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APPROXIMATE SOLUTIONS TO NEUTRAL TYPE FINITE
DIFFERENCE EQUATIONS

DEEPAK B. PACHPATTE

Abstract. In this article, we study the approximate solutions and the depen-
dency of solutions on parameters to a neutral type finite difference equation,
under a given initial condition. A fundamental finite difference inequality, with
explicit estimate, is used to establish the results.

1. Introduction

Let R denote the set of real numbers R+ = [0,∞), and N0 = {0, 1, 2, . . . }. Let
D(S1, S2) denote the class of discrete functions from the set S1 to the set S2. For
any function z ∈ D(N0, R) we define the operator ∆ by ∆z(n) = z(n + 1) − z(n).
We use the conventions that empty sums and products are taken to be 0 and 1
respectively. In the present article we consider the neutral type finite difference
equation

∆x(n) = f(n, x(n),∆x(n)), (1.1)
with the initial condition

x(0) = x0, (1.2)
for n ∈ N0, where f ∈ D(N0 × R2, R) is a given function, x0 is a real constant and
x is an function to be found. The continuous analogue of equation (1.1) is often
referred to as a neutral differential equation, see for example [3, p. 155] and [4].
It is easy to observe that the equation (1.1) contains as special case the discrete
analogue of the well known Clairaut’s differential equation, see [1, pp 117-118] and
[8].

In general the solutions to (1.1) cannot be found analytically and thus will need
more insight to study the qualitative properties of its solutions. The problem of
existence of solutions for (1.1) with (1.2) (IVP (1.1)-(1.2), for short) can be dealt
with the method employed in [13, Theorem 1] with suitable modifications, see also
[1, 2, 5, 6, 7]. In this article we offer the conditions for the error evaluation of
approximate solutions of (1.1)-(1.2) by establishing some new bounds on solutions
of approximate problems. We also study the dependency of solutions of (1.1)-(1.2)
on parameters. The main tool employed in the analysis is based on the application
of a certain basic finite difference inequality with explicit estimate given in [9]
(see also [1, Theorem 4.1.1] and [9, Theorem 1.2.3]). Results on two independent
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variables are also given as a generalization of (1.1)-(1.2). A particular feature of our
approach is to present in a simple and unified way conditions some of the important
qualitative properties of solutions of (1.1)-(1.2).

2. Main Results

Let xi(n) ∈ D(N0, R) (i = 1, 2) be functions such that ∆xi(n) exist for n ∈ N0

and satisfy the inequalities

|∆xi(n)− f(n, xi(n),∆xi(n))| ≤ εi, (2.1)

for given constants εi ≥ 0 where it is supposed that the initial conditions

xi(0) = xi, (2.2)

are fulfilled. Then we call xi(n) (i = 1, 2) the εi-approximate solutions of (1.1)-
(1.2).

We use the following finite difference inequality established in [9] (see also [1, 10]).

Lemma 2.1. Let u, a, b, p ∈ D(N0, R+) and

u(n) ≤ a(n) + p(n)
n−1∑
s=0

b(s)u(s), (2.3)

for n ∈ N0. Then

u(n) ≤ a(n) + p(n)
n−1∑
s=0

a(s)b(s)
n−1∏

σ=s+1

[1 + b(σ)p(σ)], (2.4)

for n ∈ N0.

The following theorem estimates the difference between the two approximate
solutions of (1.1)-(1.2).

Theorem 2.2. Suppose that the function f in (1.1) satisfies the condition

|f(n, x, y)− f(n, x̄, ȳ)| ≤ p(n)[|x− x̄|+ |y − ȳ|], (2.5)

where p ∈ D(N0, R+) and p(n) < 1 for n ∈ N0. Let xi(n) (i = 1, 2) be εi-approxi-
mate solutions of equation (1.1) with (2.2) on N0 such that

|x1 − x2| ≤ δ, (2.6)

where δ ≥ 0 is a constant. Then

|x1(n)− x2(n)|+ |∆x1(n)−∆x2(n)|

≤ A(n) + B(n)
n−1∑
s=0

A(s)p(s)
n−1∏

σ=s+1

[1 + p(σ)B(σ)],
(2.7)

for n ∈ N0, where

A(n) =
(ε1 + ε2)(n + 1) + δ

1− p(n)
, B(n) =

1
1− p(n)

. (2.8)
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Proof. Since xi(n) (i = 1, 2) for n ∈ N0 are εi-approximate solutions of (1.1) with
(2.2), we have (2.1). By taking n = s in (2.1) and summing up both sides over s
from 0 to n− 1, we have

εin ≥
n−1∑
s=0

|∆xi(s)− f(s, xi(s),∆xi(s))|

≥ |
n−1∑
s=0

{∆xi(s)− f(s, xi(s),∆xi(s))}|

=
∣∣∣xi(n)− xi(0)−

n−1∑
s=0

f(s, xi(s),∆xi(s))
∣∣∣,

(2.9)

for i = 1, 2. From (2.9) and using the elementary inequalities

|v − z| ≤ |v|+ |z|, |v| − |z| ≤ |v − z|, (2.10)

we observe that

(ε1 + ε2)n ≥
∣∣∣x1(n)− x1(0)−

n−1∑
s=0

f(s, x1(s),∆x1(s))
∣∣∣

+
∣∣∣x2(n)− x2(0)−

n−1∑
s=0

f(s, x2(s),∆x2(s))
∣∣∣

≥
∣∣∣x1(n)− x1(0)−

n−1∑
s=0

f(s, x1(s),∆x1(s))

−
(
x2(n)− x2(0)−

n−1∑
s=0

f(s, x2(s),∆x2(s))
)∣∣∣

≥ |x1(n)− x2(n)| − |x1(0)− x2(0)|

−
∣∣∣n−1∑
s=0

f(s, x1(s),∆x1(s))−
n−1∑
s=0

f(s, x2(s),∆x2(s))
∣∣∣.

(2.11)

Moreover, from (2.1) and using the elementary inequalities in (2.10), we observe
that

ε1 + ε2

≥ |∆x1(n)− f(n, x1(n),∆x1(n))|+ |∆x2(n)− f(n, x2(n),∆x2(n))|
≥ |{∆x1(n)− f(n, x1(n),∆x1(n))} − {∆x2(n)− f(n, x2(n),∆x2(n))}|
≥ |∆x1(n)−∆x2(n)| − |f(n, x1(n),∆x1(n))− f(n, x2(n),∆x2(n))|.

(2.12)

Let u(n) = x1(n)− x2(n) for n ∈ N0. From (2.11), (2.12) and using the hypotheses,
we observe that

|u(n)|+ |∆u(n)|

≤ (ε1 + ε2)n + |u(0)|+
n−1∑
s=0

|f(s, x1(s),∆x1(s))− f(s, x2(s),∆x2(s))|

+ (ε1 + ε2) + |f(n, x1(n),∆x1(n))− f(n, x2(n),∆x2(n))|
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≤ (ε1 + ε2)(n + 1) + δ +
n−1∑
s=0

p(s)[|u(s)|+ |∆u(s)|] + p(n)[|u(n)|+ |∆u(n)|].

From this inequality, we obtain

|u(n)|+ |∆u(n)| ≤ A(n) + B(n)
n−1∑
s=0

p(s)[|u(s)|+ |∆u(s)|], (2.13)

for n ∈ N0, where A(n), B(n) are given as in (2.8). Now an application of Lemma
2.1 to (2.13) yields (2.7). �

Remark 2.3. We note that, if x1(n) is a solution of (1.1)-(1.2) with x1(0) = x1,
then we have ε1 = 0 and from (2.7) we see that x1(n) → x2(n) as ε2 → 0 and
δ → 0. Moreover, if we put: (i) ε1 = ε2 = 0, x1 = x2 in (2.7), then the uniqueness
of solutions of (1.1) is established, and (ii) ε1 = ε2 = 0 in (2.7), then we obtain
the bound which shows the dependency of solutions of (1.1) on given initial values.
For the estimate on the difference between the two approximate solutions of special
version of (1.1) when the function f in (1.1) is independent of ∆x(n), by using
comparison theorem, we refer the interested reader to [13, Theorem 1.5].

Consider (1.1)-(1.2) together with the initial-value problem

∆y(n) = g(n, y(n),∆y(n)), (2.14)

y(0) = y0, (2.15)

for n ∈ N0, where g ∈ D(N0 × R2, R) and y0 is a real constant.
Next, we shall prove the following theorem concerning the closeness of the solu-

tions of (1.1)-(1.2) and (2.14)-(2.15).

Theorem 2.4. Suppose that the function f in (1.1) satisfies (2.5), and that there
exist constants ε̄ ≥ 0, δ̄ ≥ 0 such that

|f(n, u, v)− g(n, u, v)| ≤ ε̄, (2.16)

|x0 − y0| ≤ δ̄, (2.17)

where f, x0 and g, y0 are as in (1.1)-(1.2) and (2.14)-(2.15). Let x(n) and y(n) be
respectively, solutions of (1.1)-(1.2) and (2.14)-(2.15) on N0. Then

|x(n)− y(n)|+ |∆x(n)−∆y(n)|

≤ Ā(n) + B(n)
n−1∑
s=0

Ā(s)p(s)
n−1∏

σ=s+1

[1 + p(σ)B(σ)],
(2.18)

for n ∈ N0, where

Ā(n) =
ε̄(n + 1) + δ̄

1− p(n)
, (2.19)

and B(n) is as in (2.8).
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Proof. Let v(n) = x(n)− y(n) for n ∈ N0. Using the facts that x(n) and y(n) are
the solutions of (1.1)-(1.2) and (2.14)-(2.15) and hypotheses, we observe that

|v(n)|+ |∆v(n)| ≤ |x0 − y0|+
n−1∑
s=0

|f(s, x(s),∆x(s))− f(s, y(s),∆y(s))|

+
n−1∑
s=0

|f(s, y(s),∆y(s))− g(s, y(s),∆y(s))|

+ |f(n, x(n),∆x(n))− f(n, y(n),∆y(n))|
+ |f(n, y(n),∆y(n))− g(n, y(n),∆y(n))|

≤ δ̄ +
n−1∑
s=0

p(s)[|v(s)|+ |∆v(s)|] +
n−1∑
s=0

ε̄

+ p(n)[|v(n)|+ |∆v(n)|] + ε̄.

(2.20)

From (2.20), we obtain

|v(n)|+ |∆v(n)| ≤ Ā(n) + B(n)
n−1∑
s=0

p(s)[|v(s)|+ |∆v(s)|]. (2.21)

Now an application of Lemma 2.1 to (2.21) yields (2.18). �

Remark 2.5. We note that the result given in Theorem 2.4 relates the solutions
of (1.1)-(1.2) and (2.14)-(2.15) in the sense that if f is close to g and x0 is close to
y0, then the solutions of (1.1)-(1.2) and (2.14)-(2.15) are also close together. For
further results on the qualitative properties of solutions of various types of finite
difference equations, see [1, 2, 5, 6, 7, 9, 10, 11, 13].

A slight variant of Theorem 2.4 is embodied in the following theorem.

Theorem 2.6. Suppose that the functions f and g in (1.1) and (2.14) satisfy the
condition

|f(n, u, v)− g(n, ū, v̄)| ≤ q(n)[|u− ū|+ |v − v̄|], (2.22)

where q ∈ D(N0, R+) and q(n) < 1 for n ∈ N0 and (2.17) holds. Let x(n) and y(n)
be respectively, solutions of (1.1)-(1.2) and (2.14)-(2.15) on N0. Then

|x(n)− y(n)|+ |∆x(n)−∆y(n)|

≤ A0(n) + B0(n)
n−1∑
s=0

A0(s)q(s)
n−1∏

σ=s+1

[1 + q(σ)B0(σ)],
(2.23)

for n ∈ N0, where

A0(n) =
δ̄

1− q(n)
, B0(n) =

1
1− q(n)

. (2.24)

Proof. Let w(n) = x(n) − y(n) for n ∈ N0. Using the facts that x(n) and y(n)
are respectively, solutions of (1.1)-(1.2) and (2.14)-(2.15), and the hypotheses, we
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observe that

|w(n)|+ |∆w(n)|

≤ |x0 − y0|+
n−1∑
s=0

|f(s, x(s),∆x(s))− g(s, y(s),∆y(s))|

+ |f(n, x(n),∆x(n))− g(n, y(n),∆y(n))|

≤ δ̄ +
n−1∑
s=0

q(s)[|w(s)|+ |∆w(s)|] + q(n)[|w(n)|+ |∆w(n)|].

(2.25)

From (2.25), we obtain

|w(n)|+ |∆w(n)| ≤ A0(n) + B0(n)
n−1∑
s=0

q(s)[|w(s)|+ |∆w(s)|]. (2.26)

Now an application of Lemma 2.1 to (2.26) yields (2.23). �

We consider the following two neutral type difference equations

∆z(n) = h(n, z(n),∆z(n), µ), (2.27)

∆z(n) = h(n, z(n),∆z(n), µ0), (2.28)

with the initial condition

z(0) = z0, (2.29)

for n ∈ N0, where h ∈ D(N0 × R3, R), z0 is a real constant and µ, µ0 are parameters.
The following theorem deals with the dependency of solutions of (2.27)-(2.29)

and (2.28)-(2.29) on parameters.

Theorem 2.7. Suppose that the function h in (2.27), (2.28) satisfy the conditions

|h(n, x, y, µ)− h(n, x̄, ȳ, µ)| ≤ a(n)[|x− x̄|+ |y − ȳ|], (2.30)

|h(n, x, y, µ)− h(n, x, y, µ0)| ≤ b(n)|µ− µ0|, (2.31)

where a, b ∈ D(N0, R+) and a(n) < 1 for n ∈ N0. Let z1(n) and z2(n) be the
solutions of (2.27)-(2.29) and (2.28)-(2.29) respectively. Then

|z1(n)− z2(n)|+ |∆z1(n)−∆z2(n)|

≤ C(n) + D(n)
n−1∑
s=0

C(s)a(s)
n−1∏

σ=s+1

[1 + a(σ)D(σ)],
(2.32)

for n ∈ N0, where

C(n) =
|µ− µ0|
1− a(n)

[
b(n) +

n−1∑
s=0

b(s)
]
, D(n) =

1
1− a(n)

. (2.33)
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Proof. Let e(n) = z1(n)− z2(n) for n ∈ N0. Using the facts that z1(n) and z2(n)
are the solutions of (2.27)-(2.29) and (2.28)-(2.29) respectively, we observe that

|e(n)|+ |∆e(n)| ≤
n−1∑
s=0

|h(s, z1(s),∆z1(s), µ)− h(s, z2(s),∆z2(s), µ)|

+
n−1∑
s=0

|h(s, z2(s),∆z2(s), µ)− h(s, z2(s),∆z2(s), µ0)|

+ |h(n, z1(n),∆z1(n), µ)− h(n, z2(n),∆z2(n), µ)|
+ |h(n, z2(n),∆z2(n), µ)− h(n, z2(n),∆z2(n), µ0)|.

(2.34)

The rest of the proof can be completed by closely looking at the proofs of the above
theorems and hence we omit it here. �

3. Two independent variable generalization

Our approach here allow us to deal with the following initial boundary value
problem (IBVP, for short) for neutral type finite difference equation in two inde-
pendent variables

∆2∆1u(m,n) = F (m,n, u(m,n),∆2∆1u(m,n)), (3.1)

with the initial boundary conditions

u(m, 0) = α(m), u(0, n) = β(n), u(0, 0) = 0, (3.2)

for m,n ∈ N0, where u ∈ D(N2
0 , R), α, β ∈ D(N0, R), F ∈ D(N2

0 × R2, R) and the
operators ∆1,∆2,∆2∆1 are as defined in [10, p. 3]. In this section, we formulate
in brief the results analogues to Theorems 2.2 and 2.4 related to the solution of
(3.1)-(3.2) only. One can formulate results similar to those in Theorems 2.6 and
2.7 with suitable modifications.

We require the following finite difference inequality presented in [10, Corollary
4.2.1].

Lemma 3.1. Let u, a, b, c ∈ D(N2
0 , R+). If

u(m,n) ≤ a(m,n) + b(m,n)
m−1∑
s=0

n−1∑
t=0

c(s, t)u(s, t), (3.3)

for m,n ∈ N0, then

u(m,n) ≤ a(m,n)+b(m,n)
(m−1∑

s=0

n−1∑
t=0

c(s, t)a(s, t)
) m−1∏

s=0

[1 +
n−1∑
t=0

c(s, t)b(s, t)], (3.4)

for m,n ∈ N0.

Let ui(m,n) ∈ D(N2
0 , R) (i = 1, 2), and ∆2∆1ui(m,n) (m,n ∈ N0) exist and

satisfy the inequalities

|∆2∆1ui(m,n)− F (m,n, ui(m,n),∆2∆1ui(m,n))| ≤ εi, (3.5)

for given constants εi ≥ 0 (i = 1, 2), where it is supposed that the initial boundary
conditions

ui(m, 0) = αi(m), ui(0, n) = βi(n), ui(0, 0) = 0, (3.6)
are fulfilled and αi, βi ∈ D(N0, R). Then we call ui(m,n) the εi-approximate
solutions with respect to (3.1)-(3.2).
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Theorem 3.2. Suppose that the function F in (3.1) satisfies the condition

|F (m,n, u, v)− F (m,n, ū, v̄)| ≤ p(m,n)[|u− ū|+ |v − v̄|], (3.7)

where p ∈ D(N2
0 , R+) and p(m,n) < 1 for m,n ∈ N0. For i = 1, 2, let ui(m,n)

(m,n ∈ N0) be εi-approximate solutions of (3.1) with (3.6) such that

|α1(m)− α2(m) + β1(n)− β2(n)| ≤ δ, (3.8)

where δ ≥ 0 is a constant. Then

|u1(m,n)− u2(m,n)|+ |∆2∆1u1(m,n)−∆2∆1u2(m,n)|

≤ L(m,n) + E(m,n)(
m−1∑
s=0

n−1∑
t=0

p(s, t)L(s, t))
m−1∏
s=0

[
1 +

n−1∑
t=0

p(s, t)E(s, t)
]
,

(3.9)

for m,n ∈ N0, where

L(m,n) =
(ε1 + ε2)(mn + 1) + δ

1− p(m,n)
, E(m,n) =

1
1− p(m,n)

. (3.10)

Proof. Since ui(m,n) (i = 1, 2) for m,n ∈ N0 are respectively εi-approximate so-
lutions of (3.1) with (3.6), we have (3.5). Keeping m fixed in (3.5), setting n = t
and taking sum on both sides over t from 0 to n − 1, then keeping n fixed in the
resulting inequality and setting m = s and taking sum over s from 0 to m− 1 and
using (3.6), we observe that

εimn ≥
m−1∑
s=0

n−1∑
t=0

|∆2∆1ui(s, t)− F (s, t, ui(s, t),∆2∆1ui(s, t))|

≥
∣∣∣m−1∑

s=0

n−1∑
t=0

{∆2∆1ui(s, t)− F (s, t, ui(s, t),∆2∆1ui(s, t))}
∣∣

=
∣∣∣{ui(s, t)− [αi(m) + βi(n)]−

m−1∑
s=0

n−1∑
t=0

F (s, t, ui(s, t),∆2∆1ui(s, t))
}∣∣∣.

From this inequality and using the elementary inequalities in (2.10), we observe
that

(ε1 + ε2)mn

≥
∣∣∣{u1(s, t)− [α1(m) + β1(n)]−

m−1∑
s=0

n−1∑
t=0

F (s, t, u1(s, t),∆2∆1u1(s, t))}
∣∣∣

+
∣∣∣{u2(s, t)− [α2(m) + β2(n)]−

m−1∑
s=0

n−1∑
t=0

F (s, t, u2(s, t),∆2∆1u2(s, t))
}∣∣∣

≥
∣∣∣{u1(s, t)− [α1(m) + β1(n)]−

m−1∑
s=0

n−1∑
t=0

F (s, t, u1(s, t),∆2∆1u1(s, t))
}

−
{

u2(s, t)− [α2(m) + β2(n)]−
m−1∑
s=0

n−1∑
t=0

F (s, t, u2(s, t),∆2∆1u2(s, t))
}∣∣∣

≥
∣∣∣u1(s, t)− u2(s, t)| − |[α1(m) + β1(n)]− [α2(m) + β2(n)]

∣∣∣
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−
∣∣∣ m−1∑

s=0

n−1∑
t=0

F (s, t, u1(s, t),∆2∆1u1(s, t))

−
m−1∑
s=0

n−1∑
t=0

F (s, t, u2(s, t),∆2∆1u2(s, t))
∣∣∣

Furthermore, from (3.5) and using the elementary inequalities in (2.10), we observe
that

ε1 + ε2

≥ |∆2∆1u1(m,n)− F (m,n, u1(m,n),∆2∆1u1(m,n))|
+ |∆2∆1u2(m,n)− F (m,n, u2(m,n),∆2∆1u2(m,n))|

≥ |{∆2∆1u1(m,n)− F (m,n, u1(m,n),∆2∆1u1(m,n))}
− {∆2∆1u2(m,n)− F (m,n, u2(m,n),∆2∆1u2(m,n))}|

≥ |∆2∆1u1(m,n)−∆2∆1u2(m,n)|
− |F (m,n, u1(m,n),∆2∆1u1(m,n))− F (m,n, u2(m,n),∆2∆1u2(m,n))|.

The remaining proof can be completed by following the proof of Theorem 2.2 with
suitable modifications and using Lemma 3.1. We omit the further details. �

Consider (3.1)-(3.2) with the IBVP

∆2∆1v(m,n) = G(m,n, v(m,n),∆2∆1v(m,n)), (3.11)

v(m, 0) = ᾱ(m), v(0, n) = β̄(n), v(0, 0) = 0, (3.12)

for m,n ∈ N0, where v ∈ D(N2
0 , R), ᾱ, β̄ ∈ D(N0, R), G ∈ D(N2

0 × R2, R).

Theorem 3.3. Suppose that the function F in (3.1) satisfies (3.7) and that there
exist constants ε̄ ≥ 0, δ̄ ≥ 0 such that

|F (m,n, u, v)−G(m,n, u, v)| ≤ ε̄, (3.13)

|α(m)− ᾱ(m) + β(n)− β̄(n)| ≤ δ̄, (3.14)

where F, α, β and G, ᾱ, β̄ are as in (3.1)-(3.2) and (3.11)-(3.12). Let u(m,n) and
v(m,n) be respectively the solutions of (3.1)-(3.2) and (3.11)-(3.12) for m,n ∈ N0.
Then

|u(m,n)− v(m,n)|+ |∆2∆1u(m,n)−∆2∆1v(m,n)|

≤ L̄(m,n) + E(m,n)
(m−1∑

s=0

n−1∑
t=0

p(s, t)L̄(s, t)
) m−1∏

s=0

[
1 +

n−1∑
t=0

p(s, t)E(s, t)
]
,

(3.15)

for m,n ∈ N0, where

L̄(m,n) =
ε̄(mn + 1) + δ̄

1− p(m,n)
, (3.16)

and E(m,n) is as in (3.10).

The proof follows by the similar argument as in the proof of Theorem 2.4 given
above with suitable modifications. Here, we omit the details.
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Remark 3.4. We note that the idea used in this paper can be extended very
easily to establish similar results as given above for the following finite difference
equations

∆2∆1u(m,n) = F (m,n, v(m,n),∆1u(m,n)), (3.17)

∆2∆1u(m,n) = F (m,n, v(m,n),∆2u(m,n)), (3.18)

with the given initial boundary conditions in (3.2) under some suitable conditions
and by making use of a suitable variant of the inequality in Lemma 3.1 (see also
[11]).

In concluding we note that, in the study of convergence of finite element ap-
proximations to solutions of various types of dynamic equations, the dependence
of the error bounds on certain derivatives (or differences) of the exact solution will
become apparent in the course of analysis (see, for example [14]). Here, it is to
be noted that our analysis yields explicit bounds not only on the solutions of the
problems but also on the forward differences of the solutions. We hope that our
approach here will revel as a model for future investigations.
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