈ [c1, c2] if and only if ε · νk,ε ∈ I. Using the asymptotic
distribution of eigenvalues νk,ε given in (3.10), we see that as ε→ 0, the number of
eigenvalues of Hε in [c1, c2] is of the order ε− dim Ω/2. Thus, for some ε0, we have
that the homogeneous equilibrium is unstable for 0 < ε ≤ ε0. �

Note that the estimates in the proof of the above lemma are more delicate for
β = 0 with θ = 1. Namely, the eigenvalues are discretely spaced along a continuous
dispersion curve, meaning that even if the dispersion curve goes above zero, if the
spacing of the eigenvalues is too large along the curve it is possible to miss the
unstable region altogether, resulting in no unstable eigenvalues. The result is never
true for β = 0, with 0 ≤ θ < 1 (cf. Fig. 7.)

3.1. Spectrum of the linear operator. The results presented in the following
sections depend upon the spectrum of Hε and its associated spectral gaps. For this
reason, we describe the full spectrum of Hε for all 0 ≤ β ≤ 1. We begin with a
theorem describing the spectrum of Hε, followed by useful lemmas used in proving
the theorem and finally the proof.

Theorem 3.6 (Spectrum ofHε). Suppose that Assumptions 2.1 - 2.14 are satisfied.
Let Hε be as defined in (3.7). If 0 < β ≤ 1, the spectrum contains only the
eigenvalues of Hε. If β = 0, then the spectrum of Hε consists of the eigenvalues Hε

and the points λ±(εĴ0).

We introduce a norm that will be useful for the spectrum computation. As we
show in the next lemma, the equivalence of the L2-norm and this new norm is
possible since the angle between the E±k,ε is bounded away from both 0 and π.

Definition 3.7. Let ε > 0. For U ∈ L2
per(Ω), Lemma 3.4 implies that U may be

written as

U =
∞∑

k=0

(
(α+

k,ε)E
+
k,ε + (α−k,ε)E

−
k,ε

)
· ψk. (3.15)

When the following is finite, define the ‖ · ‖#−norm as

‖U‖2# =
∞∑

k=0

(
(α+

k,ε)
2 + (α−k,ε)

2
)
. (3.16)

Lemma 3.8. Suppose that Assumptions 2.1 - 2.14 are satisfied. Let ‖ · ‖# be as
defined in Definition 3.7. For U ∈ L2

per(Ω),
√

1− r‖U‖# ≤ ‖U‖L2
per(Ω) ≤

√
1 + r‖U‖#,
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where |(E+
k,ε, E

−
k,ε)R2 | ≤ r < 1 for all k ∈ Z.

Proof. Let ε > 0. For U ∈ L2
per(Ω), we write U as

U =
∞∑

k=0

(
(α+

k,ε)E
+
k,ε + (α−k,ε)E

−
k,ε

)
· ψk.

Note that r exists by Lemma 3.4. Computing the square of the L2
per(Ω)-norm of U

yields

‖U‖2L2
per(Ω) =

∞∑
k=0

((α+
k,ε)

2 + (α−k,ε)
2 + 2α+

k,εα
−
k,ε(E

+
k,ε, E

−
k,ε)),

≤
∞∑

k=0

((α+
k,ε)

2 + (α−k,ε)
2) + 2|α+

k,εα
−
k,ε|r,

≤
∞∑

k=0

(α+
k,ε)

2 + (α−k,ε)
2 + r((α+

k,ε)
2 + (α−k,ε)

2)

= (1 + r)
∞∑

k=0

(α+
k,ε)

2 + (α−k,ε)
2,

= (1 + r)‖U‖2#.
Taking square roots gives the right hand inequality. For the other direction, we
compute

‖U‖2L2(Ω) ≥
∞∑

k=0

(α+
k,ε)

2 + (α−k,ε)
2 −

(
(α+

k,ε)
2 + (α−k,ε)

2
)

(E+
k,ε, E

−
k,ε)),

≥ (1− r)‖U‖2#.
Again, taking square roots gives the left hand inequality. �

The following lemma allows us to describe the full spectrum of Hε for β = 0.

Lemma 3.9 (Adjoint of Hε). Suppose that Assumptions 2.1 - 2.4 are satisfied and
β = 0. Let Hε be as defined in (3.7) and J2 be as defined in (3.5). The adjoint of
Hε is given as H∗

ε = ε1−θDA+BT , where

A =
(
AJ

c − Ĵ0 0
0 AJ

c − Ĵ0

)
,

and AJ
c is as defined in (2.6). If the periodic extension of J satisfies Assumption

2.8, then the adjoint of Hε is given as H∗
ε = ε1−θDJ2 +BT .

Proof. Let ε > 0. Application of Lemma 2.6 shows that the adjoint of ε1−θDJ2 is
ε1−θDA. Since the adjoint of B is BT , the adjoint ofHε is given asH∗

ε = εDA+BT .
On the other hand if Jper satisfies Assumption 2.8, then Jc is self-adjoint by Lemma
2.6 and the adjoint of Hε is given as H∗

ε = ε1−θDJ2 +BT . �

We are now ready to prove Theorem 3.6 that describes the full spectrum of Hε

for all 0 ≤ β ≤ 1.

Proof of Theorem 3.6. Let 0 < β ≤ 1. Recall that Jε = εJ1 + ε1−θJ2 as defined
in Equations (3.3) - (3.5). Since εDJ1 + B has a compact resolvent, its spectrum
contains only eigenvalues [31]. The operator DJε +B also has a compact resolvent,
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since εDJ1 +B has a compact resolvent and ε1−θDJ2 is a bounded operator. See
[12, pg. 120]. Since the resolvent is compact, then for 0 < β ≤ 1, the spectrum of
Hε contains only eigenvalues [21, pg. 187]. We now focus on the case β = 0.

In [20], a sufficient condition is given that states for certain self-adjoint operators
defined on Hilbert spaces, all points of the spectrum are expressible as limit points
of eigenvalues. The remainder of the proof shows that in general, it is not necessary
for an operator to be self-adjoint.

A value λ is in the spectrum of Hε is either in the point spectrum, continuous
spectrum or residual spectrum. We have already computed the eigenvalues of Hε,
which implies that the point spectrum of Hε is nonempty. We now show that the
residual spectrum must be empty. Since J is self-adjoint, then by similar reasoning
used in the proof of the eigenvalues of Hε, we have that the eigenvalues of H∗

ε are
given as the roots of

det(BT − ε(Ĵ0 − Ĵk)D − λ∗±k I) = 0. (3.17)

Since the determinant of a matrix is the same as the determinant of the transpose
of that matrix, we have

det(BT − ε(Ĵ0 − Ĵk)D − λ∗±k I) = det(B − ε(Ĵ0 − Ĵk)D − λ±k I). (3.18)

Thus, the eigenvalues of H∗
ε are the same as those of Hε. By [34, Theorem 8.7.1],

we see that if a point is in the residual spectrum of Hε, then its conjugate must
also be an eigenvalue of its adjoint operator. Since the eigenvalues for both Hε and
H∗

ε are the same, the residual spectrum of Hε must be empty.
The last portion of the spectrum to check is the continuous spectrum. We now

show that both λ±(εĴ0) are contained in the continuous spectrum. The proof for
λ−(εĴ0) follows in the same manner as the proof for λ+(εĴ0), so we only give proof
for λ+(εĴ0). Consider λ+(εĴ0)I − Hε and let fk = Ψ+

k,ε/‖Ψ
+
k,ε‖L2

per(Ω) where the

Ψ+
k,ε are eigenfunctions of Hε. Since λ+(εĴ0) is not an eigenvalue of Hε, we have

that λ+(εĴ0)I −Hε is one-to-one. Thus,

‖(λ+(εĴ0)I −Hε)fk‖L2
per(Ω) = ‖(λ+(εĴ0)− λ+

k,ε)fk‖L2
per(Ω)

≤ |λ+(εĴ0)− λ+
k,ε|

As k →∞, λ+
k,ε → λ+(εĴ0) and

‖(λ+(εĴ0)I −Hε)fk‖L2
per(Ω) → 0.

Since ‖fk‖L2
per(Ω) = 1 for all k and ‖(λ+(εĴ0)I − Hε)fk‖L2

per(Ω) → 0, we see that

(λ+(εĴ0)I −Hε)−1 is unbounded. Thus, λ±(εĴ0) is in the continuous spectrum of
Hε.

For the continuous spectrum, we have shown that the limit points of the eigen-
values are elements of this set. We now show that the points in the continuous
spectrum must be limit points of the eigenvalues. To do this, we will argue by
contradiction. Suppose that λ is in the continuous spectrum, but that it is not a
limit point of eigenvalues of Hε. Since the ‖ · ‖# is equivalent to the L2−norm by
Lemma 3.8, we have that for some sequence of fn ∈ L2

per(Ω) with ‖fn‖# = 1 for all
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n, ‖(λI −Hε)fn‖# → 0 as n→∞. Since fn ∈ L2
per(Ω), we can write fn as

fn =
∞∑

k=0

((α+
n,k,ε)E

+
k,ε + (α−n,k,ε)E

−
k,ε) · ψk.

By definition of the continuous spectrum, λ can not be an eigenvalue. Since we
assumed that it is also not a limit point of eigenvalues, there exists M > 0 such
that M ≤ |λ− λ±k,ε| for all k. Thus

‖(λI −Hε)fn‖2# =
∞∑

k=0

(λ− λ+
k,ε)

2(α+
n,k,ε)

2 + (λ− λ−k,ε)
2(α−n,k,ε)

2,

≥M2
∞∑

k=0

((α+
n,k,ε)

2 + (α−n,k,ε)
2),

= M2‖fn‖2# = M2 > 0.

However, this is a contradiction, since ‖(λI −Hε)fn‖# → 0. Therefore, the contin-
uous spectrum of Hε contains only λ±(εĴ0). �

4. Almost linear behavior

Figure 8. Schematic depicting early pattern formation as de-
scribed in Theorem 4.8. The initial condition (u0, v0) of the so-
lution (u, v) is within a parabolic region surrounding the unstable
subspace spanned by the eigenfunctions of the most unstable eigen-
values. For most solutions with this type of initial conditions, the
solutions remain close to the unstable space during the early stage
of pattern formation.
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To prove our main results, we use the abstract theory and techniques developed
for the Cahn-Hilliard equation found in [25, 26]. The theory requires an abstract
evolution equation of the form

Ut = HεU + F (U), (4.1)

on some appropriate function space X that satisfies the following assumptions.
(H1) The operator −Hε is a sectorial operator on X.
(H2) There exists a decomposition X = X−− ⊕X− ⊕X+ ⊕X++, such that all of

these subspaces are finite except X−−, and such that the linear semigroup
corresponding to Ut = HεU satisfies several dichotomy estimates.

(H3) The nonlinearity F : Xα → X is continuously differentiable, and satisfies
both F (ū0, v̄0) = 0 and DF (ū0, v̄0) = 0.

In light of how Hε is defined in (3.7), we define the nonlinearity of the evolution
equation given by 4.1 in the following way. Define the function h : R2 → R2 to be
the nonlinear part of (f, g) of System (1.1) in the following sense. Let

ĥ(u, v) = (f(u, v), g(u, v))

and
h(u, v) = ĥ(u, v)− ĥu(ū0, v̄0) · (u− ū0)− ĥv(ū0, v̄0) · (v − v̄0). (4.2)

Setting
F (U) = h(u, v) for U = (u, v) (4.3)

gives the nonlinear portion of (4.1).

Lemma 4.1. For System (1.1), suppose that Assumptions 2.1 - 2.14 are satisfied
and that 0 < β ≤ 1. Let Hε be as defined in (3.7). Hε is a sectorial operator.

Proof. For 0 < β ≤ 1, again we note that the operator ε1−θDJ2 is a bounded
perturbation of εDJ1 +B, which is a sectorial operator [18]. Thus, Hε is sectorial
[31, 17]. �

An important aspect of our analysis depends upon how the eigenfunctions of Hε

populate the unstable subspaces as ε → 0. Note that the eigenvalues of Hε move
arbitrarily close to λ+(ε1−θ · (1−β) ·K̂0) as ε→ 0. The position of ε1−θ · (1−β) ·K̂0

relative to the unstable interval [sl, sr] is important for the following reasons. For
β = 0, if ε1−θ · K̂0 is too far to the right of sr, then the nonlocal operator is stable.
Furthermore, if θ = 1, and s` < (1 − β) · K̂0 < sr, then there is a clustering
of eigenvalues in the unstable interval as ε → 0. The following two assumptions
exclude these cases.

Assumption 4.2. Suppose that K̂0 > sr such that only a finite nonzero number
of the K̂0 − K̂k are contained within the unstable interval [s`, sr].

Assumption 4.3. For β satisfying 0 < β ≤ 1, K̂0 satisfies

ε1−θ(1− β)K̂0 < s`

as ε→ 0.

We now provide a description of the decomposition of the phase space using the
spectral gaps of Hε. Select the following constants

c−− < c̄−− � 0 � c− < c̄− < c+ < c̄+ < λ+
max, (4.4)
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such that c̄−−− c−−, c̄−− c−, and c̄+− c+ are small. With Assumptions 4.2 - 4.3,
the proofs of [33, Lemma 5.1,Corollary 5.2] show the existence of the intervals

J−−ε = [a−−ε , b−−ε ] ⊂ [c−−, c̄−−], (4.5)

J−ε = [a−ε , b
−
ε ] ⊂ [c−, c̄−], (4.6)

J+
ε = [a+

ε , b
+
ε ] ⊂ [c+, c̄+], (4.7)

where J−−ε , J−ε , and J+
ε are contained in the resolvent of Hε for sufficiently small

ε. Furthermore, the length of each of these intervals is at least

dεdim Ω/2 (4.8)

for some ε−independent constant d > 0.

Definition 4.4 (Decomposition of the phase space). Consider the intervals as de-
fined by (4.5) - (4.7). Define the intervals I−−ε = (−∞, a−−ε ), I−ε = (b−−ε , a−ε ),
I+
ε = (b−ε , a

+
ε ) and I++

ε = (b+ε , λ
+
max]. Denote X−ε , X+

ε , X++
ε as the span of the

eigenfunctions whose eigenvalues belong to I−ε , I+
ε , and I++

ε , respectively. Denote
X−−ε as the orthogonal complement of the union of these three spaces (or equiva-
lently, the space with Schauder basis I−−ε ).

The theory that we are applying makes use of fractional power spaces of Hε. Let
a > λ+

max. The fractional power spaces are given as Xα = D((aI − Hε)α) subject
to the norm ‖U‖α = ‖(aI −Hε)αU‖L2(Ω) for U ∈ Xα. As pointed out in [17], the
fractional power spaces of Hε are given as

Xα = H2α
per(Ω), (4.9)

where H2α
per(Ω) are the Sobolev spaces of smoothly periodic functions on Ω and

0 < α < 1 as defined by Definition 2.15. By Lemma 3.4, U ∈ L2
per(Ω) is written as

U =
∞∑

k=0

(α+
k E

+
k,ε + α−k E

−
k,ε)ψk.

When the following is finite, define ‖ · ‖∗∗ as

‖U‖2∗∗ =
∞∑

k=0

(1 + κk)s (
(α+

k )2 + (α−k )2
)
. (4.10)

Lemma 4.5. Assume that Assumptions 2.1 and 2.11 are satisfied. The ‖ · ‖∗∗-
norm given by (4.10) is equivalent to the ‖ · ‖∗ considered in [33] when restricted to
L2

per(Ω).

Proof. By [33, Lemma 4.2], ‖·‖∗ is equivalent to ‖·‖Hs(Ω). We now show equivalence
of norms by showing that ‖ · ‖∗∗ is equivalent to the standard norm defined for
Hs

per(Ω). For U ∈ L2
per(Ω), we have that

‖U‖2Hs
per(Ω) =

∞∑
k=0

(1 + κk)s‖α+
k · E

+
k,ε + α−k · E

−
k,ε‖R2 .

If we expand the terms in ‖ · ‖R2 , use Lemma 3.4 to note that the angle between
E+

k,ε and E−k,ε are bounded away from both 0 and π for all k ∈ N and ε > 0, and
apply the Cauchy-Schwarz lemma, we get the equivalence to the standard Sobolev
norm. �
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We have now established a suitable decomposition of the phase space. The fol-
lowing lemma gives dichotomy estimates, as well as estimates for critical quantities
that we shall use for the first major result.

Lemma 4.6. Assume that 2.1 - 2.14, 4.2 and 4.3 are satisfied and let Hε be as
defined in (3.7). Let Sε(t), t ≥ 0 denote the analytic semigroup on X generated by
Hε. Consider the decomposition as given by Definition 4.4 and let Xα = H2α

per(Ω)
be the fractional power spaces of Hε.

(a) The spaces X−ε , X+
ε , and X++

ε are finite-dimensional subspaces of Xα. Fur-
thermore, all of the spaces introduced in Definition 4.4 are invariant under
Sε(t), and we denote the restrictions of the semigroup Sε(t) to these spaces
by the appropriate superscripts. The dimensions of these subspaces are pro-
portional to ε− dim Ω/2.

(b) The following estimates are satisfied for arbitrary U++ ∈ X++
ε , U+ ∈ X+

ε ,
U− ∈ X−ε , and U−−∗∗ ∈ X−−ε ∩ Xα:

‖S++
ε (t)U++‖∗∗ ≤ eb+ε t · ‖U++‖∗∗, for t ≤ 0,

‖S+
ε (t)U+‖∗∗ ≤ ea+

ε t · ‖U+‖∗∗, for t ≥ 0,

‖S+
ε (t)U+‖∗∗ ≤ eb−ε t · ‖U+‖∗∗, for t ≤ 0,

‖S−ε (t)U−‖∗∗ ≤ ea−ε t · ‖U−‖∗∗, for t ≥ 0,

‖S−ε (t)U−‖∗∗ ≤ eb−−ε t · ‖U−‖∗∗, for t ≤ 0,

‖S−−ε (t)U−−∗∗ ‖∗∗ ≤ ea−−ε t · ‖U−−∗∗ ‖∗∗, for t ≥ 0,

There exists a constant M−−
ε > 0 such that for U−− ∈ X−−ε ,

‖S−−ε (t)U−−‖∗∗ ≤M−−
ε · t−α · ea−−ε t · ‖U−−‖L2(Ω for t > 0. (4.11)

where
M−−

ε ≤ C1 · ε−α(2+dim Ω)/2 as ε→ 0.
(c) There exists a constant Mα,ε ≥ 1 which is proportional to ε−α as ε→ 0, as

well as an ε−independent constant C > 0 such that for all U ∈ X−ε ⊕X+
ε ⊕

X++
ε we have

C · ‖U‖L2(Ω) ≤ ‖U‖∗∗ ≤Mα,ε · ‖U‖L2(Ω).

Proof. The result of the local case [33, Proposition 5.4] contains the same estimates
provided in this lemma. Although the norm for the mixed case is not the same
as the norm used in the local case, the norms are similar by Lemma 4.5. Careful
examination of the details of [33, Proposition 5.4] reveal an application to the mixed
case considered here. The estimates in [33, Proposition 5.4] rely upon [33, Lemma
3.4], [33, Corollary 5.2], ‖ ·‖∗−norm [33, (18)], and a complete set of eigenfunctions
of the linearization [33, Proposition 3.7]. Again, the ‖·‖∗∗−norm considered here is
similar to the ‖ ·‖∗. Assumptions 4.2 and 4.3, along with asymptotic growth rate of
νk,ε given by (3.10) yield the analogous forms of [33, Corollary 5.2]. Furthermore,
the asymptotic growth of νk,ε given in (3.10) shows that the asymptotic behavior
of the eigenvalues of the local case [33, Lemma 3.4] is the same as for the mixed
case given by Lemma 3.3. Lemma 3.4 shows that the eigenfunctions for the mixed
case are also a complete set for X. Thus, the result holds. �
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The final lemma shows that the nonlinearity of the evolution equation is differ-
entiable in the Banach setting. Furthermore, the Lipschitz constant is polynomially
bounded.

Lemma 4.7 (Properties of F ). Suppose that Assumptions 2.1 - 2.14, 4.2 and 4.3
are satisfied. Let h be defined as in (4.2). Furthermore, for arbitrary U = (u, v) ∈
Xα let F (U) = h(u, v). Then for every α satisfying dim Ω/4 < α < 1 this defines
a nonlinear mapping F : Xα → X which is continuously Fréchet differentiable.
Furthermore, there exist positive constants C and R0 such that for any 0 < R ≤ R0

the following holds. For arbitrary U, V ∈ Xα with

‖U − (ū0, v̄0)‖∗∗ ≤ R and ‖V − (ū0, v̄0)‖∗∗ ≤ R,

we have
‖F (U)− F (V )‖X ≤ C ·Rχ · ‖U − V ‖∗∗. (4.12)

Proof. The result follows directly from [33, Lemma 5.5]. Note that χ describes the
smoothness of (f, g) as given by Assumption 2.11. �

We now have everything that we need to prove the result for early pattern
formation, schematically depicted in Fig. 8.

Theorem 4.8 (Early Pattern Formation). For System (1.1), suppose that Assump-
tions 2.1 - 2.14, 4.2 and 4.3 are satisfied. Choose α such that dim Ω/4 < α < 1
where Xα = H2α

per(Ω). For every 0 < p � 1 and 0 < d0 � 1, there exist constants
ε0, rε, and Rε such that

(a) 0 < rε < Rε and both constants are proportional to ε(2α+dim Ω)/(2χ) as
ε→ 0.

(b) For all ε ≤ ε0, there exists an invariant manifold Nε with nearly linear
behavior. That is, with probability of 1 − p the solutions with initial con-
ditions contained in Nε ∩ Brε(ū0, v̄0) leave the ball BRε at a distance from
(ū0, v̄0) + X+

ε ⊕ X++
ε no larger than d0Rε.

Proof of Theorem 4.8. Lemmas 4.1 - 4.7, show that hypotheses (H1)–(H3) are valid.
As pointed out in Theorem [33, Theorem 5.7], pairwise orthogonality is not required
to apply the theory in [26], as long as the angle between any two spaces is bounded
away from 0 and π. Since Lemma 3.4 shows this to be true, we have verified
everything except for the size of rε and Rε.

Using [26, Remark 3.1, Lemma 3.6], as ε → 0, we have that rε/L → Crε and
Rε/L → CRε where L is a Lipschitz constant of the nonlinearity F . By Lemma
4.7, we have that the Lipschitz constant is given as L = C · Rχ, where C,R are
constants. As ε→ 0, [26, Remark 2.5] gives

C ·Rχ ≤ C−−ε C+
ε

2C+
ε +Mα,εC

−−
ε

, (4.13)

where

C+
ε =

min (b−ε − a−ε , b
+
ε − a+

ε )
6 + χ+ 1/χ

,

C−−ε =
b−−ε − a−−ε

2 ·Mα,ε + 3
√

2 ·M−−
ε · (b−−ε − a−−ε )α

.
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Using Lemma 4.6, we have that as ε → 0, Mα,ε = C1 · ε−α and M−−
ε ≤ C2 ·

ε(−α−α dim Ω/2). This implies that

C−−ε ≥ C3 · ε(2α+dim Ω)/2, (4.14)

C+
ε ≥ d · ε(dim Ω/2). (4.15)

Combining Estimates (4.14) and (4.15) with Estimate 4.13, we have

Rχ ≤ K · ε(2α+dim Ω)/2. (4.16)

Since rε, Rε ∼ Rχ, we get that rε, Rε ∼ ε(2α+dim Ω)/(2χ). �

Theorem 4.8 shows that the addition of the nonlocal term to local diffusion pro-
duces similar early pattern results when compared to the pure local case considered
in [33]. Lemma [33, Lemma 5.5] provides an initial estimate for the size of the
nonlinearity F . However, this bound is improved in Proposition [33, Proposition
6.2] and we now discuss the improved estimate as it is essential for the almost linear
result. Consider the regions that are given in terms of cones (ū0, v̄0) +Kδ, where

Kδ = {U ∈ Xα : ‖U−‖∗∗ ≤ δ‖U+‖∗∗, U = U+ + U− ∈ Y+
ε ⊕ Y−ε },

Y+
ε = X+

ε ⊕ X++
ε ⊂ Xα,Y−ε =

(
X−−ε ∩ Xα

)
⊕ X−ε ⊂ Xα.

Using these cone regions, the improved bound is given by the following lemma that
follows immediately from Proposition [33, Proposition 6.2].

Lemma 4.9. Suppose that Assumptions 2.1 - 2.14, 4.2 and 4.3 are satisfied and
let F be as defined in (4.3). For dim Ω/4 < α < 1 and δ0 > 0, denote

δε = δ0 · ε(α−dim Ω/4). (4.17)

Then there exists ε−independent constants M1, M2 > 0 such that for every 0 < ε ≤
1 and U ∈ Kδε , with

‖U‖∗∗ ≤M1 · ε(−α+dim Ω/4), (4.18)

we have
‖F ((ū0, v̄0) + U)‖L2(Ω) ≤M2ε

(α−dim Ω/4)·(χ+1).‖U‖χ+1
∗∗ (4.19)

The order of the zero (ū0, v̄0) of F is given by χ in Assumption 2.11.

In other words, if a solution U with initial condition U0 ∈ (ū0, v̄0) + Kδε , with
δε = δ0 · ε(α−dim Ω), then it is possible for the solution to remain close to X+

ε ⊕X++
ε

for larger distances away from the homogeneous equilibrium compared to the early
pattern results. We now state and prove our final result.

Theorem 4.10 (Later Pattern Formation). Suppose that Assumptions 2.1–2.14,
4.2 and 4.3 are satisfied and choose and fix δ0 ∈ (0, 1

2 ) and 0 < ξ � 1. Let ε ∈ (0, 1].
Choose α such that dim Ω/4 < α < 1 where Xα = H2α

per(Ω). There exists a constant
D and splitting of Xα such that the following is true. If U0 ∈ (ū0, v̄0) + Kδε , with
δε = δ0 · ε(α−dim Ω) whose initial condition satisfies

0 < ‖U0 − (ū0, v̄0)‖∗∗ < min(1, (Dε−(α−dim Ω/4)+α/χ+ξ)1/(1−ξ)), (4.20)

then for

‖U(t)− (ū0, v̄0)‖∗∗ ≤ Dε−(α−dim Ω/4)+α/χ+ξ · ‖U0 − (ū0, v̄0)‖ξ
∗∗,
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the relative distance of the (u, v) and (ulin, vlin) is bounded by

‖U(t)− (ū0, v̄0)− Ulin(t)‖∗∗
‖Ulin(t)‖∗∗

≤ δ0
2
· ε(α−dim Ω/4) (4.21)

Proof of Theorem 4.10. Fix 0 < β < 1 such that Lemma 4.3 is satisfied. Lemmas
4.1 - 4.7 are used to provide the early pattern results given by Theorem 4.8 and show
that for solutions that are initially close to the unstable subspace (ū0, v̄0)+X+

ε ⊕X++
ε

remain close to this space. These lemmas show that the decomposition of the phase
space for the local case is also achievable for the mixed system. Furthermore, the
fractional power space used for the nonlocal case is a subset of the fractional power
space used in the local case. [33, Theorem 6.3] is directly applied, thus giving the
result. �

Remark 4.11. By Assumption 4.3, we have that ε0 must satisfy

ε1−θ
0 <

( s`

(1− β)K̂0

)
.

If θ = 1, then

1 <
( s`

(1− β)K̂0

)
,

implying that our results hold around some small interval [β0, 1] that contains β.
This is verified by our numerical results (cf. Figure 4-6). For β values outside of
this interval, only the first few finite eigenfunctions corresponding to the eigenval-
ues of the spectrum are contained within the unstable subspaces. Although the
eigenfunctions are not as dominant as the eigenfunctions associated with higher
eigenmodes, the behavior of solutions cannot be explained by considering only the
a small number of the most dominant eigenfunctions. Again, this is consistent with
our numerical results (cf. Figures 4-6).

5. Concluding remarks

In this paper, reaction-diffusion systems with mixed nonlocal and local diffu-
sion terms are considered where as ε → 0, εθJ(x) → K(x), where K(x) is an
ε-independent kernel. For 0 ≤ θ ≤ 1, the initial pattern selection is dominated by
linear behavior. We believe our methods can be applied to other related mixed
local-nonlocal models. For example, such behavior has previously been observed
numerically for phase field models with local and nonlocal diffusion terms, and we
expect that similar results can be obtained with only minor adjustments of the
proofs presented here. For further results on the current model, we believe that
it would be possible to apply the probabilistic methods found in [37, 11] to show
that later stages of pattern formation are governed by linear effects. Furthermore,
we conjecture that these results are attainable on certain non-rectangular domains,
as long as it is possible to define the nonlocal kernel to have even symmetry. For
example, it should be possible to extend these results to the disk.

Bates and Chen [4] point out that the Laplacian is considered as a first-order
approximation for pure nonlocal systems for a single space dimension. See also
[6, 5]. Furthermore, it is possible to approximate the nonlocal heat equation sub-
ject to Dirichlet boundary conditions [8] and the heat equation subject to Neumann
boundary conditions [9] with local diffusion. In other words, solutions of the nonlo-
cal system are close to solutions of a local system, using the same initial conditions.
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Preliminary numerics suggest that the same may also be said for System (1.1).
That is, by parameterizing the kernel appropriately with respect to ε, the nonlocal
system displays almost linear behavior as ε→ 0. Thus for carefully chosen kernels,
the results developed for the mixed case would apply to the nonlocal case as well.

6. Appendix: Kernel and nonlinearities

The numerical results in this paper all use the nonlinearities given in the system
of Thomas for f and g [28]. The nonlinearities are given as

f(u, v) = a− u− ρuv

1 + u+Ku2
,

g(u, v) = A(b− v)− ρuv

1 + u+Ku2
,

(6.1)

where a, b, ρ, A, and K are positive constants that depend upon reaction kinetics.
We choose a = 150, b = 100, ρ = 13, A = 1.5, and K = .05. These nonlinearities
satisfy conditions for a Turing instability with real eigenvalues. Furthermore, with
χ = 1, the Thomas system satisfies Assumption 2.11.

We consider a kernel that is similar to the kernel used in [17]. Let the Gaussian
kernel G be defined as

G(x, y) = exp
(−x2 − y2

σ2

)
· η(x, y), (6.2)

where η(x, y) is a smooth cutoff function. The function η is 1 on B1/3(0, 0), but
vanishes outside of B1/2(0, 0). On the domain Ω = [0, 1]2, the kernel G is given as

G(x, y) =
C

εθ
· (G(x, y) + G(x+ 1, y) + G(x, y + 1) + G(x+ 1, y + 1)) . (6.3)

Outside of Ω = [0, 1]2, J(x, y) is given as the smooth periodic extension of G(x, y),
denoted as

J(x, y) = Gper(x, y). (6.4)

Note that Ĵ0 = C
εθ · Ĝ0. We perform numerics for the cases θ → 1 and θ = 1,

although not all numerics are shown. For the following computation, we fix θ = 1.
In this case, εĴ0 lies just to the right of (s`, sr) ≈ (.0071, .8806). For this case, we
choose C

ε so that the infinitely many eigenvalues of the linearized right hand side
are not all positive. The condition

ε · C
ε Ĝ0

sr
> 1, (6.5)

or equivalently

CĜ0

sr
> 1 (6.6)

permits a finite number of eigenvalues. Note that the integral of the kernel J over
[0, 1]2 is given as the first Fourier coefficient denoted as Ĵ0. For small σ, a good
approximation for this integral is the volume of G over all R2. To understand why,
observe that most of the support for G occurs within 3σ of each corner of [0, 1]2 for
σ � 1. Thus, we can compute Ĵ0 using

Ĝ0 =
∫

Ω

G(x)dx ≈ σ2π.
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For σ � 1,

C =
2sr

σ2π
. (6.7)

Choosing σ = .1 is sufficient for our purposes. Thus from (6.7),

C = 200 · sr

π
. (6.8)

Note that
lim
ε→0

ε · Ĵ0 = 2sr > 0.
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