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EXISTENCE OF SOLUTIONS TO QUASILINEAR ELLIPTIC
SYSTEMS WITH COMBINED CRITICAL SOBOLEV-HARDY
TERMS

NEMAT NYAMORADI, MOHAMAD JAVIDI

ABSTRACT. This article is devoted to the study of multiple positive solutions
to a singular elliptic system where the nonlinearity involves a combination of
concave and convex terms. Using the effect of the coefficient of the critical
nonlinearity, and a variational method, we establish the main result which is
based on a compactness argument.

1. INTRODUCTION

The aim of this paper is to establish the existence of nontrivial solution to the
elliptic system

R o |ul*~?v|Pu |ul??u
“Au— = AM(z)———
T T T ar A el T
e LS, B S [v]?2v
“Ay— = Ah
PU ,U/ |£C|p |.’E|82 a _’_ﬁQ(-T) ‘.’E _ 1’0|t + ( ) |fE|S 9
T € Q,

u=v=0, z€di
(1.1)
where Apu = div(|Vu|P~2Vu), 0 € Q is a bounded domain in RY (N > 3) with
smooth boundary 92, A > 0 is a parameter, 1 < ¢ <p, 1 <p < N, 0 < pu <

= (%)p; Q(z) is nonnegative and continuous on €2 satisfying some additional

conditions which will be given later, Q(x¢) = ||Q||oo for 0 # zo # Q, h(x) € C(Q);
a,B>1,a+p=pt) 2 %, p*(s) = ”(Iffvi:;) (0 < 8,581,829 <t < p) are critical
Sobolev-Hardy exponents. Note that p*(0) = p* := NN—_’; is the critical Sobolev
exponent.

We denote by WyP(Q) the completion of C§°(Q) with respect to the norm
1/
(Jo IV - |Pdz) b,
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Problem (|1.1)) is related to the well known Caffarelli-Kohn-Nirenberg inequality
in [3]:

|ul™  \P/T . .
( A |17|tdx) < Crip A |[VulPdz, for all u € WyP(Q), (1.2)

where p < r < p*(t). When t = r = p, the above inequality becomes the well
known Hardy inequality [3], @] [10]:

|u|p 1 1,p
——dr < — [ |Vu|Pdz, forall u € Wy*(Q). (1.3)
a |z B Jo ’

In the space W, "*(€2) we use the norm

|ul

fulle = oy = ([ (1907 = w25)ae) ", e o

By using the Hardy inequality this norm is equivalent to the usual norm
(Jo |Vu|pd:1:)l/p. The elliptic operator L := (|V - [P72V - —,ullL‘p ) is positive in
WeP(Q)if 0 < p < 7.

Now, we define the space W = Wy** () x Wy (Q) with the norm

[[Cas )P = el + M0l

Also, by Hardy inequality and Hardy-Sobolev inequality, for 0 < p <, 0 <t <p
and p < r < p*(t) we can define the best Hardy-Sobolev constant:

Lo (IVur = ) da
A#vt»T(Q) = 1lIlf T .
u€Wy P ()\{0} (fg lul” 7 )

|[*

(1.4)

In the important case when r = p*(t), we smlply denote A, ¢ ,-) as Ayt

Forany 0 < p <, o, 3> 1 and a+8 = p*( by.,. 0 < s1,80 <t<p,
Set

Jo (IVul? = i )

A/L,s = 1111)1 P (= ) p y (15)
u€Wy P (2)\{0} (fQ i )
. Jo (IVulp + [VolP — uil"ll;‘rlvl )dx
Ss,0,8 1= in 7 (1.6)
o (u,0)eW\{(0,0)} (f ul=[v]? 4 )a+ﬁ
Qx|

Then we have the following equality (whose proof is the same as that of Theorem
5 in [I])

Seanstli) = (577 + (5)7) A,

Throughout this paper, let Rg be the positive constant such that Q@ C B(0; Ry),
where B(0; Rg) = {z € RY : |z| < Ry}. By Holder and Sobolev-Hardy inequalities,



EJDE-2012/169 EXISTENCE OF SOLUTIONS 3
for all u € W,"*(£2), we obtain
|u|q - </ | _S pp(s())q ‘ulp *(s) ,,(‘5
o 1zl* 7 N Bosre) |33|S
Ry 3 (( ;
s
< () T Ak a7
0

N— p*(s)—q

(NWNR(] S) P*(s)

< (——
N —s

Aps lull?,
where wy = ]\,2&7?\,//22) is the volume of the unit ball in RV .

Existence of nontrivial non-negative solutions for elliptic equations with singular
potentials were recently studied by several authors, but, essentially, only with a
solely critical exponent. We refer, e.g., in bounded domains and for p = 2 to
[4, 10}, [TT), 3| 04 5] [07], and for general p > 1 to [5l [6] [7, &, 12} 16l 18] 19, 26] and
the references therein. For example, Han and Liu [I7] studied the problem

u .
—Au — MW =M+ Q(x)|ul* *u, we, 18
u=0, x€dN

where 0 € Q is a smooth bounded domain in RN (N >5), A >0, 0< u <@ =
(%)2, 2% = ]3—]_\'2 and Q(z) is nonnegative and continuous on ) satisfying some
suitable conditions. using critical point theory, the authors proved the existence
of nontrivial solutions to problem . Also, by investigating the effect of the
coefficient ), Han [T4] studied problem and proved that there exists Ag > 0
such that has at least k positive solutions for A € (0, \g).

Kang in [I8] studied the following elliptic equation via the generalized Mountain-

Pass theorem [24],

lulP=2u  |ulP” P2y |u[P~2u
Ao — = , € Q,
P e EE EE (1.9)
u=0, x€dN

where Q C RY is a bounded domain, 1 < p < N,0< st <pand 0< pu <=
(%)p. Degiovanni and Lancelotti [6] studied problem with py=s=t=0
and proved that has at least one positive solutions for A > A\; := Ao (Ao is
defined in (L.F))). Indeed, in [6] the much more difficult case A > Ay is treated.

The authors in [§], via the Mountain-Pass Theorem of Ambrosetti and Rabi-
nowitz [2], proved that

uP—1 up*(s)—l

—Apu — MW = |ul? -1 in RN,

admits a positive solution in RY, whenever p < i & (%)p and 0 < s < p.
Recently, in [26] the author studied the following equation via the Mountain-Pass
theorem,

_di (|Du\P*2Du) B [ulP=2u B |u|p*(b)*2u |u|p*(c)72u .
v = T —, in
|]op |z|(a+Dp B B
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Where1<p<N,O§u<ﬁé(W)p,0§a<¥,a§b,c<a+l,
* — N * o N
p*(b) = Wpl_b)p and p*(c) = Wpl_c)p-
Zhang and Wei [27] studied the existence of multiple positive solutions for (1.1)
witht = s =0, Q(z) = f(x) and h(x) = 1. Set sy =s2 =1, s =1t x9p = 0 and

Q(z) = h(x) = 1, then problem (1.1)) reduces to the quasilinear elliptic system

A M\UIHU I e V< T 7 il L S TN 7
? |z zlf at+p |z |zl
P20 _ P O g8 fult el [0l
—Apv — = + + 0 1.10
P H |$|p |x|t a+ |x|t |:U|S ) ( )
x €,

u=v=0, x¢€dN

where)\>0,9>0,0<77<oo,1<p<N,0§u<ﬁé(%)p,ogs,t<p,
1<qg<p a+tp=pt) 2 MNNi:;) is the Hardy- Sobolev critical exponent. The
author [23] have studied (|1.10) via the Nehari manifold. In [20], Li et al. studied
the following quasilinear elliptic problem

|u|P” ()24 |u|P” ()2

u=0, x€dI

JulP~2u
[P

—Apu—p

(1.11)
where 1 < p < N, K(z), Q(x) are nonnegative continuous functions on 2, f satisfy-
ing some suitable conditions and obtained the existence of solutions via variational
methods. For p =2, 2y =0, K(z) =1 and Q(z) = 0, the problem has been
studied.

Motivated by the above works we study problem by using the Mountain-
Pass Theorem of Ambrosetti and Rabinowitz. We shall show that system has
at least two positive weak solutions.

In this article, we assume that 0 < s1,82 <t < p, o, > 1 and a + 3 = p*(¢).
For 0 < p < T, we set

p—s 3=
O(p,s) = A0S,
(u ) p(N _ S) "
X —1 1 =
0" = {0(, 51), 01, 52), —2 S0 )
W=t
Moreover, we assume that Q(x) satisfies some of the following assumptions:
(H1) Q € C(Q2), Q(x) > 0 and meas({z € Q, h(z) > 0}) > 0.
(H2) There exist ¥ > 0 such that Q(z¢) = ||Q|lcc > 0 and Q(z) = Q(x0)+O(Jx —
x0l?), as ¢ — xg.
(H3) There exist By and p > 0 such that Ba,,(z9) C Q and h(z) > [y for all
T e ngo (1‘0)

Set
hy = max{h,0}, h_ :=max{—h,0}.

The main results of this article are stated in the following two theorems.
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Theorem 1.1. Assume that N > 3, € [0,7), 1 < ¢ < p and (H1). Then there
exists A3, > 0, such that for 0 < A < A, problem (1.1} has at lest one positive
solutions.

N—t
Theorem 1.2. Assume that N > p?, 0 < p < @, 0* = p(’;\fft)%Stf’ajg,
lQlL~*
(H1)-(H3), Q(0) =0, 0 > b(n) (n) s

the constant defined as in Lemma [2.J} Then there exists A** > 0, such that for
0 < A< A**, problem (1.1) has at least two positive solutions.

This article is divided into three sections, organized as follows. In Section 2,
we establish some elementary results. In Section 3, we prove our main results

(Theorems and [1.2)).

2. PRELIMINARY LEMMAS

The corresponding energy functional of problem (1.1]) is defined by
1 A q q
J(u,v):,/ (19 = 2+ 190 = Yo = 2 [ a2+
P ||P || Q

q x5 o]
1 |u|P” (1) 1 |v|P” (52)
p( o |zl p*(s2) Jo |z|*
B
NI
Oé+5 |1’*9€0|t

for each (u,v) € W. Then J € CLW,R).

Lemma 2.1. Assume that N >3, 0 < pu <, (H1), hy # 0 and (u,v) is a weak
solution of problem (L.1). Then there exists a positive constant d depending on
N, Q| |ht|ocs Aps, 51, 52 and q such that

J(u,v) > —dA7a.

Proof. Since (u,v) is a weak solution of ([I.1)), then, Note that (J'(u,v), (u,v)) =0,
we have

(' (u,0), (u,0))
Wl 2 |u| ol
= [ (9wt =g 19 =) [ n@E e

p*(s1) p*(s2) B
7/ ful . dxf/ i dx f/ Q(x)LMtd:r =0.
o |z o |zl Q |z — 2o

Now, by using hy # 0, (2.1), (1.7)), the Holder inequality and the Sobolev-Hardy
inequality, we have

| Juf? Py / ut o2
J(u,v 27/ VulP — p + |VolP — de — — | h(x + dx
(02 [ (90 =gy + 90— ) O * o
1 /Iul” (s /|v|p o) / |u| ol
dx — Qx
p )[ Q |~T\51 Q — x|t }
| / Juf? Py [ Wt ol?
== V P + |Vl — der —— | h(z . dx
p Jo (V= IVol? =g o= | ”(w )

—p*<t>[4<'v o =g 9 )i
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B ol
/\/Qh( Nap * ms)d}
|ul? |v[P

> (% - ;%Of)) /Q (\Vu|p - MW + |VolP — uw)dm‘
1 1 lul?  |v)d
A~ @) G e

> (5 = = ) (w2 + lel2)

p P
N—s P*iS)S*q
B )\(é N p*l(t)) <NLL])\I/'VZ—%OS ) Y

1 1 1 1 NwnyRN—s\ Z&za
S [ P VLS YRS 2L R T

_4a
Aps [ oo ([l + lollE)

20 L\p  p*(s) q p(s) N-—s
> —d\poa,
Here dg := sup, ,cq |z — y| is the diameter of 2 and d is a positive constant
depending on N, ||, |h4|co, Ap.s, S1, 52 and g. a

Recall that a sequence (un,vp)nen is a (PS). sequence for the functional J
if J(up,v,) — ¢ and J'(up,v,) — 0. If any (PS). sequence (un,v,)nen has a
convergent subsequence, we say that J satisfies the (P.S). condition.

Lemma 2.2. Assume that N >3, 0 < p <@, (H1), hy # 0 and Q(0) = 0. Then
J(u,v) satisfies the (PS). condition with ¢ satisfying

N-—s N—s
p—S1 = D — S2 P

—t 1 N—t P
P = Sl | — AT
PV =8) g1

c< Cy 1= min{
(2.2)

Proof. It is easy to see that the (PS). sequence (U, vp)nen of J(u,v) is bounded
in W. Then (un,v,) = (u,v) weakly in W as n — oo, which implies u,, — u
weakly and v, — v weakly in VVO1 P(Q) as n — oo. Passing to a subsequence we
may assume that

|[Vu,|Pde =@, |Vu,|[Pde — a,
|vn|?
[P

|un|P*(81) |vn|p*(82)

dzég,

EEE.

weakly in the sense of measures. Using the concentration-compactness principle in
[21], there exist an at most countable set I, a set of points {x;};cr € Q\ {0}, real
numbers @y, , 4z, dy,, i € I, @, do, bo, bo, Co, o and dp, such that

@ > |VulPdz + 3 @y,6,, + aodo, (2.3)
i€l
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& > |VulPdz + Zaxiaxi + @00, (2.4)
iel
x|P
~ p
B = || || dz + Doy, (2.6)
p"(s1)
7: |u| 3 +Eo(50, (27)
|z[*
- P (s2) ~
v = —dx + ¢odo, (2.8)
|[*
B
U v
v = Q)" e 4 3 Qe b, + QO (2.9
i€l

where §, is the Dirac-mass of mass 1 concentrated at the point x.

First, we consider the possibility of the concentration at {z;}.c; € Q\ {0}.
Let € > 0 be small enough, take n,, € C2°(Ba(x;)), such that 1,5 (z,) = 1,
0 <, <1and |Vn,,(z)] < €. Then

o(1) = (J'(tn, vn), (1, Uns 1, Vn))

= / (|Vun P2 Vu, V(02 u,) + |an|p’2anV(n§ivn)) dx
0

— | Qz)——— b dx —p ( ne + )dm
/. “w—w (e + e

p (81 p*(s2)
/ |u | nh.dr — 7|Un| nh.dx.
el o |z
From ([2.5)-(2.9), one can obtain
lim lim ('“”'pninu |U"|pn§.)da:: lim (/nﬁdﬁ+/nx,dﬂ) 0, (2.10)
e—0n—oo Q ‘x|1’ @ |(E|P g e—0 Q 4

. . |un|P*(51) |Un|17*(52) . - s
lim lim ( .+ n;’i)dz = lim ( nh.dy + ngidv) =0,
Q =03 Jo Q

e—0n—oo ‘xlsl |$|52
q
limy lim | he )('“”' . ng;_)dxzo,
£e—0n—oo | |S i | |S i

B
lim lim /Q( |u"‘ |U"||t nh de = hm/ dv = Q(x;)dx;.

e—=0n—oo [ |l’ — X

Thus,

0= lim lim (|Vun|p_2VunV(n£,un)
e—0n—oo [ ¢

(2.11)
+ |an|p_2anV(ngivn))dac — Q(z;)dx;.
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Moreover, we have

lim lim ’/un|Vun|p72VunVn£idx|
Q

e—0n—oo

p—1

1/p
< P P |P P v
lim lim (/Q|un| Vi, ) (/Q|Vun| dr)
1/p
< Clim lim (/ |un|p\V77£V|pdx)
Q T

e—0n—oo

= C'lim ( |ulP|VnE |pdx) e
e—0 Q Li

= Cgl_r’% (La($i) |V77£7 Ndx) 1/N(~/Ba(a:i) |u

< C'lim (/ u
e—0 BE(Ii)

)1/P o

lim lim | / 0n [V [P~ Vu, Vih, dx| = 0.
Q

e—0n—oo

Combining —-, there holds

0=lim lim [ (|92, Vun|? + [0, Vor|P)dr — Q(x;)da,
)

e—0n—oo

Similarly,

= lim (ngi da + 1., d&) — Q(zi)dy, .
Q

e—0

On the other hand, (|1.6) implies
/ Q(z |nx1un| "Ua:lz)n| d:c) PO

M”) o
Nz Un|” + |1z, 0n|”
</ (\V(nziunnpﬂvmvnn pltnl 2 econly 4,
Q ||
Note that

e—0n—

From this equality, - ) and (| -, we obtain

lim lim / [Ne; Vup[Pde = lim lim |V(le Uy )|Pde,

e—=0n—o0 e—0n—oo

lim lim / [Ne; Vup [Pdx = hm lim |V(nz vn)|Pde.

e—0n—oo e—0n—oo0

Relations , and ( -— 7)) imply
1

lQIZ™

Combining ([2.14)) and ( -,

1

jst,a,ﬁ (Q(-rz)dxl) 7O < Q(xi)da:i,
Q&

lim lim / |V77xi\p|un|pd:17:lim lim / [V, [P|on|Pdx = 0.
n—oo Jq

St0(Qe)ds) 0 <t [ i+t [ .,

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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which implies that either

Q(z;)dy, =0, or Qx;)dy, > @S?jﬁ. (2.20)

1@l

Now, we consider the possibility of the concentration at 0. For ¢ > 0 be small

enough, take 19 € C2°(B2:(0)), such that no|p_ ) =1, 0 < no < 1 and [Vig(z)| <
g. Then

o(1) = (J' (un, vn), (16, 0))
-2 P |un|p P ‘un‘q P
= [ [Vun|""*Vu,V(niun)dz — u nodz — X [ h(z) nhdx

0 o |zfP o |z[*

NN / ‘un 0nl?
— —  pPdxr — Q dx.
/Q FER A To—aolt
From (2.5)), (2.7), (2.9) and Q(0) =0, we obtaln

P -
lim lim [un| nhdr = by, lim lim
e—0n—oo Jo |z|P e—0n—oo Jo ||

|’U,n|p* (s1)

o
Ny dx = Co,

B q
lim lim /Q |un\ [vn| nhdz = lim lim h(x)'un| nhdx = 0.

e—0n—oo — X |t e—=0n—o0 Jo |3:|S

Thus,
e—0n—oo

0= lim lim / |V, [P~ 2V u, V (n8un )dz — by — Co. (2.21)

Note that
lim lim U | Vun [P~2Vu, Vihdz = 0.

e—=0n—oo
This equality and ([2.21)) yield
hm nocf by = . (2.22)
e—0

On the other hand, (|1.5)) implies
|770U |p (1) )P*{)SU /( |770un|p
) < | (1Vtoun)| - )d :
ll 1 / |x|g1 = o | (UOU )| H |$|p €z

A, 5T oy < lim lim / |V (noun)|Pdx — pbo. (2.23)

Thus

e—=0n—oo

Note that

e—0n—oo

hr% lim / |10V, |Pdx = hm lim |V(n0un)| dz,
e—0n—oo
which together with ([2.23) imply

A, s G oy < hm/ |no|Pda — uby. (2.24)
Therefore, from and -7
ATl o <%, (2.25)

which implies that either
N-—sq

co=0, or ¢ >Als". (2.26)
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Similarly, either

st

co=0, or ¢ >Ars?. (2.27)

Recall that u, — u weakly and v,, — v weakly in W, ? (), we have

c+o(1)
= J(Un,’l}n)
1 —
= / (|Vun VulP — MQ + Vv, — VolP — uu)dx
1 [ty — ulP (51 / v, — [P (52)
dx
p(s) ||*t || *2
1 [ty — u|® |vn—v|
dr + J(u,v).
e /Q P x4+ J(u,v)
On the other hand, from o(1) = J'(uy, v, ), we obtain
J (tp,vn) = 0. (2.29)

Thus, 0 = (J'(u,v), (u,v)), which together with o(1) = (J'(un, vn), (Un,vs)) imply

- — p
o(1) = (\Wn R Ll ,LM)M
||P

[P

/ |Un _ u|17 (31) / |'Un _ U|P (s2) i (2 30)
B EEEE '
/ QO \un—u| v, — v|? .

| — 2ol

From (2.28)-(2.30) and Lemma [2.1]

_ —ulP (81 _ _ pl|P (s2)
c+o(l) > oL / [ | le & / [vn | T'z dx
— S T -5 x|®
) @ | 2) (2.31)
—u|*v, —v _
dr — d\v=a.
/ @ | — x|t v
Passing to the limit in (2.31)) as n — oo, we have
_s _ _
e> P75 Co + P 52 Co + ZQ x;) mlfd)w a, (2.32)

~ 2(N —s1) p(N — s2) p(N

ZEI

By the assumption ¢ < ¢, and in view of (2.20), (2.26) and (2.27), there holds
co=7¢ =0,Q(z;)dy, =0,i€I. Uptoa bubsequence (Up, V) — (u,v) strongly
in W as n — oo. ]

When the restriction @Q(0) = 0 is removed, we establish the following version of
Lemma [2.2)
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Lemma 2.3. Assume that N > 3,0 < u <@, (H1) and hy # 0. Then J(u,v)
satisfies the (PS). condition with ¢ satisfying

p—s 1 ==L p—s 1 ==
. — o1 pP—sy — 52 P—s2
c<e ::mm{i(fA ) ,7(714 ) ,
0 p(N —s1) \p 1™ p(N —s2) \p "
N—t
. 2 (2.33)
p—t (ESW’@> } — d\7oa
PN=8 et

The proof of the above lemma is similar to Lemma 2.2 and is omitted.
Lemma 2.4 ([I8]). Assume that 1 <p < N,0<t <p and 0 < p < @. Then the
limiting problem
lu[p=1  fufp" -1

e el

ue DYPRY), w>0, inRY\ {0},

~Apu— in RV \ {0},

has positive radial ground states

p—N T =N ||
Ve(fﬂ)ée Upu(=)=€7 Uppu(— c

€

), Ve>0, (2.34)

that satisfy

|Ve(w V@)™ =
/Q('v‘/e(x)‘ B e | ‘p / |£E’|t _<Au,t) -t

where Uy, ,(x) = Up, .(|x|) is the unique radial solution of the limiting problem with

Upu(1) = (W)

]

Furthermore, Uy, ,, has the following properties:
lim reWy, L (r) = Cy > 0, Jim Py, L (r) = Cy > 0,
lim reW Ty (r)] = Cra(p) > 0,
lim ?HUL ()] = Cab(n) > 0,

r——400

where C; (i = 1,2) are positive constants and a(p) and b(p) are zeros of the function

f(C):(p_l)cp_(N_p)Cp_l—’_;uﬁ C2070§/1'<ﬁ7
that satisfy
N-p
p—1°
Lemma 2.5. Under the assumptions of Theorem [1.3, there exists (u1,v1) € W'\
{(0,0)} and A1 > 0, such that for 0 < X\ < A1, there holds

—t 1 et >
sup J(tuy, toy) < —o S (1) — A (2.35)
t>0 p(N —1) ”QHﬁ

N,
0<a(p) < 72

<b(p) <
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Proof. First, we give some estimates on the extremal function V(x) defined in
(2.34). For m € N large, choose p(z) € C(RY), 0 < p(z) < 1, ¢(z) = 1 for
2] 5 o) = 0 for Jal > L, V(@) oy < 4m, set u(z) = p(z)Ve(). For
€ — 0, the behavior of u. has to be the same as that of V., but we need precise
estimates of the error terms. For 1 <p < N, 0<¢ <pand 1 < ¢ < p*(s), we have
the following estimates [4]:

|ue|P N—t

/Q(lvue\”—u )= () 5 o), (2.36)

Juc[P” ™) Nt b(p)p* (t)— N+t
e %= (A 7 40l (pm (=N, (2.37)

N—s+(1-2)q N=s

K Ce ’ 9= b(#;’
; |;|S dz > { 0Nt )q\ lne|l, ¢= ]bv(;) , (2.38)

b(p)+1— N—s

Ot 1=, g <3

Now, we consider the functional I : W — R defined by

1 Juf? [v]? 1 / Jul*[v]®
— _ p_ p_ _ JELENE S S
I(u,v) p/ﬂ(W“' it Ve e = e | Q) M

Let up = a%ui, v = ﬁ%ue and define the function g;(t) := J(tuy,tvy), t > 0. Note
that lim; 400 91(t) = —o0 and g1(t) > 0 as ¢ is close to 0. Thus sup,sqg1(t) is
attained at some finite ¢, > 0 with g} (¢.) = 0. Furthermore, C’ < t. < C"; where
C’" and C" are the positive constants independent of e. We have

I(tuy, tvy) = y(tug, t 2 5 0 2.39
(hus t0r) = y(tun, o) = S (0F5%) [ Q) = Qao)) P, (239)
where

y(tuy, tvy)

tP | [P t” (t) 2 |u6|P (t)
— = p_ _
: [p(oz—!—ﬂ)/ﬂ(|Vu€| u|x|p)dx /Q |x—a:|t dz| .

Note that
PO 11 A 2o
Ta Ty (o )7 ®@r, A B>0. 2.40
?S‘S(p p*(t) =G p*(t))(BW) (240

From (H2), (2.36), (2.37) and (2.40) it follows that

sup y(tuy, tvy)
>0

= y(teula tevl)

p—t ( (a+ fsz (|VuE u‘ll;‘l‘p )dm ) Ny
— _ we|P* () N—p
PN =8\ ((a? 8) Qoo Jiy ||w IW dz) N

p—t 1 aNels  (B\amY (Au) Pt + O(dwpHp=Ny 2=
[(( )7+ () ]

< =
PNt Y ) Tau B+ o

— = =35
()T ()

«

N—t

4] o
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—t 1 =t _
<P (st aﬂ) + O tr=N), (2.41)

B ToTha

On the other hand, (H2) implies that there exists 71 < r, such that for x € B,, (vo),
|Q(z) — Q(z0)| < Clz — x0|”. Thus

u.|P “(t) ” p*(t)
|/Q(Q(x)—Q($o))| 6‘ 7] <0/ 10() — Qo) 2 gy

|z — |z — ol*
_ o |? ()
= C/ |2 = 20| Et dx = O(eﬁft)
Bz.,-(xo) |.’L‘ - m()‘
(2.42)

From (2.39), (2.41) and (2.42)), we conclude that

sup I (tug,tvr) = I(teur,tevr)

>0
pot 1 yet (2.43)
< p(N 5 (St %B) TN O(bwptr=Ny,
jQlet
Observe that there exists A} > 0, such that for 0 < A < A} and
p—t 1 = e
Stas) AT >0,
= o (S
AV QI
Then for 0 < A < A}, there exists t; € (0,1), such that
1
sup J(tuy,tv1) < sup ftp/ <|Vu1|p + |Vv1|p)d;v
0<t<t; 0<t<t, P Ja
—t 1 = p (2.44)
< Stas) | — AT
I,
AV QI
On the other hand,
sup J(tuq, tv1)
t>t
A q 1 . p*(s1)
< sup |I(tug,tvy) — ftq/ h(m)|u1| dr — ———t¥ (51)/ de}
t>t q9 Ja |z[® p*(s1) o |z
A 1 x |y [P (51)
< sup I(tuy,tv —ftq/ h(x)|uq|*dx — P (s1) 7(137}
> tztlj ( 1 1) q 1 o ( )l 1‘ P*(Sl) 1 Q |l"51 (245)

p—t 1 ( e b(p)p+p—N
< smﬂ) + O(etWrtp=N)
N E)
PN =1 g
p*(s1)
—0/ '“6‘3 dx—)\C’/ :
o lz[* III
From ([2.37)),

p*(s1) .
/Q“€|dx > O (s1)=Ntary (2.46)

[
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Also, from ([2.38]), it follows that

N—s+(1—%)q N—s

|u |uel? ce Ny, 77 b0
/ () e > Gy / c CN=H=D| 1|, = Jg’(;)s) (2.47)

@ a(b(u)+1-L)g N—s

Ce ’ 4= %) -

Since ¢ > ¥ u) , by - we have

—t 1 N—
sup J(tug, tvy) < P — (Staﬁ) = +O( w)p+p— N)
t>11 p(N —1) 1Q|l%
N—s+(1-X)q N—s
+ O(PWpTls) =Ny )\ {CEN P, 7w
—s+(1-3)g — N=s
Ce |Inel, ¢ DR
Note that b(pu)p +p — N < b(p)p*(s1) — N + s1, then we have
—1 1 Not
sup J(tug, tvy) < P e (St,a,,@) p=t
P ot
N—s+(1-2)q N—s
+ O P =NFory ) {CEN H(1-X)q) 17
—s+(-3)a = N=s
Ce |Inel, ¢ b
(2.48)

Note that N > p?, b(u) > ¥=

[N —s+( —%)q]%<b( )p—l—p—N—[N—s—F(l—;)q].

Choose A = €, where [N—s—l—(l—%)q] % <7 <b(wpt+p—N-— [N—s—&-(l—%)q]
Then
AO (V5= 3)9) = 0( THN=sH1=5)0) AT = Ofera).
Since 7+ N —s+ (1 — —)q< ,T+N—s+(1— —)q< b(w)p+p — N, taking
€ small enough we deduce that there exists § > 0, such that
O(ebp" (s0)=Nts1) _ \O(N=sH1=9)0) < _gr75a, VA0 < A757 < 6. (2.49)
Choose Ay = min{Aj, £246}. Then for all A € (0, A1) we have

p—t 1 Nt 2
sup J(tur,tvr) < — (Sta,p) 7" —dATa
PN g

Together with (2.44), we get the conclusion of Lemma O

3. PROOF OF THE MAIN RESULTS

Proof of Theorem[1.1] Let

= |(uw,0)l,
1 1 _piGs1) 1 _ptGs) 1 P
fry:==rP——A, 5, (s1) _ Apsy” P (s2) _ Sap |Q o
( ) P p*(sl) M P*(Sz) H,S2 p*(t) t, o, | H
by NWNR —s P (())q aq
h(r) .= — (7) A, 2l
(T) q N —s s T
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From (L5, (L.6) and (1.7),
J(u,v) = f(r) = h(r).
Note that p < p*(s1), p*(s2), p*(t), it is easy to see that there exists ¢ > 0 such

that f(r) achieves its maximum at g and f(9) > 0. Therefore, there exists A1; > 0,
such that for 0 < A < Aqq,
b I(u,v) > f(e) — (o) > 0. (3.1)
u,v)||=0
On the other hand, set B, = {(u,v); ||(u,v)|| < o}. For (u,v) # (0,0), we can
choose d > 0 small enough, such that (du,dv) € B, and

I(du,dv) < 0. (3.2)

Thus,
—oo< inf  I(u,v) < 0. 3.3
o< (u,v) (3.3)

Now we can apply the Ekeland variational principle in [22] and obtain {(uy,,v,)} C
B,, such that

1
I(up,v,) < inf  I(u, =, 3.4
(o) € ot Tuwo)+ 7 34
1
Iup,vy) < I{u,v) + EH(un — u, vy, — V)|, (3.5)

for all (u,v) € Bg. Define
1
J1(u,v) = J(u,v) + f||(un — u, v, — ). (3.6)

By (3.5)), we have (uy,v,) is the minimizer of Ji(u,v) on B,. (3.1), (3.3) and (3.4)
1mp1y that there exists € > 0 and k € N, such that for n Z k, {(u, ) [(u, v)|| <

0 — €}. Therefore, for n > k and (¢, ) € W, we can choose t > 0 small enough,
such that (u, + t¢,v, +tp) € B, and

J1(un + td, vy + tp) — J1(un, vp)

> 0.
v >
That is,
t 16,0l > 0. (37)
Passing to the limit in (3.7) as n — 0, one can obtain
1
<J/(un7 vn)v ((ba ‘P)> > _Ell((ba ‘P)”v
which implies
1
[T (t, 00 || < . (3.8)
Combining ([3.4) and m there holds
lim J(up,v,) = inf J(u,v) <0, (3.9)
n—oo (u,v)EB,
lim J'(up,,v,) = 0. (3.10)

We note that there exists Af; € (0,A11), such that for 0 < )\ < A%y, and ¢ >

inf(y v)en, I(u,v), where co is defined in Lemma Thus, (3.9) and - ) and
Lemma Lemma imply that for 0 < A < Afl, (un,vn) — (u v) strongly in



16 N. NYAMORADI, M. JAVIDI EJDE-2012/169

W. Therefore, (u,v) is a nontrivial solution of problem (|1.1) satisfying J(u,v) =
inf(y ven, J(u,v) < 0. Note that J(u,v) = J(|ul,|v|) and

(lul, [o]) € {(w, ), (v, v)[| < o — €},

we have I(|ul,|v|) = inf(y ep, J(u,v) and J'(Jul, |v]) = 0. Then problem (L.1]) has
a nontrivial nonnegative solution. By the strongly maximum principle, we get the
conclusion of Theorem [L.1} O

Proof of Theorem[I.3. In view of the proof of Theorem we know that for 0 <
/\ < A1, there exists ¢ > 0, such that infj, )=, I(u,v) > ¥* > 0. Moreover,
) and - ) hold. We note that there exists Aja € (0,A11), such that for
O < )\ < A12, cx > inf(y vye, J(u,v), where c, is defined in Lemma Thus (3.9)
and ( and Lemma [2.2] imply that (u,,v,) — (u,v) strongly in W. Standard
argument shows that for 0 < A < Ajg, problem has at least one positive
solution satisfying J(u,v) < 0 and J'(u,v) = 0.

Now we prove a second positive solution. It is easy to see J(0,0) = 0. Set
A** = min{A12, A1}, where A; is given in Lemma Then it follows from Lemma
there exists (u’,v’) € W \ {0}, such that for 0 < A < A**,

sup J(tu', tv') < c,.

>0
On the other hand we obtain that lim; . J(lu/,lv') = —oo. Thus there exists
" > 0 such that [|(I'v/,I"v")|| > 0 and J(I'v/,I'v") < 0. Let

c:= inf sup J
Inf sup (v(1)),

where

I':={yeCI0,1], W) : ¥(0) = (0,0), v(1) = (I'u/, I'v')}.
Thus, it follows from the mountain pass lemma in [2] that there exists a sequence
(Un, vp) € W such that

lim J(up,v,) =c,

n—oo

lim J' (up,v,) = 0.

n—oo

Moreover, ¢ € (0,c,). From Lemma [2.2] (uy,v,) — (@,v) strongly in W, which
implies that J (ﬂ, 7) = ¢ and J'(u,v) = 0, Therefore, (@, 7) is a second nontrivial
solution of (L.I). Set ut = max{u O},U+ = max{v,0}. Replacing

o) /Q ) Jullol? ol”
’ o

o lzf* Il’\ o laf ° o — ot

by
+\q +\q +\p*(s1)
/ (u ) dx, / ™) dx, /Ld:p,
o |zl o lzf* o |zl
+\p* (s2) +\a () +)\6
/7(1) )g dz, /Q(x)i(u )*(w t) dx
o |z[* Q |z — 20

and repeating the above process, we have a nonnegative solution (@, v) of problem
(1.1) satistying J(w,v) > 0. Then by the strongly maximum principle, we have a
second positive solution. O

|ul? Iv\q
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