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PROPERTIES OF SOLUTIONS TO LINEAR DIFFERENTIAL
EQUATIONS WITH ANALYTIC COEFFICIENTS IN

THE UNIT DISC

SAADA HAMOUDA

Abstract. In this article we study the growth of solutions of linear differen-
tial equations with analytic coefficients in the unit disc. Our investigation is
based on the behavior of the coefficients on a neighborhood of a point on the
boundary of the unit disc.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna value distribution
theory of meromorphic function on the complex plane C and in the unit disc
D = {z ∈ C : |z| < 1} (see [9, 14]). In addition, the order of meromorphic
function f(z) in D is defined by

σ(f) = lim sup
r→1−

log+ T (r, f)
log 1

1−r

,

where T (r, f) is the Nevanlinna characteristic function of f ; and for an analytic
function f(z) in D, we have also the definition

σM (f) = lim sup
r→1−

log+ log+ M(r, f)
log 1

1−r

,

where M(r, f) = max|z|=r |f(z)|. Tsuji [13, p. 205] states that

σ(f) ≤ σM (f) ≤ σ(f) + 1.

For example, the function g(z) = exp{ 1
(1−z)µ } satisfies σ(g) = µ−1 and σM (g) = µ.

Obviously, we have

σ(f) < ∞ if and only if σM (f) < ∞.

Definition 1.1 ([10]). A meromorphic function f in D is called admissible if

lim sup
r→1−

log T (r, f)
log 1

1−r

= ∞;
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and f is called nonadmissible if

lim sup
r→1−

log T (r, f)
log 1

1−r

< ∞.

There are some similarities between results of linear differential equations in
the complex plane and the unit disc. For example, Heittokangas [10] obtained the
following results.

Theorem 1.2 ([10]). Let A(z) and B(z) be analytic functions in the unit disc. If
σ(A) < σ(B) or A(z) is nonadmissible while B(z) is admissible, then all solutions
f(z) 6≡ 0 of the linear differential equation

f ′′ + A(z)f ′ + B(z)f = 0, (1.1)

are of infinite order of growth.

Theorem 1.3 ([10]). Let A0(z), . . . , Ak−1(z) be analytic coefficients in the unit
disc of the linear differential equation

f (k) + Ak−1(z)f (k−1) + · · ·+ A0(z)f = 0. (1.2)

Let Ad(z) be the last coefficient not being an H-function while the coefficients
Ad+1(z), . . . , Ak−1(z) are H-functions. Then possesses at most d linearly inde-
pendent analytic solutions of finite order of growth.

These theorems are analogous of the following results respectively.

Theorem 1.4 ([7]). Let A(z) and B(z) be entire functions. If σ(A) < σ(B) or
A(z) is a polynomial and B(z) is transcendental, then every solution f(z) 6≡ 0 of
(1.1) has infinite order.

Theorem 1.5 ([6]). Let A0(z), . . . , Ak−1(z) be entire functions. Let Ad(z) be the
last transcendental coefficient in (1.2) while Ad+1(z), . . . , Ak−1(z) are polynomials.
Then (1.2) possesses at most d linearly independent entire solutions of finite order
of growth.

In general, the study of growth of solutions of linear differential equations in the
complex plane or in the unit disc is based on the dominant of some coefficient by
using the order, iterated order, type and the degree; see for example [4, 7, 11, 12].
In this paper, we will get out of these methods by using only the behavior of the
coefficients near a point on the boundary of the unit disc. By this concept, we can
study certain class of linear differential equations with analytic coefficients in the
unit disc having the same order and type. We are motivated by certain results in
the complex plane concerning the linear differential equation

f ′′ + A(z)eazf ′ + B(z)ebzf = 0, (1.3)

where A(z) and B(z) are entire functions, see for example [1, 2, 3, 8]. Chen [2]
proved that if ab 6= 0 and arg a 6= arg b or a = cb (0 < c < 1), then every solution
f(z) 6≡ 0 of (1.3) is of infinite order.

We will see that there are similarities and differences between our results and
those of the complex plane. In fact, we will prove the following results.

Theorem 1.6. Let A(z) and B(z) 6≡ 0 be analytic functions in the unit disc.
Suppose that µ > 1 is a real constant, b and z0 are complex numbers such that
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b 6= 0, |z0| = 1. If A(z) and B(z) are analytic on z0 then every solution f(z) 6≡ 0
of the differential equation

f ′′ + A(z)f ′ + B(z)e
b

(z0−z)µ f = 0, (1.4)

is of infinite order.

Example 1.7. Every solution f(z) 6≡ 0 of the differential equation

f ′′ + e
1

(1+z)α f ′ + e
1

(1−z)β f = 0,

is of infinite order, where α > 1 and β > 1 are real constants. We see that, in the
case α = β, the coefficients have the same order and type.

Theorem 1.8. Let A(z) and B(z) 6≡ 0 be analytic functions in the unit disc.
Suppose that µ > 1 is a real constant, a, b and z0 are complex numbers such that
ab 6= 0, arg a 6= arg b, |z0| = 1. If A(z) and B(z) are analytic on z0 then every
solution f(z) 6≡ 0 of the differential equation

f ′′ + A(z)e
a

(z0−z)µ f ′ + B(z)e
b

(z0−z)µ f = 0, (1.5)

is of infinite order.

Theorem 1.9. Let A(z) and B(z) 6≡ 0 be analytic functions in the unit disc.
Suppose that µ > 1 is a real constant, a, b and z0 are complex numbers such that
ab 6= 0, a = cb (0 < c < 1), |z0| = 1. If A(z) and B(z) are analytic on z0 then
every solution f(z) 6≡ 0 of the differential equation

f ′′ + A(z)e
a

(z0−z)µ f ′ + B(z)e
b

(z0−z)µ f = 0, (1.6)

is of infinite order

Remark 1.10. In all these our theorems, it may happen that the order of growth
of A(z) and B(z) is greater than µ not like of the complex plane case.

We can generalize our previous Theorems to the higher differential equations as
follows.

Theorem 1.11. Consider the linear differential equation

f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′ + B(z)e
b

(z0−z)µ f = 0, (1.7)

where µ > 1 is a real constant, b and z0 are complex numbers such that b 6= 0,
|z0| = 1, B(z) 6≡ 0, A0(z), . . . , Ak−1(z) are analytic functions in the unit disc such

that either Aj(z) is analytic on z0 or Aj(z) = Bj(z)e
bj

(z0−z)µ with Bj(z) is analytic
on z0 and bj = cjb (0 < cj < 1) or arg bj 6= arg b for at most one possibility. Then
every solution f(z) 6≡ 0 of (1.7) is of infinite order.

Remark 1.12. Throughout this paper, we choose the principal branch of logarithm
of the function e

λ
(z0−z)µ (λ ∈ C\{0}).

2. Preliminaries

To prove our results we need the following lemmas.
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Lemma 2.1 ([5]). Let f be a meromorphic function in the unit disc D of finite
order σ. Let ε > 0 be a constant; k and j be integers satisfying k > j ≥ 0. Assume
that f (j) 6≡ 0. Then there exists a set E ⊂ [0, 1) which satisfies

∫
E

1
1−r dr < ∞,

such that for all z ∈ D satisfying |z| /∈ E, we have∣∣f (k)(z)
f (j)(z)

∣∣ ≤ ( 1
1− |z|

)(k−j)(σ+2+ε)

.

Lemma 2.2. Let A(z) be an analytic function on a point z0 ∈ C. Set g(z) =
A(z)e

a
(z0−z)µ , (µ > 0 is a real constant), a = α + iβ 6= 0, z0 − z = Reiϕ, δa(ϕ) =

α cos(µϕ)+β sin(µϕ), and H = {ϕ ∈ [0, 2π) : δa(ϕ) = 0}, (obviously, H is of linear
measure zero). Then for any given ε > 0 and for any ϕ ∈ [0, 2π)\H, there exists
R0 > 0 such that for 0 < R < R0, we have:

(i) if δa(ϕ) > 0, then

exp{(1− ε)δa(ϕ)
1

Rµ
} ≤ |g(z)| ≤ exp{(1 + ε)δa(ϕ)

1
Rµ

}, (2.1)

(ii) if δa(ϕ) < 0, then

exp{(1 + ε)δa(ϕ)
1

Rµ
} ≤ |g(z)| ≤ exp{(1− ε)δa(ϕ)

1
Rµ

}. (2.2)

Proof. We have ∣∣e a
(z0−z)µ

∣∣ = exp{δa(ϕ)
1

Rµ
}. (2.3)

If z0 is a zero of order m of A(z), then there exist c1 > 0, c2 > 0 such that

c1R
m ≤ |A(z)| ≤ c2R

m, for z near enough z0. (2.4)

Using (2.3) and (2.4) , we obtain

c1R
m exp{δa(ϕ)

1
Rµ

} ≤ |g(z)| ≤ c2R
m exp{δa(ϕ)

1
Rµ

}, (2.5)

for z near enough z0.
Now, if z0 is not a zero of A(z), then there exist c′1 > 0, c′2 > 0 such that

c′1 ≤ |A(z)| ≤ c′2, for z near enough z0,

and so

c′1 exp{δa(ϕ)
1

Rµ
} ≤ |g(z)| ≤ c′2 exp{δa(ϕ)

1
Rµ

}, (2.6)

for z near enough z0. From (2.5) and (2.6), we can easily obtain (2.1) and (2.2). �

Remark 2.3. In general, we can write δa(ϕ) = c cos(µϕ + ϕ0), where c > 0,
ϕ0 ∈ [0, 2π). By this formula, it is easy to prove that if µ > 1, δa(ϕ) changes its
sign on each interval (ϕ1, ϕ2) of linear measure equal to π.

3. Proof of theorems

Proof of Theorem 1.6. Suppose that f 6≡ 0 is a solution of (1.4) of finite order
σ(f) = σ < ∞. Since µ > 1, By Remark 2.3, there exist (ϕ1, ϕ2) ⊂ [0, 2π) such
that for z ∈ D and arg(z0 − z) = ϕ ∈ (ϕ1, ϕ2) we have δb(ϕ) > 0.

From (1.4), we obtain∣∣B(z)e
b

(z0−z)µ
∣∣ ≤ |f

′′

f
|+ |A(z)||f

′

f
|. (3.1)
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From Lemma 2.1, for a given ε > 0 there exists a set E ⊂ [0, 1) which satisfies∫
E

1
1−r dr < ∞, such that for all z ∈ D satisfying |z| /∈ E, we have∣∣f (k)(z)

f(z)

∣∣ ≤ ( 1
1− |z|

)k(σ+2+ε)

, (k = 1, 2). (3.2)

From Lemma 2.2, for any given 0 < ε < 1 and for for z ∈ D and arg(z0 − z) = ϕ ∈
(ϕ1, ϕ2) with |z0 − z| = R, there exists R0 > 0 such that for 0 < R < R0, we have

exp{(1− ε)δb(ϕ)
1

Rµ
} ≤ |B(z)e

b
(z0−z)µ |. (3.3)

Since A(z) is analytic on z0, for z near enough z0, we have

|A(z)| ≤ M, M > 0. (3.4)

Using (3.2), (3.3) and (3.4) in (3.1), we obtain

exp{(1− ε)δb(ϕ)
1

Rµ
} ≤ (

1
1− |z|

)2(σ+2+ε) + M(
1

1− |z|
)(σ+2+ε), (3.5)

where z ∈ D, |z| /∈ E, arg(z0−z) = ϕ ∈ (ϕ1, ϕ2) with |z0−z| = R and 0 < R < R0.
By the metric relations in the triangle (oz0z), we have |z|2 = 1 + R2 − 2R cos ϕ∗

and then
1− |z| = R(

2 cos ϕ∗ −R

1 + |z|
). (3.6)

For z near enough z0 and by considering that ϕ is fixed, there exists certain ε0 > 0
such that

2 cos ϕ∗ −R

1 + |z|
> ε0; (3.7)

we signal here that 0 ≤ ϕ∗ < π
2 . By combining (3.6) and (3.7), we obtain

1
1− |z|

<
1

ε0R
. (3.8)

Now by (3.5) and (3.8), we obtain

exp{(1− ε)δb(ϕ)
1

Rµ
} ≤ M ′(

1
ε0R

)2(σ+2+ε), M ′ > 1,

which gives a contradiction as R → 0. �

Proof of Theorem 1.8. Suppose that f 6≡ 0 is a solution of (1.5) of finite order
σ(f) = σ < ∞. Since arg a 6= arg b and µ > 1, then there exist (ϕ1, ϕ2) ⊂ [0, 2π)
such that for z ∈ D and arg(z0−z) = ϕ ∈ (ϕ1, ϕ2) we have δb(ϕ) > 0 and δa(ϕ) < 0.

From (1.5), we obtain∣∣B(z)e
b

(z0−z)µ
∣∣ ≤ |f

′′

f
|+ |A(z)||A(z)e

a
(z0−z)µ ||f

′

f
|. (3.9)

From Lemma 2.1, for a given ε > 0 there exists a set E ⊂ [0, 1) which satisfies∫
E

1
1−r dr < ∞, such that for all z ∈ D satisfying |z| /∈ E, we have∣∣f (k)(z)

f(z)

∣∣ ≤ ( 1
1− |z|

)k(σ+2+ε)

, (k = 1, 2). (3.10)

From Lemma 2.2, for any given 0 < ε < 1 and for for z ∈ D and arg(z0 − z) = ϕ ∈
(ϕ1, ϕ2) with |z0 − z| = R, there exists R0 > 0 such that for 0 < R < R0, we have

exp{(1− ε)δb(ϕ)
1

Rµ
} ≤

∣∣B(z)e
b

(z0−z)µ
∣∣, (3.11)
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and ∣∣A(z)e
a

(z0−z)µ
∣∣ ≤ exp{(1− ε)δa(ϕ)

1
Rµ

}. (3.12)

Using (3.9) -(3.12) and (3.8), we obtain

exp{(1− ε)δb(ϕ)
1

Rµ
} ≤ (

1
ε0R

)2(σ+2+ε) + (
1

ε0R
)(σ+2+ε) exp{(1− ε)δa(ϕ)

1
Rµ

},

where z ∈ D, |z| /∈ E, arg(z0−z) = ϕ ∈ (ϕ1, ϕ2) with |z0−z| = R and 0 < R < R0.
A contradiction follows as R → 0. �

Proof of Theorem 1.9. Suppose that f 6≡ 0 is a solution of (1.6) of finite order
σ(f) = σ < ∞. Since µ > 1, then there exist (ϕ1, ϕ2) ⊂ [0, 2π) such that for z ∈ D
and arg(z0 − z) = ϕ ∈ (ϕ1, ϕ2) we have δa(ϕ) > 0.

From (1.6), we obtain∣∣B(z)e
b

(z0−z)µ
∣∣ ≤ |f

′′

f
|+

∣∣A(z)||A(z)e
a

(z0−z)µ
∣∣|f ′

f
|. (3.13)

From Lemma 2.1, for a given ε > 0 there exists a set E ⊂ [0, 1) which satisfies∫
E

1
1−r dr < ∞, such that for all z ∈ D satisfying |z| /∈ E, we have

|f
(k)(z)
f(z)

| ≤
( 1

1− |z|

)k(σ+2+ε)

, (k = 1, 2). (3.14)

From Lemma 2.2, for any ε > 0 and for for z ∈ D and arg(z0−z) = ϕ ∈ (ϕ1, ϕ2)
with |z0 − z| = R, there exists R0 > 0 such that for 0 < R < R0, we have

exp{(1− ε)δb(ϕ)
1

Rµ
} ≤

∣∣B(z)e
b

(z0−z)µ
∣∣, (3.15)

and ∣∣A(z)e
a

(z0−z)µ
∣∣ ≤ exp{(1 + ε)δa(ϕ)

1
Rµ

}. (3.16)

By using (3.14) − (3.16) in (3.13) and taking into account that δa(ϕ) = cδb(ϕ)
(0 < c < 1), we obtain

exp{(1− ε)δb(ϕ)
1

Rµ
} ≤

( 1
ε0R

)2(σ+2+ε) +
( 1
ε0R

)(σ+2+ε) exp{(1 + ε)cδb(ϕ)
1

Rµ
}.

By taking 0 < ε < 1−c
1+c , we obtain a contradiction to R → 0. �

Proof of Theorem 1.11. Let

Aj1(z) = Bj1(z)e
bj1

(z0−z)µ

such that Bj1(z) is analytic on z0 and arg bj1 6= arg b;

Ajm
(z) = Bjm

(z)e
bjm

(z0−z)µ (m = 2, . . . , s)

such that Bjm(z) are analytic on z0 and bjm = cjmb (0 < cjm < 1), and the
remaining coefficients Ajm(z) are analytic on z0 (m = s + 1, . . . , k − 1). Suppose
that f 6≡ 0 is a solution of (1.7) of finite order σ(f) = σ < ∞. Since arg bj1 6= arg b
then there exist (ϕ1, ϕ2) ⊂ [0, 2π) such that for z ∈ D and arg(z0−z) = ϕ ∈ (ϕ1, ϕ2)
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we have δb(ϕ) > 0 and δbj1
(ϕ) < 0. Set c = max{cjm : m = 2, . . . , s}. We have

δbjm
(ϕ) = cjmδb(ϕ) ≤ cδb(ϕ). From (1.7), we can write

∣∣B(z)e
b

(z0−z)µ
∣∣ ≤ |f

(k)

f
|+

k−1∑
m=s+1

|Ajm
(z)||f

(jm)

f
|

+
s∑

m=2

|Ajm(z)|
∣∣f (jm)

f

∣∣ + |Aj1(z)|
∣∣f (j1)

f

∣∣. (3.17)

Using the same reasoning as above, from (3.17), we obtain

exp{(1− ε)δb(ϕ)
1

Rµ
}

≤
( 1
ε0R

)k(σ+2+ε)
(
M + (s− 1) exp{(1 + ε)cδb(ϕ)

1
Rµ

}+ exp{(1− ε)δbj1
(ϕ)

1
Rµ

}
)
.

By taking 0 < ε < 1−c
1+c , we obtain a contradiction to R → 0. �

Remark 3.1. Concerning the case when 0 < µ ≤ 1, our method is not valid in
general. For example, for the differential equation

f ′′ + A(z)f ′ + B(z)e
−1

(1−z) f = 0,

where A(z) and B(z) are analytic on z0 = 1. However, we cannot apply our method
because for all z ∈ D we have δ−1(ϕ) < 0, where ϕ = arg(1− z). Furthermore, for
the differential equation

f ′′ + A(z)f ′ + B(z)e
1

(1−z) f = 0,

our method is valid. So we can deduce that every solution f 6≡ 0 of this differential
equation is of infinite order. In general, our method is valid for 0 < µ ≤ 1 except
the case when we have δb(ϕ) < 0 for arg z0 − π

2 < ϕ < arg z0 + π
2 .
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