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TRAVELING WAVES AND SPREADING SPEED ON A LATTICE

MODEL WITH AGE STRUCTURE

ZONGYI WANG

ABSTRACT. In this article, we study a lattice differential model for a single
species with distributed age-structure in an infinite patchy environment. Using
method of approaches by Diekmann and Thieme, we develop a comparison
principle and construct a suitable sub-solution to the given model, and show
that there exists a spreading speed of the system which in fact coincides with
the minimal wave speed.

1. INTRODUCTION

Assume u(t, a, z) is the population density at time ¢, age a and spatial location
x, and x denotes the point coordinate which may be an integer, in Z, or real number
in R. We study the species in a patchy environment with infinite number of patches
connected by diffusion of population within the neighboring islands, where we can
describe the patches as integer nodes of a one-dimensional lattice. In this case we
change z to j, and let u(¢,a,j) = u;(¢,a) denote the population density of the
species at j-th patch. Let f(r) be a probability density function which specifies
the probability of maturing of an individual with age a > r. This function satisfies
f(0) =0, f(co) = 0 and fooo f(r)dr = 1. Let w;(t) denotes the total of mature

population at time t and location j:

w(t) = /0 h 7 / - u (1, a)da) dr.

r

Ling [5] derived the lattice model

dw%t) = Dl[wj11(t) + wj—1(t) — 2w; (t)] — dw;(t)
+ % O°° e—daf(a) l;w 6(a, l)b(wl+j(t — a))da, t>0,
where

B(a,l) = 2/ Cos(lw)e*‘w“inrz(%)dw.
0
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Note that this equation has a nonlocal term ;> 3(a,l)b(w;4;(t—a)) and a delay
that is continuously distributed and infinite. Ling studied the existence and unique-
ness of solutions to with an initial value, also discussed the global attractivity
of the zero solution, and the existence of wavefronts with speed greater than the
spreading speed c, of traveling wave. Motivated by the method in Diekmann and
Thieme [9 , in thlb article, we give a study on the traveling wave and spreading
speed for More information on the traveling waves for lattice differential
systems can be found in [2] 3] 4 ol 7, 18] 1()] and the references therein.

Let Ry := [0, +00) and f(d) := [;° f(a)e~%da < 1. We will use the following
assumptions:
(HO) b(O) =0, b(w) < V(0w for w > 0; b(w)f(d) < dw for w > 0, and
b'(0)f(d) < d.
(H1) b(0) = 0, b € C'(R4,Ry), b is non-decreasing function on [0, K] and
b(K) f(d) < dK, [b(u) = b(v)| <b'(0)|u—v| for u,v € Ry.
(H2) 5(0) = 0, b is non-decreasing function on [0, K], b(w) < b'(0)w for w € R.

(H3) ¥ (0)f(d) > d, b(w)f(d) = dw admits a positive solution w* on (0, K].
b(w) f(d) > dw for 0 < w < w'; and b(w)f(d) < dw for w > w™.

This article is organized as follows. In Section 2, we introduce some definitions
and properties of the characteristic equations. In Section 3, we establish the well-
posedness and the comparison principle for , and obtain our main result on
the existence of the spreading speed c. of traveling wave of . We also give
an estimate for ¢, and study the relation between the spreading speed with the
minimal wave speed.

2. PRELIMINARIES

A solution {w;(t)}ez is called a traveling wave of (1.1)) provided that it has the
form w;(t) = ¢(j +ct) = ¢(s). A sequence of functions W (t) = {w;(t)},cz is called
isotropic on an interval I if w;(t) = w_;(t) for j € Z and t € I. Define

C(—00,T] = {¢: ¢ is continuous function defined from (—oo, T to [0, K]}.
We need also the following notation.

By={jeN:|j|<N,NeN},
wy(t) = wit, ) for j € Z, W(t) = W(t,") = {uy (1)} ez
supp W(t,-) = {j : w(t,7) # 0} is the support of W (t,-),
W(t) > V(t) if w;(t) > v;(t) for j € Z,
W(t) = V(t) if W(t) > V(t) and w;(t) > v;(t) for j € supp V (¢, ).

A constant ¢, > 0 is called the spreading speed of (|1.1)) provided that

tlim sup{w;(t) : |j| > ct} =0 for ¢ > c,, (2.1)
1tlim inf{w;(t) : [j| < et} >wh >0 for c € (0,cy). (2.2)

where {w;(t)};ez is a solution of (L.1)).
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Substituting w;(t) = ¢(j + ct) = ¢(s) into (L.1)), we obtain the wave equation
c¢'(s) = D[p(s + 1) + ¢(s — 1) — 24(s)] — do(s)

(oo}

+i/°o fla)e ™ >~ Bla,Db(é(s + 1 — ca))da.

2T 0

(2.3)

l=—0c0
The following assumption is needed for considering characteristic equation.
(H4) Assume that for a given ¢ > 0, one of the following two conditions is
satisfied,
(i) For any A >0, [* f(a)e~dae?P(coshA=l)a=Aeagy < o0 holds.
(ii) There has Ag > 0, for any A < A, fooo f(a)e~dag2D(coshA—l)a=Aea gy <
oo and

9]
lim f(a)e—daGQD(cosh A—l)a—/\cada = +00.
A—Xo—0 0

If case (i) holds, let A = \(c) = +o0; if case (ii) holds, let A = A(c) = A¢.
Assume that (H1)-(H4) hold. Then (2.3 has two equilibria w = 0 and w = w™ >

0 in [0, K]. Denote the characteristic equation of (2.3 at w® := 0, by A(\,¢) =0,
we have

/ o'} oo
AN ¢)=—cA+Dle*+e =2 —d+ w/ f(a)e™ @ Z B(a,l)eMe 2.
27T 0 oo
(2.4)
where
1 = Al _ - A _ ,2D(coshA—1)a
Py Z Bla,)e™ = exp{Dle " +e" —2Ja} =¢
(see [10]). Simplify (2.4) to obtain
AN €)= —cA+ D[e* + e —2] —d+V(0) / fla)elmd=er+2DcoshA=Dlag, —
0

(2.5)
From ([2.4)-(2.5), it is easy to observe the following fact.

Lemma 2.1. If b satisfies (H2)-(H4). Then there exists a unique pair (s, A)
(cx > 0, As > 0) such that

(1) A()\*7C*) - 0; %A(A*,C*) = 07'
(ii) for 0 < c < ce and any XA € (0,\), A(\,¢) > 0;
(iii) for ¢ > cx, the equation A(X,c¢) = 0 has two positive real Toots 0 < A <
A2 < A, and there exists €9 > 0 such that for any e € (0,eq) with 0 < Ay <

A1+ € < A9, we have A(M1 +¢,¢) < 0.
We rewrite (2.5)) as

1 [D(eAJre*)‘)er'(()) /Oo f(a)efdaezD(coshAfl)afAcada:| =: L.()\), (2.6)
0

1
0+ Ac
where § := 2D + d. Hence ¢, can be represented as
¢ :=1inf{c > 0: there exists some A € R, such that L.(\) = 1}.
From Lemma 2.1l we have

L.(\) >1for A€ (0,)), and ¢ € (0,¢.); Le(A) <1 for A € (A, \2) and ¢ > c,.



4 Z. WANG EJDE-2012/161

Now we shall show that c, is the spreading speed of (1.1)). Consider the equivalent
form

wjt) = 0) & [ Dlugia(s) + wia ()
0

+ %/0 fla)e= Z B(a,)b(wi1;(s —a))da}ds, je€Z,t>0,

l=—0o0
wj(t) = wjo»(t)7 JEZ, t e (—o0,0],
(2.7)
For any W° = {w9} ez, w9 € Cf(—00,0], w¥(0) >0, j € Z, and T € [0, 0], define
the set

Ar ={W = {w,}jez : w; € Ci(—00,T), w;j(t) = wi(t) for t € (—o0,0},

Equip A7 with the norm

IWix=sup Ju;(t)le™™.
te[0,T),j€Z
Therefore, (Ar,| - ||x) is a Banach space. Define the sequence of functions ST =

{SJT}jEZ S AT by

e, (0) + [} e ") {Dlw;11(s) + wj_1(s)]
STIW(t) = S +5= [7° fla)e @ S0 Bla,Db(wyy;(s — a))da}ds, j€Z, t>0,

w?(t), jEZ, t<0.

Then ST [W](t) is continuous in t € (—o0, T).

Theorem 2.2. Suppose the initial function W° = {w}’}jez 1s isotropic on interval
(—00,0], wy € O (—00,0], j € Z, and there exists N € N such that supp W°(t,-) C
By, t € (—00,0]. Then for any ¢ > c., (2.1)) holds; i.e., lim;_,o sup{w; ()| |j] >
ct} =0.

Proof. Define a sequence of maps by
W) = s ](t) forneN, teR, W) = {w)” ()}ez,

w(»o)(t) _ {wjo‘(t)v te (_0070}7

/ w?(0), t€(0,00).

Then W()(t) is isotropic on R, and supp W) (¢,-) C By for t € R. Similarly
to [Bl Theorem 3.1], we obtain a convergent sequence in A, which is denoted as
(WM ()}, t €[0,00). Let

~ Jlim e WM(2), t€[0,00),
‘””‘{w@@% e (=00, 0].

By Lebesgue’s dominated convergence theorem, (2.7) has a solution W € A,
which is isotropic on R. For any ¢; > ¢4, let ¢ € (c«,c1). By the assumption on
W) we choose proper N € N such that

wj(-o) )N < KeMN for t >0, A >0, j € Z. (2.8)
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For t > 0, by (2.8) we have
w (1)t
t
= e_(5+’\62)t{w§o)(0)eM + / e‘ssD[wj(-jl(s)ta’\(jJrl)e_A + wj(-(i)l(s)e’\(j_l)e’\]ds
0

t 00 o
+ %/0 653/0 f(a)e= @ Z Bla, D)b(wiy;(s — a))e?I e M da ds}

l=—00

t
ge—(5+A02)t{K6AN+D/ KeANe(6+AC2)s(e—A+eA)ds
0

° t
+ bl(o) (/ f(a)efdae2D(cosh)\*1)ada) Ke)\N / €(§+>\C2)Sds}
0 0

_ e—(5+,\02)tKe>\N{1 + [D(E_A +6A)

o] t
+bl(o)/o f(a)efdaBQD(cosh)\fl)ada]/0 €(5+)\¢:2)st}

< KeM[1+ L., (V)]
(2.9)
From the above inequality and by induction, we obtain
wi™ ()M < KN [1 4 Loy (\) + -+ + (Ley (V)] (2.10)

Noting —d+b'(0) [, f(a)e~*da > 0, we have Lc(0) > 1 for ¢ > 0. Since Lc(\) = 1
has two roots for ¢ > ¢, we can choose A > 0 such that L.,(\) < 1 for ca > c..
Clearly the right side of (2.10)) is uniformly bounded for n, thus for every j € Z,

Ke)\N N )
(1) < —————eMe2t=9) for t > 0.
wJ()_lfLQ()\)e or t >
Since W is isotropic, we have
Ke)\N

Ae2t=171) for ¢+ > 0:
1_L02(/\)e ort > 0;

w;(t) <
thus,

suplao; ()] 17] = ext} < — BT Aeent L g as ¢ — o,
! - 1= LCQ (/\)

Hence we obtain limy_, o sup{w; ()| [j| > c1t} =0, ¢1 > c.. O
3. THE SPREADING SPEED AND MINIMAL SPEED

For ® € M,t>T >0, j € Z, we define the mapping on My, = {® = {¢; }jez :
¢; € Ck(R)} by

ET®](1) = / e Dby ia(t — 5) + by (t — 5)]

IR e
o /0 F(a)e—da lzz_:oog(a, Db(¢rs(t — s — a))da}ds.
Lemma 3.1. Suppose ® € M, and satisfies the following conditions:
(i) for any t' > 0, there exists an N = N(t') € N such that for any t €
[Ovtl]; suppq)(t, ) C BN;
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(ii) if{(tnvjn)}%ozl C Ry XZ, jn € supp ®(ty,-), and lim, . (tn, jn) = (to, jo),
then jo € supp®(to,-).

For such ®, assume that

ET[®)(t) = ®(t) fort>T, (3.1)
and the solution of satisfies
W(t+1t) = ®(t) forte (—oo,T] (3.2)
for some t > 0. Then
W(t+t) = ®(t) fortel0,00). (3.3)
Proof. Let
to=sup{t >T :W({E+1t)» o)} >T. (3.4)

If ¢y < oo, since W (t) is non-negative, there exists {(¢n, jn)}o2; such that

(a) tn | to, n — o0,

(b) ]n G_Suppq)(tna ')a

() wy, (t+1tn) < &5, (tn)-
By assumption (i), {j,} must be bounded. Thus {j,} is composed of finite integers
and contains a convergent sub-sequence, which is a constant sequence {jo}. From
(b) and (c), we know that jo € supp®(to,-) and wj, (t + to) < ¢, (to). For tg > T
and t > 0, from and we have

T
Wi t0) 2 [ e (Dlwspra(E+ to = 8) + wjy 1 E o~ )
0

+ % /Ooo fla)e™® Z B(a, )b(wjy+1(t +to — s — a))da}ds

l=—00

> / e {D[Bjo11(to — 8) + djo—1(to — 5)]
0

+ % /000 Fl@)e™™ >~ Ba, Db(diyj, (to — s — a))da}ds

l=—00
= E][®](to) > oo (to)-

Since wj, (t + to) < ¢;,(to), the above inequality is a contradiction. Thus we have

to = Q. U
Define K. = K.(h,T, N, \) by
Ke(h,T,N,X)
T h T
:/ 6*(5+AC)S{D[67)\+6)\} +7/ f(a)eida Z 6(a7l)€AliAcadCL}d5
0 21 Jo
<N (3.5)
1— e—(6+AC)T

h T
= - A — —da M—Aca
= 5 Dl el o /O fla)e |l§<Nj B(a, )N da}.

Lemma 3.2. For any c € (0,c,), there exist h € (0,0'(0)),T > 0 and N € N such
that

Ko(h,T,N,\)>1 for AeR. (3.6)
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Proof. From the definition of K.(h,T, N, ), we have
K.(h,T,N,—=\) > K.(h,T,N,)\), X>0.
We claim that
K.(h,T,N,\) >1 for A>0.
We first show that there exist Ny > 0, \g > 0, hg € (0,5'(0)) and Ty > 0 such that
K. (h,T,N,\) >1 for A> Xo, N > Ny, h > hg, T > Tp.

However, we can choose proper Ng > 0 and hg € (0,0'(0)) such that for all T > 0,
NZNO anthho,

ho(T al
2—/ f(a)e % Z Bla, e da > 0
TJo I=—N

holds uniformly for A > 0. Since

e

)\11_)11;0 p Y -
we can choose Ty > 0 and A\g > 0 such that
1—e QeANT > 1 _ =0T > 9 _ =970 5
D D
Ac+ 0 AoCsx + 0
for T'> Ty, A > Ag. For any N > No,T > Ty, h > hg and X\ > \g, we have

oo,

(1 — e T0yer > (1 —e %Mo)t > 1

)

K.(h,T,N,)\) > (1 — e 0T0)ero > 1,

)\06* + 4
If (3.6) is not true, there exist {h,}, {Tn}, {\n}, {Nn} such that h, T '(0), T, T oo,
N, T oo, {An} C [0, X] and

K.(hp, Ty Npy M) <1, n=1,2,....
Since {A,} is bounded, we choose a convergent sub-sequence {\,,}. Obviously
{An, } has a finite limit, denotes as A. By Fatou’s lemma, we have

1< L(N) < likmianc(hnk7Tnk,Nnk7)\nk) <1,
which is a contradiction. Hence (3.6) is true. O

Define a function
e “Usin(Cy), y€[0,%],
q(y;w,¢) = §r
0, y € R/[0,Z).
Lemma 3.3. Suppose ¢ € (0,¢,). Then there exist (5 > 0, a continuous function
w =w(() defined on [0,(o], and a positive number §, € (0,1) such that

T
/0 efés{D[q(m +cs+ 1)+ q(m +cs — 1))

! (3.7)
+ 2};/0 fla)e % Z Bla,)g(m + 1+ cs + ca)da}ds > q(m — d1),

<N

form € Z, where q(y) = q(y; w(¢), ().
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Proof. Define

T
L(/\) — / 6—53{D[6—>\(cs+1) + e—)\(cs—l)]
0

/ f 7da Z ﬂ a, l —X( l+cs+ca)da}ds

[LI<N
where T, h, N are defined in Lemma [3.2] By Lemma for sufficiently large NV,
L) = K.(h,T,N,A) >1 for AeR. (3.8)

Let A = w + i, then we have
L(A)|x=w+ic = Re[L(A)] + 4 Im[L(N)],

where

Re[L(A)]

T
= D/ 6755 e H ) cos C(es + 1) + eV cos ((es — 1)}ds

/ f e—da Z ﬁ a, l {/ —‘558_“’(1"'63"'6“) cosC(l—I—cs—l—Ca)dS}da,

<N
Im[L(A
= —D/ —wlest ) gin ¢(es + 1) 4+ e D gin ¢ (es — 1)}ds
/ f(a)e= Z B(a,l) {/ e 9semwltestea) gin ¢(1 + cs + ca)ds}da.
<N

Since L”(X) > 0 and lim||_,o L(A) = oo for A € R, L(A) attains the minimal value
at A =6 € R. Thus,

= —D/ CS + 1 —0(cs+1) + (CS _ 1)6—9(03—1)]d8
/ f 7da Z /6 a, l / 65([+CS+Ca)679(l+cs+ca)dS]da:O.
[l|<N

Define a function H = H(w, () by

H(w,() = EIm[L(W for ¢ # 0,
H(w,0) = %ir% H(w, () = L'(w).
Obviously H(#,0) = 0 and %—5(9,0) = L"(#) > 0. By implicit function theorem,

there exist ¢; > 0 and continuous function w = w(¢),¢) € [0, (1] satisfying w(0) = 0,
and H(w((),() =0, ¢ € [0,¢). Thus,

Im[L(A)][x=w()+ic =0, ¢ €[0,G]. (3.9)

By (3.5) and (3.9), we have

Re[L(w + iC)”w:H,(:O = L(G) > 1.
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Then there exists (3 > 0 such that

Re[L(w(¢) +i¢)] > 1, ¢ €[0,C]- (3.10)
Let 0 < ¢ < (o == min{¢1, (2, yy5o7} For m € [0, 7], [I| < N and a,s € 0,77,

2
fz< N<l<m+l+cs+ca<m+l+QCT<N+20*T+C<%

Thus,

sin((m+1l+c(s+a)) <0, form+Ii+c(s+a)e (—g,O) U (%, 2%) (3.11)

From the definition of ¢(-) we obtain
T
/ e 9 {Dlg(m +cs+1) +q(m +cs —1)]
0

/ f(a *d“Zﬂal (m+ 14 cs+ ca)dalds

1| <N
’ g (€)X )
>D —9s —w m+cs+1) s 4 +1
> /0 e {e sin(¢(m + ¢cs + 1)) (3.12)
+ e~ ©Q0mtes=1) gin (¢ (m + ¢s — 1))}ds

e [

x> Bla, e O mattestealgin(¢(m + 1+ cs + ca))da ds.
[lI<N

Using sin(A + B) = sin A cos B + sin B cos A and (3.10))-(3.12)), we have

T
/0 e 9 Dlg(m +cs+1) + q(m +cs —1)]

/ f(a *d“Zﬂal (m+1+ cs+ ca)da}ds

<N
> e w(Om sin(¢m)Re[L(A)]|a=w(¢)4ic + e~ w(Om cos(¢m) Im[L(N)] | x=w(c)+ic

e~ O™ gin(¢m) = g(m).
(3.13)
Choose N large enough such that —N + 2¢,T < 0, thus (3.12)) and (3.13) are strict
inequalities on m € (0, %) Moreover, from (3.11)-(3.12), we know that (3.13)) is
also a strict inequality for m = 0 or m = % In fact, let a,s € [0,T], m = g and
Il = N, then

m+1l+c(s+a)>

Similarly, if m =0 and | = —N, then m+{+c¢(s+a) < =N +2¢,T < 0. Thus for
both cases, we have

gim+1l+ecs+ca)=0 and sin(((m+1+cs+ca)) <0,
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which means (3.13) is a strict inequality for m = 0 or m = 7. Then for any
m € [0, %],

T
/ e % {D[g(m + cs+ 1) 4+ q(m + cs — 1)]
0

noT (3.14)

+ by / f(a)e e Z Bla,l)g(m + 1+ ¢s + ca)da}ds > q(m).
o <N

If m & [0, %], (3.14]) still holds since g(m) = 0. From the above discussion, we know
that (3.14]) holds for m € R, then (3.7)) follows from the continuity consideration.

(]

Consider the family of functions,
R(y;w,¢,7) : = max q(y + n;w, ()

n=—y

M, ysvte (3.15)

=q4y—rw ), v+p<ys<y+E,
0, yz=v+e
where
™

We assume M attain the maximum at p = p(w, (). The following lemma gives a

sub-solution of (1.1).

Lemma 3.4. Let ¢ € (0,¢.) be given, then there exist T > 0, > 0,w € R,d >0
and o9 > 0 such that for o € (0,00) and t > T, there holds

ET[0®](t) = o®(t) fort>T, (3.17)
where ®(t) = {¢;(t)}jez, #;(t) = R(|jl;w, ¢, 9 + ct).

Proof. Let h € (0,5'(0)),T > 0, N > 0 be chosen such that K.(h,T,N,\) > 1 for
A € R. By Lemma we can choose ¢ > 0,w = w(¢) and §; € (0,1) such that

(3.7) holds.

Let o, be the smallest positive root of the equation b(w) = hw, then b(w) > hw
for w € (0,01). Choose oo € (0,0,M 1), where M is defined in (3.16). For
o € (0,00) and t > T, we have

T _ r —ds i _ . _
BT [0®)(t) = / e { Dolgja(t — 5) + dj1(t — )]
0

1

+ o 000 f(a)e*da Z B(a,)b(cpjti(t — s — a))da}ds

l=—0c0

] (3.18)
2/ e {Dolpj1(t — 5) + ¢j1(t — 5)]
0

T
+ %/0 f(a)e*da Z ﬂ(a7 l)b(0¢j+l(t — 5 — (l))da}ds.

<N

For any given 9 > 0, we consider two cases.
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Case (i) [j] <9+ p+c(t—2T) — N. For |l| < N,a,s € [0,T], then

I+l <O+p+et—2T)<I+p+c(t—s—a)
Since the definition of ET[®](t) and b(c¢;4i(t — s —a)) = b(oM) > ho M, we have

ET[o®](t) > {2D M+1/Tf( Je= ™ i B(a,1)b(cM)d }/T —9(
3 g = g o o a)e . a, g a o e S

> ocMK,(h,T,N,0) > oM.

(3.19)
Case (ii) V+p+ct -2 - N < |j| < F+J+ct. Let I <N, t =T If

9 > % —p+ T+ N (67 is defined in Lemma , then

2
44 = (2 + 205+ )Y < |j| + 2L + ——
7l 213l
<ply ¥
= |7 - .
il 2151
1 N2 1
< il + 2 + < il + 2L + 6.

TN e
Since ¢,(t) is non-decreasing for |j|, by (3.18]) we obtain
E] [0®](t)

|71

T
> *55{D j|+1+6
_/O e ol max allil+1+0+mn)

| —1+446
+ oo max q(l3] =1+ 01 +n)]

hU T d
< ~da I |+ 1+ 0y +n)da bd
+ 27r/o fla)e ”Z:Nﬂ(a, ) ogmax q(lil+1+ 6+ ) a}ds

T
:a/ e_‘ss{D[ max ¢(|j|+1+cs+d1+n)
0 n>—9—ct

-1 §
+ max q(ljf =1+ es+ 0+ )]

T
+ % /0 f(a)e™@ lll;\] B(a,l) nZH—I%}EctQ(ljl +l+cs+ca+ 61+ n)da}ds

> |+ 7).
2o max  q(|j] +1)

Combining (i) and (ii), we obtain (3.17)) and complete the proof. O

The proof of the following lemma is similar to [I0, Lemma 5.5], and hence is
omitted.

Lemma 3.5. Assume that W = {w;};cz is a solution of (1.1), and the following
conditions hold:
(i) W? ={w$}jez is isotropic on (—o0,0], w§ € C(—00,0];
(ii) there exists N1 € N such that supp W°(t,-) C By, fort € (—o0,0], w$(0) >
0 for j| < Ny.

Then there exists to > 0 such that w;j(t) > 0 fort € [ty,00),j € Z.
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Lemma 3.6. Let {Q,(t,N)} be defined by Q1(t,N) =a € (0,w™),

Quirlt,N) = 3[2DQu(t, N)
1 T e s (3.20)
+3r | @ 3 e dcii@n(t M) -
forn=1,2,.... Then for e > 0, there exist t(¢), N(€), T(¢) and ni(e€) such that for
any T > T(e),t > t(e), N > N(¢) and n > n(e),
Qn(t,N) > wh —e.

Proof. Since

20T M _ e 5o a, )= [ e da

0
0<Qit,N) <w, 0< %(1 e <1, 0< % ll%g(a,z) <1,

we have by induction that 0 < Qn(t,N) < K foranyn € N, ¢t > 0 and N € N. By
(H3), 2Dw + f(d)b(w) > (2D + d)w, for 0 < w < w*. For € > 0, we have

{2Dw + f(d)b(w)

@D+ dyw \0<w§w+—e}>1.

Let fr(d) = fOT f(a)e~da. Choose large enough a(e) < 1, T = T(¢) such that
for 0 < w < wt —¢, T > T, there holds
ale) [ww + ];T(d)b(w)} > (2D + d)w. (3.21)

Define the sequence:

My=a, My, =29 [QDMn n fT(d)b(Mn)] for n > 2.

Obviously,

(i) if 0 < M,, <w' —¢, then My, 1 > My;
(ii) if M,, > w* — ¢, then

Mytq > % [QD(wJr —€) + fr(d)b(w* — e)} >wt —e

Now we show that M,, > w™ — ¢ for sufficiently large n. If that is not true, we can
assume that M, < w™ — € holds for all n. By (i), we know that lim, ., M, =
M < wt — € exists and satisfies

M= O‘f;) [2DM + b(M) fr(d)].

which is a contraction to (3.21). Thus there exists n(e) > 0 such that M, > wt —e
for any n > n(e). )

Let T > T = T(¢). We choose t = t(¢) and N = N(€) such that 1 —e =) > a(e)
and

1 . T N
~—(1- e“”(f))/o {f(a)e™ " Bla,1)}da > a(e) fr(d). (3.22)

2T &
li|<N
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Then Q1 (t,N) = a > M, fort > t(¢), T > T(e) and N > N(e). By (3.22) we obtain
Qn+1(t, N)

> 10 1) [20Q 1 3) + MO [ gy 3 dajad]
> 2 [2Da()Qu(t, N) + a(e)fr(d)p(Qu(t, V)]
= 9 a0q, (1. N) + Frldp@a(r N)]
Using monotonicity of b, we have Q,,(t, N) > M,, > w™ — € for n > ni(e). O

Theorem 3.7. Assume all the conditions for W° in Lemma are satisfied. Then
for any ¢ € (0,c¢.), there holds

lim inf{w;(t) : |j] < et} > w'.
t—oo
Proof. Let ¢; € (0,¢4), c2 € (c1,¢4). From Lemma there exist T > 0,{ > 0,w €
R,¥ > 0 and o9 > 0 such that for o € (0,09) t > T,
ET[0®](t) = o®(t),

where ®(t) = {¢;(t)}jez, d;(t) :== R(|jl;w,{, 9+ c2T). We can assume T'> T, and
T is defined in Lemma From Lemma there exists to > 0 such that

w;(t) >0 fortety,to+T], j€Z.
Since ®(t) is a bounded function, we can choose o1 € (0, 0¢) such that
oM <wt, w;(ty+1t)>o19;(t) fortel0,T], je€Z.
Using the comparison principle (Lemma , we have

wj(to+1t) > 01¢;(t) fort € [0,00), j € Z. (3.23)
From (3.23) and definition of ¢;(t), we have
wj(to—i-t)ZO'lM, t>0, |j|§p+19+02t. (324)

By , we have

wj(to +1t) > / 6*58{D[wj+1(t0 +t—8)+wj_1(to+1t—3)]
O e (3.25)
+ o /O f(a)e™ @ Z B(a, )b(wit;(to +t — s — a))da}ds.

<N

Let a = o1 M = Q1(t,N), and Q,(t,N) be defined in Lemma [3.6] From (3.24)-
(3.25)), we have by induction

wj(to+1t) > Qu(t,N), t>0,|j|<p+9I+cat—n(N+T).
For any € > 0, we choose #(€), T(¢), N(€) and 7i(e) such that
w;i(t) >wh—e, t>to+i(e), i < p+I+ea(t—to)—n(e)(N(e)+T(e)). (3.26)
Define

n(e)[N(e) +T(e)] + cato —p — 0 }

t1 := max {to + t(e), p—
2 —C1



14 Z. WANG EJDE-2012/161

Since ¢3 > ¢ and (3.26)), we obtain
wji(t) > wh —e fort>ty,]j] <t
Then (2.2)) holds. O

The following theorem shows the relation between the minimal wave speed and
the spreading speed.

Theorem 3.8. Assume (H1)—(H4) are satisfied. Then lattice system (1.1)) admits
two equilibria, W =0 and W = wt > 0. Further, for ¢ > c., Equation (1.1) has a
monotone traveling wave satisfying

lim ¢(s) =0, lim ¢(s) = wt. (3.27)
For c € (0,c4), (L.1) has no monotone traveling wave satisfying (3.27).

Proof. From [5, Theorem 5.1], we have that admits monotone traveling wave
satisfying for ¢ > ¢4, thus we only need to claim the case as ¢ = c,.

Choose a sequence {c,} € (c*,c* + 1] such that ¢p41 > ¢, and lim, o0 ¢, =
¢x. Then the wave equation (2.1]) admits a wavefront connecting 0 with w™, say
¢n (4 + cut), which has the speed cn- It is easy to see 0 < ¢, (§ + cut) < w™, and

C¢n( ) = D[pn(s+1) + dn(s = 1) = 2¢,(s)] — don(s)

OO

/ @t S Ba (s + 1~ cua))da.

l=—00

(3.28)

Since (3.28)) is a homogeneous system, from the basis theory of differential equation,
we know that a traveling wave of (3.28) is still another traveling wave after sliding.
+
w

Without generality, we assume ¢, (0) = “%-.

Differentiating (3.28)) with respect to s, we obtain
g (s) = D¢y (s +1) + ¢ (s — 1) — 24, (8)] — dgy,(s)

/ fla)e % Z B(a, l qbn(s +1—cpa))gl (s +1— cpa)da.

l=—o00

(3.29)
From and 0 < ¢, (j + cpt) < w, there exists My, My such that |¢),(s)| <
My, |¢!(s)] < My for s € R. Thus ¢, and ¢/, are uniformly bounded, equsi-
continuous in R. According to Arzela-Ascoli theorem, there has a sub-sequence of
Cn, still denoted as ¢, such that ¢, (s) and ¢!,(s) are convergent to limits in every
bounded and closed subset in R. We denote the limits as ¢.(s), ¢, (s) respectively.

Let n — o0 in . By Lebesque’s dominated convergence theorem, we have

cd(s) = D[du(s + 1) + ds(s — 1) — 20.(5)] — dpu(s)
/ fa)e Z Bla, )b(¢.(s + 1 — cia))da. (3:30)

l=—o00
Hence ¢.(j + cit) is the traveling wavefront of (1.1) with speed ¢, satisfying (3.1).
Now we prove (1.1]) admits no traveling wavefront for ¢; € (0, c.). Suppose that is
not true, and system (1.1)) has monotone traveling wave ¢(s) = ¢(j +c1t) satisfying
(3-27). Thus there exists s; > 0 such that ¢(s) > % for s > s;. Choose proper
initial function: wj(t) = ¢(j + c1t), t € (—00,0], and {wf(t)}jez € C(—00,0].
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Let {w;(t) = ¢(j + c1t)}jez be a solution of (L.1)) with initial value w{(¢). Noting
{w$(t)} ez satisfying conditions in Theorem we have

tlim inf{w;(¢)| |j| < ct} = tlim inf{p(j + c1t) 7] < ct} > wt for c € (0,c4).

Choose ¢2 € (¢1,¢4), J = —cat, then

(j + c1t) = d((c1 — c2)t) > wh  for t > t;.

Let t — oo, we have

tlim inf{op(j + c1t) |j = —cat} = tlim inf{é((c; — c2)t)} > w™,

which leads to a contradiction to the first equality in (3.27)). Hence (1.1) admits no

monotone traveling wave for ¢ € (0, ¢,). O
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