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EXISTENCE OF SOLUTIONS FOR A NONLINEAR
FRACTIONAL BOUNDARY VALUE PROBLEM VIA A LOCAL

MINIMUM THEOREM

CHUANZHI BAI

Abstract. This article concerns the existence of solutions to the nonlinear
fractional boundary-value problem

d

dt

“
0Dα−1

t (c
0Dα

t u(t))− tD
α−1
T (c

tDα
T u(t))

”
+ λf(u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where α ∈ (1/2, 1], and λ is a positive real parameter. The approach is based
on a local minimum theorem established by Bonanno.

1. Introduction

Fractional differential equations have been proved to be valuable tools in the
modeling of many phenomena in various fields of physic, chemistry, biology, en-
gineering and economics. There has been significant development in fractional
differential equations, one can see the monographs of Miller and Ross [1], Samko
et al [2], Podlubny [3], Hilfer [4], Kilbas et al [5] and the papers [7, 8, 9, 10, 11, 12,
13, 6, 14, 15, 16] and the references therein.

Critical point theory has been very useful in determining the existence of solution
for integer order differential equations with some boundary conditions, for example
[21, 6, 19, 18, 17, 20]. But until now, there are few results on the solution to frac-
tional BVP which were established by the critical point theory, since it is often very
difficult to establish a suitable space and variational functional for fractional BVP.
Recently, Jiao and Zhou [22] investigated the fractional boundary-value problem

d

dt

(1
2 0D

−β
t (u′(t)) +

1
2 tD

−β
T (u′(t))

)
+∇F (t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

by using the critical point theory, where 0D
−β
t and tD

−β
T are the left and right

Riemann-Liouville fractional integrals of order 0 ≤ β < 1 respectively, F : [0, T ]×
RN → R is a given function and ∇F (t, x) is the gradient of F at x.
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In this article, by using a local minimum theorem established by Bonanno in
[23], a new approach is provided to investigate the existence of solutions to the
following fractional boundary value problems

d

dt

(
0D

α−1
t (c

0D
α
t u(t))− tD

α−1
T (c

tD
α
T u(t))

)
+ λf(u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.1)

where α ∈ (1/2, 1], 0D
α−1
t and tD

α−1
T are the left and right Riemann-Liouville

fractional integrals of order 1− α respectively, c
0D

α
t and c

tD
α
T are the left and right

Caputo fractional derivatives of order 0 < α ≤ 1 respectively, λ is a positive real
parameter, and f : R → R is a continuous function.

2. Preliminaries

In this section, we introduce some definitions and properties of the fractional
calculus which are used in this article.

Definition 2.1 ([5]). Let f be a function defined on [a, b]. The left and right
Riemann-Liouville fractional integrals of order α for a function f are defined by

aD−α
t f(t) =

1
Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t ∈ [a, b], α > 0,

tD
−α
b f(t) =

1
Γ(α)

∫ b

t

(s− t)α−1f(s)ds, t ∈ [a, b], α > 0,

provided the right-hand sides are pointwise defined on [a, b], where Γ(α) is the
standard gamma function.

Definition 2.2 ([5]). Let γ ≥ 0 and n ∈ N.
(i) If γ ∈ (n − 1, n) and f ∈ ACn([a, b], RN ), then the left and right Caputo

fractional derivatives of order γ for function f denoted by c
aDγ

t f(t) and c
tD

γ
b f(t),

respectively, exist almost everywhere on [a, b], c
aDγ

t f(t) and c
tD

γ
b f(t) are represented

by

c
aDγ

t f(t) =
1

Γ(n− γ)

∫ t

a

(t− s)n−γ−1f (n)(s)ds, t ∈ [a, b],

c
tD

γ
b f(t) =

(−1)n

Γ(n− γ)

∫ b

t

(s− t)n−γ−1f (n)(s)ds, t ∈ [a, b],

respectively.
(ii) If γ = n− 1 and f ∈ ACn−1([a, b], RN ), then c

aDn−1
t f(t) and c

tD
n−1
b f(t) are

represented by
c
aDn−1

t f(t) = f (n−1)(t), and c
tD

n−1
b f(t) = (−1)(n−1)f (n−1)(t), t ∈ [a, b].

With these definitions, we have the rule for fractional integration by parts, and
the composition of the Riemann-Liouville fractional integration operator with the
Caputo fractional differentiation operator, which were proved in [5, 2].

Proposition 2.3 ([5, 2]). We have the following property of fractional integration∫ b

a

[aD−γ
t f(t)]g(t)dt =

∫ b

a

[tD
−γ
b g(t)]f(t)dt, γ > 0, (2.1)
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provided that f ∈ Lp([a, b], RN ), g ∈ Lq([a, b], RN ) and p ≥ 1, q ≥ 1, 1/p + 1/q ≤
1 + γ or p 6= 1, q 6= 1, 1/p + 1/q = 1 + γ.

Proposition 2.4 ([5]). Let n ∈ N and n − 1 < γ ≤ n. If f ∈ ACn([a, b], RN ) or
f ∈ Cn([a, b], RN ), then

aD−γ
t (c

aDγ
t f(t)) = f(t)−

n−1∑
j=0

f (j)(a)
j!

(t− a)j ,

tD
−γ
b (c

tD
γ
b f(t)) = f(t)−

n−1∑
j=0

(−1)jf (j)(b)
j!

(b− t)j ,

for t ∈ [a, b]. In particular, if 0 < γ ≤ 1 and f ∈ AC([a, b], RN ) or f ∈
C1([a, b], RN ), then

aD−γ
t (c

aDγ
t f(t)) = f(t)− f(a), and tD

−γ
b (c

tD
γ
b f(t)) = f(t)− f(b). (2.2)

Remark 2.5. In view of (2.1) and Definition 2.2, it is obvious that u ∈ AC([0, T ])
is a solution of (1.1) if and only if u is a solution of the problem

d

dt

(
0D

−β
t (u′(t)) + tD

−β
T (u′(t))

)
+ λf(u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(2.3)

where β = 2(1− α) ∈ [0, 1).

To establish a variational structure for (1.1), it is necessary to construct appro-
priate function spaces. Denote by C∞

0 [0, T ] the set of all functions g ∈ C∞[0, T ]
with g(0) = g(T ) = 0.

Definition 2.6 ([22]). Let 0 < α ≤ 1. The fractional derivative space Eα
0 is defined

by the closure of C∞
0 [0, T ] with respect to the norm

‖u‖α =
( ∫ T

0

|c0Dα
t u(t)|2dt +

∫ T

0

|u(t)|2dt
)1/2

, ∀u ∈ Eα.

Remark 2.7. It is obvious that the fractional derivative space Eα
0 is the space

of functions u ∈ L2[0, T ] having an α-order Caputo fractional derivative c
0D

α
t u ∈

L2[0, T ] and u(0) = u(T ) = 0.

Proposition 2.8 ([22]). Let 0 < α ≤ 1. The fractional derivative space Eα
0 is

reflexive and separable Banach space.

Lemma 2.9 ([22]). Let 0 < α ≤ 1. For all u ∈ Eα
0 , we have

‖u‖L2 ≤ Tα

Γ(α + 1)
‖c
0D

α
t u‖L2 , (2.4)

‖u‖∞ ≤ Tα−1/2

Γ(α)(2(α− 1) + 1)1/2
‖c
0D

α
t u‖L2 . (2.5)

By (2.4), we can consider Eα
0 with respect to the norm

‖u‖α =
( ∫ T

0

|c0Dα
t u(t)|2dt

)1/2

= ‖c
0D

α
t u‖L2 , ∀u ∈ Eα

0 (2.6)

in the following analysis.
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Lemma 2.10 ([22]). Let 1/2 < α ≤ 1, then for all any u ∈ Eα
0 , we have

| cos(πα)|‖u‖2α ≤ −
∫ T

0

c
0D

α
t u(t) · c

tD
α
T u(t)dt ≤ 1

| cos(πα)|
‖u‖2α. (2.7)

Our main tools is the local minimum theorem [23] which is recalled below. Given
a set X and two functionals Φ,Ψ : X → R, let

β(r1, r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)−Ψ(v)
r2 − Φ(v)

, (2.8)

ρ2(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1]) Ψ(u)
Φ(v)− r1

, (2.9)

for all r1, r2 ∈ R, with r1 < r2.

Theorem 2.11 ([23]). Let X be a reflexive real Banach space; Φ : X → R be a
sequentially weakly lower semicontinuous, coercive and continuously Gateaux dif-
ferential function whose Gateaux derivative admits a continuous inverse on X∗;
Ψ : X → R be a continuously Gateaux differentiable function whose Gateaux de-
rivative is compact. Put Iλ = Φ − λΨ and assume that there are r1, r2 ∈ R, with
r1 < r2, such that

β(r1, r2) < ρ2(r1, r2),

where β and ρ2 are given by (2.8) and (2.9). Then, for each λ ∈
(

1
ρ2(r1,r2)

, 1
β(r1,r2)

)
there is u0,λ ∈ Φ−1(]r1, r2[) such that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and
I ′λ(u0,λ) = 0.

3. Main result

For given u ∈ Eα
0 , we define functionals Φ,Ψ : Eα → R as follows:

Φ(u) := −
∫ T

0

c
0D

α
t u(t) · c

tD
α
T u(t)dt, Ψ(u) :=

∫ T

0

F (u(t))dt,

where F (u) =
∫ u

0
f(s)ds. Clearly, Φ and Ψ are Gateaux differentiable functional

whose Gateaux derivative at the point u ∈ Eα
0 are given by

Φ′(u)v = −
∫ T

0

(c
0D

α
t u(t) · c

tD
α
T v(t) + c

tD
α
T u(t) · c

0D
α
t v(t))dt,

Ψ′(u)v =
∫ T

0

f(u(t))v(t)dt = −
∫ T

0

∫ t

0

f(u(s))ds · v′(t)dt,

for every v ∈ Eα
0 . By Definition 2.2 and (2.2), we have

Φ′(u)v =
∫ T

0

(0Dα−1
t (c

0D
α
t u(t))− tD

α−1
T (c

tD
α
T u(t))) · v′(t)dt.

Hence, Iλ = Φ− λΨ ∈ C1(Eα
0 , R). If u∗ ∈ Eα

0 is a critical point of Iλ, then

0 = I ′λ(u∗)v =
∫ T

0

(
0D

α−1
t (c

0D
α
t u∗(t))− tD

α−1
T (c

tD
α
T u∗(t))

+ λ

∫ t

0

f(u∗(s))ds
)
· v′(t)dt,

(3.1)
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for v ∈ Eα
0 . We can choose v ∈ Eα

0 such that

v(t) = sin
2kπt

T
or v(t) = 1− cos

2kπt

T
, k = 1, 2, . . . .

The theory of Fourier series and (3.1) imply

0D
α−1
t (c

0D
α
t u∗(t))− tD

α−1
T (c

tD
α
T u∗(t)) + λ

∫ t

0

f(u∗(s))ds = C (3.2)

a.e. on [0, T ] for some C ∈ R. By (3.2), it is easy to show that u∗ ∈ Eα
0 is a solution

of (1.1).
By Lemma 2.9, when α > 1/2, for each u ∈ Eα

0 we have

‖u‖∞ ≤ Ω
( ∫ T

0

|c0Dα
t u(t)|2dt

)1/2

= Ω‖u‖α, (3.3)

where

Ω =
Tα− 1

2

Γ(α)
√

2(α− 1) + 1
. (3.4)

Given two constants c ≥ 0 and d 6= 0, with c 6=
√

ωα,d

| cos(πα)| ·Ω, where Ω as in (3.4).
Put

ωα,d :=
4Γ2(2− α)
Γ(4− 2α)

T 1−2αd2(22α−1 − 1).

Theorem 3.1. Let f : R → R be a continuous function and 1
2 < α ≤ 1. Assume

that there exist a positive constant c and a constant d 6= 0 with√
ωα,d

| cos(πα)|
Ω < c, (3.5)

such that

0 <
max|η|≤c F (η)
c2| cos(πα)|

<

1
Γ(2−α)|d|

∫ Γ(2−α)|d|
0

F (x)dx

ωα,dΩ2
. (3.6)

Then, for each

λ ∈
( ωα,dΓ(2− α)|d|

T
∫ Γ(2−α)|d|
0

F (x)dx
,

c2| cos(πα)|
TΩ2 max|η|≤c F (η)

)
,

problem (1.1) admits at least one solution ū such that ‖ū‖α < c/Ω.

Proof. Let Φ,Ψ be the functionals defined above. It is well known that they satisfy
all regularity assumptions requested in Theorem 2.11 and that the critical point of
the functional Φ− λΨ in Eα

0 is exactly the solution of (1.1). Put

r =
| cos(πα)|

Ω2
c2,

u0(t) =

{
2Γ(2−α)d

T t, t ∈ [0, T/2),
2Γ(2−α)d

T (T − t), t ∈ [T/2, T ]

(3.7)

It is easy to check that u0(0) = u0(T ) = 0 and u0 ∈ L2[0, T ]. The direct calculation
shows that

c
0D

α
t u0(t) =

{
2d
T t1−α, t ∈ [0, T/2),
2d
T (t1−α − 2(t− T

2 )1−α), t ∈ [T/2, T ]
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and

‖u0‖2α =
∫ T

0

(c
0D

α
t u0(t))2dt =

∫ T
2

0

+
∫ T

T/2

(c
0D

α
t u0(t))2dt

=
4d2

T 2

[ ∫ T

0

t2(1−α)dt− 4
∫ T

T/2

t1−α(t− T

2
)1−αdt + 4

∫ T

T/2

(t− T

2
)2(1−α)dt

]
=

4(1 + 22α−1)d2

3− 2α
T 1−2α − 16d2

T 2

∫ T

T/2

t1−α(t− T

2
)1−αdt < ∞.

That is, c
0D

α
t u0 ∈ L2[0, T ]. Thus, u0 ∈ Eα

0 . Moreover, the direct calculation shows

c
tD

α
T u0(t) =

{
2d
T ((T − t)1−α − 2(T

2 − t)1−α), t ∈ [0, T/2),
2d
T (T − t)1−α, t ∈ [T/2, T ]

and

Φ(u0) = −
∫ T

0

c
0D

α
t u0(t) · c

tD
α
T u0(t)dt

= −(
2d

T
)2

[ ∫ T
2

0

t1−α
(
(T − t)1−α − 2

(T

2
− t

)1−α
)
dt

+
∫ T

T/2

(T − t)1−α ·
(
t1−α − 2(t− T

2
)1−α

)
dt

]
= −(

2d

T
)2

[ ∫ T

0

t1−α(T − t)1−αdt− 4
∫ T

2

0

t1−α
(T

2
− t

)1−α
dt

]
= −(

2d

T
)2

[Γ2(2− α)
Γ(4− 2α)

T 3−2α − 4
Γ2(2− α)
Γ(4− 2α)

(
T

2
)3−2α

]
=

4Γ2(2− α)
Γ(4− 2α)

T 1−2α(22α−1 − 1)d2 = ωα,d,

and

Ψ(u0) =
∫ T

0

F (u0(t))dt =
T

Γ(2− α)|d|

∫ Γ(2−α)|d|

0

F (x)dx.

Hence, from (3.5), one has 0 < ωα,d < | cos(πα)|
Ω2 c2; that is, 0 < Φ(u0) < r. Moreover,

for all u ∈ Eα
0 such that u ∈ Φ−1(]−∞, r]), by (2.7) we have

| cos(πα)|‖u‖2α ≤ Φ(u) ≤ r,

which implies

‖u‖2α ≤
1

| cos(πα)|
r. (3.8)

Thus, by (3.3), (3.8) and (3.7) we obtain

|u(t)| < Ω‖u‖α ≤ Ω
√

r

| cos(πα)|
= c, ∀t ∈ [0, T ].

Hence,

Ψ(u) =
∫ T

0

F (u(t))dt ≤
∫ T

0

max
|η|≤c

F (η)dt = T max
|η|≤c

F (η),
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for all u ∈ Eα
0 such that u ∈ Φ−1(]−∞, r]). Hence,

sup
u∈Φ−1(]−∞,r])

Ψ(u) ≤ T max
|η|≤c

F (η).

Hence, one has

β(0, r) ≤
supu∈Φ−1(]−∞,r]) Ψ(u)−Ψ(u0)

r − Φ(u0)

≤ Ω2T
max|η|≤c F (η)− 1

Γ(2−α)|d|
∫ Γ(2−α)|d|
0

F (x)dx

| cos(πα)|c2 − ωα,dΩ2

< Ω2T
max|η|≤c F (η)− ωα,dΩ2

| cos(πα)|c2 max|η|≤c F (η)

| cos(πα)|c2 − ωα,dΩ2

= Ω2T
max|η|≤c F (η)
c2| cos(πα)|

,

(3.9)

by condition (3.6). On the other hand, if u ∈ Φ−1(]−∞, 0]), then Φ(u) ≤ 0. Thus,
by (2.4) and (2.7) we have ‖u‖L2 = 0; that is, u(t) = 0, a.e. t ∈ [0, T ]. Hence,

ρ2(0, r) ≥
Ψ(u0)− supu∈Φ−1(]−∞,0]) Ψ(u)

Φ(u0)
=

Ψ(u0)
Φ(u0)

= T

1
Γ(2−α)|d|

∫ Γ(2−α)|d|
0

F (x)dx

ωα,d
.

(3.10)

Thus, by (3.9), (3.10) and (3.6) it follows that β(0, r) < ρ2(0, r). So, from Theorem
2.11 for each

λ ∈
( ωα,dΓ(2− α)|d|

T
∫ Γ(2−α)|d|
0

F (x)dx
,

c2| cos(πα)|
TΩ2 max|η|≤c F (η)

)
⊂

( 1
ρ2(0, r)

,
1

β(0, r)

)
,

the function Φ − λΨ admits at least one critical point ū such that 0 < Φ(ū) < r;
that is, ‖ū‖α < c

Ω , and the conclusion is achieved. �

We conclude with an example that illustrates the results obtained here. Let
α = 0.8, T = 1, and f(u) = cos(πu/3). Then (1.1) reduces to the boundary-value
problem

d

dt

(
0D

−0.2
t (c

0D
0.8
t u(t))− tD

−0.2
1 (c

tD
0.8
1 u(t))

)
+ λ cos(

π

3
u(t)) = 0, a.e. t ∈ [0, 1],

u(0) = u(1) = 0.

(3.11)
Owing to Theorem 3.1, for each λ ∈ (3.2964, 4.30512), boundary-value problem
(3.11) admits at least one solution. In fact, put c = 2.5 and d = 1, it is easy to
calculate that Ω = 1.1089, ω0.8,1 = 1.4 and√

ω0.8,1

| cos(0.8π)|
Ω = 1.4588 < 2.5 = c.

Moreover, we have

1
Γ(2−α)|d|

∫ Γ(2−α)|d|
0

F (x)dx

ωα,dΩ2
=

1
Γ(1.2)

∫ Γ(1.2)

0
3
π sin(πx/3)dx

ω0.8,1 · Ω2
= 0.2467, (3.12)
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and
max|η|≤c F (η)
c2| cos(πα)|

=
3/π

2.52 · | cos(0.8π)|
= 0.1889, (3.13)

which implies that condition (3.6) holds. Thus, by Theorem 3.1, for each λ ∈
(3.2964, 4.3051), problem (3.11) admits at least one solution ū such that ‖ū‖0.8 <
2.2545.
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