Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 178, pp. 1–12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

SUBHARMONIC SOLUTIONS FOR NONAUTONOMOUS SECOND-ORDER HAMILTONIAN SYSTEMS

MOHSEN TIMOUMI

ABSTRACT. In this article, we prove the existence of subharmonic solutions for the non-autonomous second-order Hamiltonian system $\ddot{u}(t) + V'(t, u(t)) = 0$. Also we study the minimality of their periods, when the nonlinearity V'(t, x)grows faster than $|x|^{\alpha}$, $\alpha \in [0, 1[$ at infinity. The proof is based on the Least Action Principle and the Saddle Point Theorem.

1. INTRODUCTION

Consider the non-autonomous second-order Hamiltonian system

$$\ddot{u}(t) + V'(t, u(t)) = 0, \qquad (1.1)$$

)

where $V : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$, $(t, x) \to V(t, x)$ is a continuous function, *T*-periodic (T > 0) in the first variable and differentiable with respect to the second variable such that the gradient $V'(t, x) = \frac{\partial V}{\partial x}(t, x)$ is continuous on $\mathbb{R} \times \mathbb{R}^N$. In this work, we are interested in the existence of subharmonic solutions of (1.1). Assuming that T > 0 is the minimal period of the time dependence of V(t, x), by subharmonic solution of (1.1) we mean a kT-periodic solution, where k is any integer; when moreover the solution is not *T*-periodic we call it a true subharmonic.

Using variational methods, there have been various types of results concerning the existence of subharmonic solutions to system (1.1). Many solvability conditions are given, such as a convexity condition [4, 12], a super-quadratic condition [7, 11], a subquadratic condition [4, 6], a periodic condition [8], a bounded nonlinearity condition [1,2,5], and a sublinear condition [10]. In particular, under the assumptions that there exists a constant M > 0 such that

$$|V'(x)| \le M, \quad \forall x \in \mathbb{R}^N, \tag{1.2}$$

$$\lim_{|x| \to \infty} (V'(x) - \bar{e})x = +\infty, \tag{1.3}$$

where $e : \mathbb{R} \to \mathbb{R}^N$ is a continuous periodic function having minimal period T > 0, and \bar{e} is the mean value of e, A. Fonda and Lazer in [2] showed that the system

$$\ddot{u}(t) + V'(u(t)) = e(t)$$
(1.4)

²⁰⁰⁰ Mathematics Subject Classification. 34C25.

Key words and phrases. Hamiltonian systems; subharmonics; minimal periods;

saddle point theorem.

^{©2012} Texas State University - San Marcos.

Submitted March 9, 2012. Published October 12, 2012.

admitted periodic solutions with minimal period kT, for any sufficiently large prime number k. After that, Tang and Wu in [10] generalized these results without studying the minimality of periods. Precisely, it was assumed that the nonlinearity satisfied the following restrictions:

$$|V'(t,x)| \le f(t)|x|^{\alpha} + g(t), \ \forall x \in \mathbb{R}^N, \quad \text{a. e. } t \in [0,T],$$
 (1.5)

$$\frac{1}{|x|^{2\alpha}} \int_0^T V(t,x)dt \to +\infty \quad \text{as } |x| \to +\infty, \tag{1.6}$$

here $f, g \in L^1(0, T; \mathbb{R}^+)$ are T-periodic and $\alpha \in [0, 1[$.

In [2, 10], the nonlinearity is required to grow at infinity at most like $|x|^{\alpha}$ with $\alpha \in [0, 1[$. In this article, we will firstly, establish the existence of subharmonic solutions for the system (1.1) when the nonlinearity V'(t, x) is required to have a sublinear growth at infinity faster than $|x|^{\alpha}$, $\alpha \in [0, 1[$. Our first main result is as follows.

Theorem 1.1. Let $\omega \in C([0, \infty[, \mathbb{R}^+)$ be a nonincreasing positive function with the properties:

$$\liminf_{s \to \infty} \frac{\omega(s)}{\omega(s^{1/2})} > 0, \tag{1.7}$$

$$\omega(s) \to 0, \quad \omega(s)s \to \infty \quad as \ s \to \infty.$$
 (1.8)

Assume that V satisfies: There exist two T-periodic functions $f \in L^2(0,T;\mathbb{R}^+)$ and $g \in L^1(0,T;\mathbb{R}^+)$ such that

$$|V'(t,x)| \le f(t)\omega(|x|)|x| + g(t), \quad \forall x \in \mathbb{R}^N, a.e. \ t \in [0,T];$$
(1.9)

$$\frac{1}{[\omega(|x|)|x|]^2} \int_0^T V(t,x)dt \to +\infty \quad as \ |x| \to \infty; \tag{1.10}$$

There is a subset C of [0,T] with meas(C) > 0 and $h \in L^1(0,T;\mathbb{R})$ such that

$$\lim_{|x| \to \infty} V(t, x) = +\infty, \quad a.e. \ t \in C,$$
(1.11)

$$V(t,x) \ge h(t) \quad \text{for all } x \in \mathbb{R}^N, \text{ a.e. } t \in [0,T].$$

$$(1.12)$$

Then for all positive integer k, the system (1.1) has at least one kT-periodic solution u_k satisfying

$$\lim_{k \to \infty} \|u_k\|_{\infty} = +\infty,$$

where $||u||_{\infty} = \sup_{t \in \mathbb{R}} |u(t)|.$

Remark 1.2. Let

$$V(t,x) = \gamma(t) \frac{|x|^2}{\ln(2+|x|^2)}, \quad \forall x \in \mathbb{R}^N, \ \forall t \in \mathbb{R},$$

where

$$\gamma(t) = \begin{cases} \sin(2\pi t/T), & t \in [0, T/2] \\ 0, & t \in [T/2, T]. \end{cases}$$

Taking $\omega(s) = \frac{1}{\ln(2+s^2)}$, $C = [0, \frac{T}{2}]$. By a simple computation, we prove that V(t, x) satisfies (1.9)–(V3) and does not satisfy the conditions (1.2), (1.3) nor (1.5), (1.6).

Corollary 1.3. Assume that (1.9) holds and there exists a subset C of [0,T] with meas(C) > 0 and $h \in L^1(0,T;\mathbb{R})$ such that

$$\lim_{|x|\to\infty} \frac{V(t,x)}{[\omega(|x|)|x|]^2} = +\infty, \quad a.e. \ t \in C,$$
(1.13)

$$V(t,x) \ge h(t), \quad \text{for all} x \in \mathbb{R}^N, \text{ a.e. } t \in [0,T].$$

$$(1.14)$$

Then the conclusion of Theorem 1.1 holds.

There are a few results studying the minimality of periods of the subharmonics, see [12] for the case of convexity, and [2] for the case of bounded gradient. We study this problem and obtain the following result.

Theorem 1.4. Assume that V satisfies (1.9) and

$$\frac{V'(t,x)x}{[\omega(|x|)|x|]^2} \to +\infty \quad as \ |x| \to \infty, \ uniformly \ for \ t \in [0,T].$$
(1.15)

Then, for all integer $k \ge 1$, Equation (1.1) possesses a kT-periodic solution u_k such that $\lim_{k\to\infty} ||u_k||_{\infty} = +\infty$. If moreover V satisfies the assumption:

If u(t) is a periodic function with minimal period rT with rrational, and V'(t, u(t)) is a periodic function with minimal (1.16) period rT, then r is necessarily an integer.

Then, for any sufficiently large prime number k, kT is the minimal period of u_k .

As an example of a function V we have

$$V(t,x) = (2 + \cos(\frac{2\pi}{T}t))\frac{|x|^2}{\ln(2 + |x|^2)}, \quad \omega(s) = \frac{1}{\ln(2 + s^2)}.$$

Then V(t, x) satisfies (1.9) (1.15) and (1.16), Our main tools, for proving our results, are the Least Action Principle and the Saddle Point Theorem.

2. Proof of theorems

Let us fix a positive integer k and consider the continuously differentiable function

$$\varphi_k(u) = \int_0^{kT} \left[\frac{1}{2} |\dot{u}(t)|^2 - V(t, u(t))\right] dt$$

defined on the space H_{kT}^1 of kT-periodic absolutely continuous vector functions whose derivatives have square-integrable norm. This set is a Hilbert space with the norm

$$||u||_{k} = \left[\int_{0}^{kT} |u(t)|^{2} dt + \int_{0}^{kT} |\dot{u}(t)|^{2} dt\right]^{1/2}, \quad u \in H_{kT}^{1}$$

and the associated inner product

$$\langle u, v \rangle_k = \int_0^{kT} [u(t)v(t) + \dot{u}(t)\dot{v}(t)]dt, \quad u, v \in H^1_{kT}.$$

For $u \in H_{kT}^1$, let $\bar{u} = \frac{1}{kT} \int_0^{kT} u(t) dt$ and $\tilde{u}(t) = u(t) - \bar{u}$, then we have Sobolev's inequality,

$$\|\tilde{u}\|_{\infty}^{2} \leq \frac{kT}{12} \int_{0}^{kT} |\dot{u}(t)|^{2} dt, \qquad (2.1)$$

and Wirtinger's inequality,

$$\int_{0}^{kT} |\tilde{u}(t)|^{2} dt \leq \frac{k^{2} T^{2}}{4\pi^{2}} \int_{0}^{kT} |\dot{u}(t)|^{2} dt \,.$$
(2.2)

It is easy to see that the norm $||u||_k$ is equivalently to the norm

$$||u|| = \left[\int_0^{kT} |\dot{u}(t)|^2 dt + |\bar{u}|^2\right]^{1/2}$$

In the following, we will use this last norm. It is well known that φ_k is continuously differentiable with

$$\varphi_k'(u)v = \int_0^{kT} [\dot{u}(t)\dot{v}(t) - V'(t, u(t))v(t)]dt, \quad \forall u, v \in H^1_{kT}$$

and its critical points correspond to the kT-periodic solutions of the system (1.1).

Proof of Theorem 1.1. Here, we will show that, for every positive integer k, one can find a kT-periodic solution u_k of (1.1) in such a way that the sequence (u_k) satisfies

$$\lim_{k \to \infty} \frac{1}{k} \varphi_k(u_k) = -\infty.$$
(2.3)

This will be done by using some estimates on the critical levels of φ_k given by the Saddle Point Theorem. The following lemma will be needed for the study of the geometry of the functionals φ_k .

Lemma 2.1. Assume that (1.9), (1.10) hold. Then there exist a nonincreasing positive function $\theta \in C(]0, \infty[, \mathbb{R}^+)$ and a positive constant c_0 satisfying the following conditions:

$$\begin{array}{l} \text{(i)} \quad \theta(s) \to 0, \ \theta(s)s \to +\infty \ as \ s \to \infty, \\ \text{(ii)} \quad \|V'(t,u)\|_{L^1} \leq c_0[\theta(\|u\|)\|u\| + 1], \ for \ all \ u \in H^1_{kT}, \\ \text{(iii)} \quad \\ \frac{1}{[\theta(|x|)|x|]^2} \int_0^{kT} V(t,x)dt \to +\infty \quad as \ |x| \to +\infty \end{array}$$

Proof. For $u \in E$, let $A = \{t \in [0, kT]/|u(t)| \ge ||u||^{1/2}\}$. By (1.9), we have

$$\begin{split} \|V'(t,u)\|_{L^{1}} &\leq \int_{0}^{T} \left[f(t)\omega(|u(t)|)|u(t)| + g(t)\right] dt \\ &\leq \|f\|_{L^{2}} \left(\int_{0}^{T} [\omega(|u(t)|)|u(t)|]^{2} dt\right)^{1/2} + \|g\|_{L^{1}} \\ &\leq \|f\|_{L^{2}} \left(\int_{A} [\omega^{2}(\|u\|^{1/2})|u(t)|^{2} dt + \int_{[0,kT]-A} \sup_{s \ge 0} \omega^{2}(s)\|u\| dt\right)^{1/2} + \|g\|_{L^{1}} \\ &\leq \|f\|_{L^{2}} \left[\omega^{2}(\|u\|^{1/2})\|u\|_{L^{2}}^{2} + kT \sup_{s \ge 0} \omega^{2}(s)\|u\|\right]^{1/2} + \|g\|_{L^{1}}. \end{split}$$

So there exists a positive constant c_0 such that

$$|V'(t,u)||_{L^1} \le c_0 \left(\left[\omega^2 (||u||^{1/2}) ||u||^2 + ||u|| \right]^{1/2} + 1 \right).$$

Take

$$\theta(s) = \left[\omega^2(s^{1/2}) + \frac{1}{s}\right]^{1/2}, \ s > 0,$$
(2.4)

then θ satisfies (ii) and it is easy to see that θ satisfies (i).

Now, by (a), we have $\rho = \liminf_{s \to \infty} \frac{\omega^2(s)}{\omega^2(s^{1/2})} > 0$. By (1.10), for any $\gamma > 0$, there exists a positive constant c_1 such that

$$\int_{0}^{kT} V(t,x)dt \ge \gamma [\omega(|x|)|x|]^2 - c_1.$$
(2.5)

Combining (2.4) and (2.5) yields

$$\frac{\int_{0}^{kT} V(t,x)dt}{[\theta(|x|)|x|]^2} \ge \frac{\gamma[\omega(|x|)|x|]^2 - c_1}{\omega^2 |x|^{1/2} |x|^2 + |x|}.$$
(2.6)

By the definition of ρ , there exists R > 0 such that for all $s \ge R$

$$\frac{\omega^2(s)s^2}{\omega^2(s^{1/2})s^2 + s} \ge \frac{\rho}{2},\tag{2.7}$$

and

$$\frac{c_1}{\omega^2(s)s^2 + s} \le \frac{\gamma\rho}{4},\tag{2.8}$$

Therefore, by (2.6)-(2.8), we have

$$\frac{\int_0^{kT} V(t,x) dt}{[\theta(|x|)|x|]^2} \geq \frac{\gamma \rho}{4}, \quad \forall |x| \geq R.$$

Since γ is arbitrary chosen, condition (iii) holds. The proof of Lemma 2.1 is complete.

Now, we need to show that, for every positive integer k, one can find a critical point u_k of the functional φ_k in such a way that (2.3) holds. To this aim, we will apply the Saddle Point Theorem to each of the φ_k ' s. Let us fix k and write $H_{kT}^1 = \mathbb{R}^N \oplus \tilde{H}_{kT}^1$ where \mathbb{R}^N is identified with the set of constant functions and \tilde{H}_{kT}^1 consists of functions u in H_{kT}^1 such that $\int_0^{kT} u(t)dt = 0$. First, we prove the Palais-Smale condition.

Lemma 2.2. Assume that (1.9) and (1.10) hold. Then φ_k satisfies the Palais-Smale condition.

Proof. Let (u_n) be a sequence in H^1_{kT} such that $(\varphi_k(u_n))$ is bounded and $\varphi'_k(u_n) \to 0$ as $n \to \infty$. In particular, for a positive constant c_2 we will have

$$\varphi_k'(u_n)\tilde{u}_n = \int_0^{kT} [|\dot{u}_n(t)|^2 - V'(t, u_n(t))\tilde{u}_n(t)]dt \le c_2 \|\tilde{u}_n\|.$$
(2.9)

Since θ is non increasing and $||u|| \ge max(|\bar{u}|, ||\tilde{u}||)$, we obtain

$$\theta(\|u\|) \le \min(\theta(|\bar{u}|), \theta(\|\tilde{u}\|)). \tag{2.10}$$

Combining Sobolev's inequality, Lemma 2.1 (ii) and (2.10), we can find a positive constant c_3 such that

$$\int_{0}^{kT} V'(t, u_{n}) \tilde{u}_{n} dt \leq c_{0} \|\tilde{u}_{n}\|_{\infty} [\theta(\|u_{n}\|)\|u_{n}\| + 1] \\
\leq c_{0} \|\tilde{u}_{n}\|_{\infty} [\theta(\|\tilde{u}_{n}\|)\|\tilde{u}_{n}\| + \theta(|\bar{u}_{n}|)|\bar{u}_{n}| + 1] \\
\leq c_{3} \|\tilde{u}_{n}\| [\theta(\|\tilde{u}_{n}\|)\|\tilde{u}_{n}\| + \theta(|\bar{u}_{n}|)|\bar{u}_{n}| + 1]$$
(2.11)

for all $n \in \mathbb{N}$.

From Wirtinger's inequality, there exists a constant $c_4 > 0$ such that

$$\|\dot{u}_n\|_{L^2} \le \|\tilde{u}_n\| \le c_4^{-1/2} \|\dot{u}_n\|_{L^2}.$$
(2.12)

Therefore, by (2.9) and (2.11), we obtain

$$c_{2}\|\tilde{u}_{n}\| \geq \varphi_{k}'(u_{n}).\tilde{u}_{n} = \int_{0}^{kT} |\dot{u}_{n}|^{2} dt - \int_{0}^{kT} V'(t,u_{n})\tilde{u}_{n} dt$$

$$\geq c_{4}\|\tilde{u}_{n}\|^{2} - c_{3}\|\tilde{u}_{n}\|[\theta(\|\tilde{u}_{n}\|)\|\tilde{u}_{n}\| + \theta(|\bar{u}_{n}|)|\bar{u}_{n}| + 1].$$
(2.13)

Assume that $(\|\tilde{u}_n\|)$ is unbounded, by going to a subsequence if necessary, we can assume that $\|\tilde{u}_n\| \to \infty$ as $n \to \infty$. Since $\theta(s) \to 0$ as $s \to \infty$, we deduce from (2.13) that there exists a positive constant c_5 such that

$$\|\tilde{u}_n\| \le c_5 \theta(|\bar{u}_n|) |\bar{u}_n| = c_5 \left[\omega^2 (|\bar{u}_n|^{1/2}) |\bar{u}_n|^2 + |\bar{u}_n| \right]^{1/2}$$
(2.14)

for *n* large enough. Since ω is bounded, it follows that $|\bar{u}_n| \to \infty$ as $n \to \infty$.

Now, by the Mean Value Theorem and Lemma 2.1 (ii), we obtain

$$\begin{aligned} |\int_{0}^{kT} (V(t, u_{n}) - V(t, \bar{u}_{n}))dt| &= |\int_{0}^{kT} \int_{0}^{1} V'(t, \bar{u}_{n}) + s\tilde{u}_{n})\tilde{u}_{n} \, ds \, dt| \\ &\leq \|\tilde{u}_{n}\|_{\infty} \int_{0}^{1} \int_{0}^{kT} |V'(t, \bar{u}_{n} + s\tilde{u}_{n})| \, ds \, dt \\ &\leq c_{0} \|\tilde{u}_{n}\|_{\infty} \int_{0}^{1} \left[\theta(\|\bar{u}_{n} + s\tilde{u}_{n}\|)\|\bar{u}_{n} + s\tilde{u}_{n}\| + 1\right] ds. \end{aligned}$$

$$(2.15)$$

Since $\|\bar{u}_n + s\tilde{u}_n\| \ge \|\bar{u}_n\|$ for all $s \in [0, 1]$, we deduce from (2.1), (2.14) and (2.15) that there exists a positive constant c_6 such that

$$\left| \int_{0}^{kT} (V(t, u_{n}) - V(t, \bar{u}_{n})) dt \right|
\leq c_{6} \Big([\theta(|\bar{u}_{n}|)|\bar{u}_{n}|]^{2} + \theta(|\bar{u}_{n}|)[\theta(|\bar{u}_{n}|)|\bar{u}_{n}|]^{2} + \theta(|\bar{u}_{n}|)|\bar{u}_{n}| \Big).$$
(2.16)

Thus, by (2.14) and (2.16), we obtain for a positive constant c_7 ,

$$\begin{split} \varphi_k(u_n) \\ &= \frac{1}{2} \|\dot{u}_n\|_{L^2}^2 - \int_0^{kT} (V(t, u_n) - V(t, \bar{u}_n)) dt - \int_0^{kT} V(t, \bar{u}_n) dt \\ &\leq c_7 \Big([\theta(|\bar{u}_n|)|\bar{u}_n|]^2 + \theta(|\bar{u}_n|)[\theta(|\bar{u}_n|)|\bar{u}_n|]^2 + \theta(|\bar{u}_n|)|\bar{u}_n| \Big) - \int_0^{kT} V(t, \bar{u}_n) dt \\ &= c_7 [\theta(|\bar{u}_n|)|\bar{u}_n|]^2 \Big[1 + \theta(|\bar{u}_n|) + \frac{1}{\theta(|\bar{u}_n|)|\bar{u}_n|} - \frac{1}{c_7 [\theta(|\bar{u}_n|)|\bar{u}_n|]^2} \int_0^{kT} V(t, \bar{u}_n) dt \Big] \end{split}$$

so $\varphi_k(u_n) \to -\infty$ as $n \to \infty$. This contradicts the boundedness of $(\varphi_k(u_n))$. Therefore $(\|\tilde{u}_n\|)$ is bounded.

It remains to prove that $(|\bar{u}_n|)$ is bounded. Assume the contrary. By taking a subsequence, if necessary, we can assume that $\|\bar{u}_n\| \to \infty$ as $n \to \infty$. By the preceding calculus, we obtain for some positive constants c_8, c_9 such that

$$\varphi_k(u_n)$$

$$\leq c_8 \Big[\|\tilde{u}_n\|^2 + \|\tilde{u}_n\|\theta(|\bar{u}_n|)|\bar{u}_n| + \theta(|\bar{u}_n|)\|\tilde{u}_n\| + 1 \Big] - \int_0^{kT} V(t,\bar{u}_n)dt \\ \leq c_9 \Big[1 + \theta(|\bar{u}_n|)|\bar{u}_n| + \theta(|\bar{u}_n|) \Big] - \int_0^{kT} V(t,\bar{u}_n)dt \\ \leq c_9 [\theta(|\bar{u}_n|)|\bar{u}_n|]^2 \Big[\frac{1 + \theta(|\bar{u}_n|)}{[\theta(|\bar{u}_n|)|\bar{u}_n|]^2} + \frac{1}{\theta(|\bar{u}_n|)|\bar{u}_n|} - \frac{1}{c_9 [\theta(|\bar{u}_n|)|\bar{u}_n|]^2} \int_0^{kT} V(t,\bar{u}_n)dt \Big]$$

so $\varphi_k(u_n) \to -\infty$ as $n \to \infty$, which also contradicts the boundedness of $(\varphi_k(u_n))$. So $(|\bar{u}_n|)$ is bounded and then $(||u_n||)$ is also bounded. By a standard argument, we conclude that (u_n) possesses a convergent subsequence and the proof is complete.

Now, it is easy to show that (1.10) yields

$$\varphi_k(u) = -\int_0^{kT} V(t, u)dt \to -\infty \quad \text{as } |u| \to \infty \text{ in } \mathbb{R}^N.$$
 (2.17)

On the other hand, by the Mean Value Theorem, (1.9) and Hölder's inequality, for all $u \in \tilde{H}^1_{kT}$ and $a \in \mathbb{R}^N$ |a| > 0, we have

$$\begin{split} &|\int_{0}^{kT} (V(t,u) - V(t,a))dt| \\ &= |\int_{0}^{kT} \int_{0}^{1} V'(t,a+s(u-a))(u-a) \, ds \, dt| \\ &\leq \|u-a\|_{\infty} \int_{0}^{1} \int_{0}^{kT} |V'(t,a+s(u-a))| \, dt \, ds \\ &\leq \|u-a\|_{\infty} \int_{0}^{1} \int_{0}^{kT} \left[f(t)\omega(|a+s(u-a)|)|a+s(u-a)| + g(t) \right] dt \\ &\leq \|u-a\|_{\infty} \Big(\|f\|_{L^{2}} \int_{0}^{1} \left[\int_{0}^{kT} (\omega(|a+s(u-a)|)|a+s(u-a)|)^{2} dt \right]^{\frac{1}{2}} ds + \|g\|_{L^{1}} \Big). \end{split}$$

For $s \in [0, 1]$, take

$$A(s) = \{t \in [0, kT] / |a + s(u(t) - a)| \ge |a|\}.$$

By a classical calculation as in the proof of Lemma 2.1, we obtain some positive constants c_{10} and c(a) such that

$$\left|\int_{0}^{kT} (V(t,u) - V(t,a))dt\right| \le c_{10}\omega(a) ||u||^{2} + c(a)(||u|| + 1).$$

Since $\omega(|a|) \to 0$ as $|a| \to \infty$, there exists |a| > 0 such that $c_{10}\omega(|a|) \leq \frac{1}{4}c_4^2$ and then we obtain

$$\left|\int_{0}^{kT} (V(t,u) - V(t,a))dt\right| \le \frac{1}{4}c_{4}^{2} \|u\|^{2} + c(a)(\|u\| + 1)$$

which implies that

$$\varphi_k(u) \ge \frac{1}{4}c_4^2 \|u\|^2 - c(a)(\|u\| + 1) - \int_0^{kT} V(t, a)dt \to \infty \quad \text{as } \|u\| \to \infty.$$
 (2.18)

We deduce from Lemma 2.2 and (2.17), (2.18) that all the Saddle Point Theorem's assumptions are satisfied. Therefore the functional φ_k possesses at least a critical point u_k satisfying

$$-\infty < \inf_{\tilde{H}_{kT}^1} \varphi_k \le \varphi_k(u_k) \le \sup_{\mathbb{R}^N + e_k} \varphi_k$$
(2.19)

where $e_k(t) = k \cos(\frac{\sigma t}{k}) x_0$ for $t \in \mathbb{R}$, $\sigma = \frac{2\pi}{T}$ and some $x_0 \in \mathbb{R}^N$ with $|x_0| = 1$. The first part of Theorem 1.1 is proved.

Next, we will prove that the sequence $(u_k)_{k\geq 1}$ obtained above satisfies (2.3). For this aim, the following two lemmas will be needed.

Lemma 2.3 ([9]). If (1.11) holds, then for every $\delta > 0$ there exists a measurable subset C_{δ} of C with meas $(C - C_{\delta}) < \delta$ such that

$$V(t,x) \to +\infty$$
 as $|x| \to \infty$, uniformly in $t \in C_{\delta}$.

Lemma 2.4. Suppose that V satisfies (1.11) - (1.12), then

$$\limsup_{k \to \infty} \sup_{x \in \mathbb{R}^N} \frac{1}{k} \varphi_k(x + e_k) = -\infty.$$
(2.20)

Proof. Let $x \in \mathbb{R}^N$, we have

$$\varphi_k(x+e_k) = \frac{1}{4}kT\sigma^2 - \int_0^{kT} V(t,x+e_k(t))dt.$$

By (1.11) and Lemma 2.3, for $\delta = \frac{1}{2} \operatorname{meas}(C)$ and all $\gamma > 0$, there exist a measurable subset $C_{\delta} \subset C$ with $\operatorname{meas}(C - C_{\delta}) < \delta$ and r > 0 such that

$$V(t,x) \ge \gamma, \quad \forall |x| \ge r \; \forall t \in C_{\delta}.$$
 (2.21)

Let

$$B_k = \{t \in [0, kT] : |x + e_k(t)| \le r\}.$$

Then we have

$$\operatorname{meas}(B_k) \le \frac{k\delta}{2}.\tag{2.22}$$

In fact, if meas $(B_k) > k\delta/2$, there exists $t_0 \in B_k$ such that

$$\frac{k\delta}{8} \le t_0 \le \frac{kT}{2} - \frac{k\delta}{8},\tag{2.23}$$

$$\frac{kT}{2} + \frac{k\delta}{8} \le t_0 \le kT - \frac{k\delta}{8},\tag{2.24}$$

and there exists $t_1 \in B_k$ such that

$$|t_1 - t_0| \ge \frac{k\delta}{8},\tag{2.25}$$

$$|t_1 - (kT - t_0)| \ge \frac{\kappa \delta}{8}.$$
(2.26)

It follows from (2.26) that

$$\frac{t_0 + t_1}{2k} - \frac{T}{2} \ge \frac{\delta}{16}.$$
(2.27)

By (2.23) and (2.24), one has

$$\frac{\delta}{16} \le \frac{t_0 + t_1}{2k} \le T - \frac{\delta}{16}.$$
(2.28)

Combining (2.27) and (2.28), yields

 $|\sin(\frac{t_0+t_1}{2k}\sigma)| \ge \sin(\frac{\sigma\delta}{16}). \tag{2.29}$

On the other hand, by (2.25) we have

$$|\cos(\frac{\sigma t_0}{k}) - \cos(\frac{\sigma t_1}{k})| = 2|\sin(\frac{t_0 + t_1}{2k}\sigma)||\sin(\frac{t_0 - t_1}{2k}\sigma)| \ge 2\sin^2(\frac{\sigma\delta}{16}),$$

and

$$|\cos(\frac{\sigma t_0}{2k}) - \cos(\frac{\sigma t_1}{2k})| = \frac{1}{k} |(x + e_k(t_1)) - (x + e_k(t_0))| \le \frac{2r}{k},$$

which is impossible for large k. Hence (2.22) holds.

Now, let $C_k = \bigcup_{j=0}^{k-1} (jT + C_{\delta})$. It follows from (2.22) that for all k,

$$\operatorname{meas}(C_k - B_k) \ge \frac{k\delta}{2}$$

By (2.21), we have

$$k^{-1}\varphi_{k}(x+e_{k}) = \frac{1}{4}T\sigma^{2} - k^{-1}\int_{0}^{kT}V(t,x+e_{k}(t))dt$$

$$\leq \frac{1}{4}T\sigma^{2} - k^{-1}\int_{[0,kT]-(C_{k}-B_{k})}h(t)dt - k^{-1}\gamma \operatorname{meas}(C_{k}-B_{k})$$

$$\leq \frac{1}{4}T\sigma^{2} - \int_{0}^{T}|h(t)|dt - \frac{\delta\gamma}{2}$$

for all large k, which implies

$$\limsup_{k \to \infty} \sup_{x \in \mathbb{R}^N} k^{-1} \varphi_k(x + e_k) \le \frac{1}{4} T \sigma^2 + \int_0^T |h(t)| dt - \frac{\delta \gamma}{2}.$$

By the arbitrariness of γ , we obtain

$$\limsup_{k \to \infty} \sup_{x \in \mathbb{R}^N} k^{-1} \varphi_k(x + e_k) = -\infty.$$

The proof of Lemma 2.4 is complete.

It remains to prove that the sequence $(||u_k||_{\infty})$ of solutions of (1.1) obtained above, is unbounded. Arguing by contradiction, assume that $(||u_k||_{\infty})$ is bounded, then there exists R > 0 such that $(||u_k||_{\infty}) \le R$ for all $k \ge 1$. We have

$$k^{-1}\varphi_k(u_k) \ge -k^{-1} \int_0^{kT} V(t, u_k) dt.$$
 (2.30)

Since V is T-periodic in t and continuous, then there exists a constant $\rho > 0$ such that

 $|V(t,x)| \le \rho, \quad \forall x \in \mathbb{R}^N, \ |x| \le R, \ \text{a.e.} \ t \in \mathbb{R}.$

Therefore,

$$k^{-1}\varphi_k(u_k) \ge -\rho T \tag{2.31}$$

which contradicts (2.19) with (2.20). The proof of Theorem 1.1 is complete.

Proof of Theorem 1.4. The following lemma will be needed.

Lemma 2.5. Let (1.9), (1.15) hold. Then for all $\rho > 0$, there exists a constant $c_{\rho} \geq 0$ such that for all $x \in \mathbb{R}^N$, |x| > 1 and for a.e. $t \in [0, T]$,

$$V(t,x) \ge V(t,0) + \frac{\rho}{2} [\omega(|x|)|x|]^2 (1 - \frac{1}{|x|^2}) - c_\rho ln(|x|) - \frac{1}{2} a \sup_{r \ge 0} \omega(r) - g(t).$$
(2.32)

Proof. For $x \in \mathbb{R}^N$, |x| > 1, we have

$$V(t,x) = V(t,0) + \int_0^1 V'(t,sx)x \, ds$$

= $V(t,0) + \int_0^{\frac{1}{|x|}} V'(t,sx)x \, ds + \int_{\frac{1}{|x|}}^1 V'(t,sx)x \, ds.$ (2.33)

By (1.9), we have

$$\begin{split} |\int_{0}^{\frac{1}{|x|}} V'(t,sx)x \, ds| &\leq |x| \int_{0}^{\frac{1}{|x|}} [f(t)\omega(|sx|)|sx| + g(t)] dt \\ &\leq |x| [f(t) \sup_{r \geq 0} \omega(r)|x| \int_{0}^{\frac{1}{|x|}} s \, ds + g(t) \frac{1}{|x|}] \\ &\leq \frac{1}{2} f(t) \sup_{r \geq 0} \omega(r) + g(t). \end{split}$$
(2.34)

Let $\rho > 0$, then by (1.15), there exists a positive constant c_{ρ} such that

$$V'(t,x)x \ge \rho[\omega(|x|)|x|]^2 - c_{\rho}.$$
(2.35)

Therefore,

$$\int_{\frac{1}{|x|}}^{1} V'(t,sx)x \, ds = \int_{\frac{1}{|x|}}^{1} V'(t,sx)sx \frac{ds}{s}$$

$$\geq \int_{\frac{1}{|x|}}^{1} (\rho[\omega(|sx|)|sx|]^2 - c_\rho) \frac{ds}{s}$$

$$\geq \frac{\rho}{2} [\omega(|x|)|x|]^2 (1 - \frac{1}{|x|^2}) - c_\rho b(t) ln(|x|).$$
(2.36)

Combining (2.33), (2.34) and (2.36), we obtain (2.32) and Lemma 2.5 is proved. \Box

Now, since $a_0 = \liminf_{s \to \infty} \frac{\omega(s)}{\omega(s^{\frac{1}{2}})} > 0$, for *s* large enough, we have $\frac{1}{\omega(s)} \leq \frac{1}{\omega(s)}$

$$\frac{1}{\omega(s)} \le \frac{1}{a_0 \omega(s^{1/2})} \tag{2.37}$$

which implies that for |x| large enough

$$\frac{\ln(|x|)}{[\omega(|x|)|x|]^2} \le \frac{\ln(|x|)}{|x|} \frac{1}{a_0^2 [\omega(|x|^{1/2})|x|^{1/2}]^2} \to 0 \quad \text{as } |x| \to \infty.$$
(2.38)

Combining (2.32), (2.38) we obtain (V_4) . By applying Corollary 1.3, we obtain a sequence (u_k) of kT-periodic solutions of (1.1) such that $\lim_{k\to\infty} ||u_k||_{\infty} = +\infty$.

It remains to analyst the minimal periods of the subharmonic solutions found with the previous results. For this, we will split the problem into two parts. Firstly, we claim that for a sufficiently large integer k, the subharmonic solution u_k is not

T-periodic. In fact, let S_T be the set of *T*-periodic solutions of (1.1), we will show that S_T is bounded in H_T^1 . Assume by contradiction that there exists a sequence (u_n) in S_T such that $||u_n||_1 \to \infty$ as $n \to \infty$. Let us write $u_n(t) = \bar{u}_n + \tilde{u}_n(t)$, where \bar{u}_n is the mean value of u_n . Multiplying both sides of the identity

$$\ddot{u}_n(t) + V'(t, u_n(t)) = 0 \tag{2.39}$$

by $\tilde{u}_n(t)$ and integrating, we obtain by (1.9) and Hölder's inequality

$$\int_{0}^{T} |\dot{u}_{n}|^{2} dt = -\int_{0}^{T} \ddot{u}_{n} \tilde{u}_{n} dt
= \int_{0}^{T} V'(t, u_{n}) \tilde{u}_{n} dt
\leq \|\tilde{u}_{n}\|_{\infty} \int_{0}^{T} \left[f(t) \omega(|u_{n}(t)|) |u_{n}(t)| + g(t) \right] dt
\leq \|\tilde{u}_{n}\|_{\infty} \left[\|f\|_{L^{2}} \left(\int_{0}^{T} [\omega(|u_{n}(t)|) |u_{n}(t)|]^{2} dt \right)^{1/2} + \|g\|_{L^{1}} \right].$$
(2.40)

By (2.1), (2.2) and (2.40), there exists a positive constant c_{11} such that

$$\|\tilde{u}_n\|_1 \le c_{11} \Big[\Big(\int_0^T [\omega(|u_n(t)|)|u_n(t)|]^2 dt \Big)^{1/2} + 1 \Big].$$
(2.41)

Let $\rho > 0$ and let c_{ρ} be a constant satisfying (2.35). Multiplying both sides of the identity (2.39) by $u_n(t)$ and integrating

$$\int_{0}^{T} |\dot{u}_{n}|^{2} dt = -\int_{0}^{T} \ddot{u}_{n} u_{n} dt$$

$$= \int_{0}^{T} V'(t, u_{n}) u_{n} dt$$

$$\geq \rho \int_{0}^{T} [\omega(|u_{n}(t)|)|u_{n}(t)|]^{2} dt - c_{\rho} T.$$
(2.42)

We deduce from (2.42) and Wirtinger inequality that there exists a positive constant c_{12} such that

$$\|\tilde{u}_n\|_1^2 \ge c_{12} \Big[\rho \int_0^T [\omega(|u_n(t)|)|u_n(t)|]^2 dt - c_\rho T\Big].$$
(2.43)

Combining (2.41) with (2.43), we can find a positive constant c_{13} such that

$$\rho \int_0^T [\omega(|u_n(t)|)|u_n(t)|]^2 dt - c_\rho T \le c_{13} \Big[\int_0^T [\omega(|u_n(t)|)|u_n(t)|]^2 dt + 1 \Big].$$
(2.44)

Since ρ is arbitrary chosen,

$$\left(\int_{0}^{T} [\omega(|u_{n}(t)|)|u_{n}(t)|]^{2} dt\right) \quad \text{is bounded.}$$
(2.45)

Combining (2.41) and (2.45) yields (\tilde{u}_n) is bounded in H_T^1 and then $|\bar{u}_n| \to \infty$ as $n \to \infty$. Since the embedding $H_T^1 \to L^2(0,T;\mathbb{R}^N)$, $u \to u$ is compact, then we can assume, by going to a subsequence if necessary, that $\tilde{u}_n(t) \to \tilde{u}(t)$ as $n \to \infty$, a.e. $t \in [0,T]$. We deduce that

$$|u_n(t)| \to \infty$$
 as $n \to \infty$, a.e. $t \in [0, T]$. (2.46)

Fatou's lemma and (2.46) imply

$$\int_0^T [\omega(|u_n(t)|)|u_n(t)|]^2 dt \to \infty \quad \text{as } n \to \infty$$
(2.47)

which contradicts (2.45). Therefore S_T is bounded in H_T^1 . As a consequence, $\varphi_1(S_T)$ is bounded, and since for any $u \in S_T$ one has $\varphi_k(u) = k\varphi_1(u)$, then there exists a positive constant c_{14} such that

M. TIMOUMI

$$\frac{1}{k}|\varphi_k(u)| \le c_{14}, \quad \forall u \in S_T, \ \forall k \ge 1.$$
(2.48)

Consequently by (2.3), for k large enough, $u_k \notin S_T$. Finally, assumption (1.16) requires that the minimal period of each solution u_k of (1.1) is an integer multiple of T. So if k is chosen to be a prime number, the minimal period of u_k has to be kT. The proof of Theorem 1.4 is complete.

Acknowledgments. I wish to thank the anonymous referee for his/her suggestions and interesting remarks.

References

- N.P. Cac, A. C. Lazer; On second order, periodic, symmetric, differential systems having subharmonics of all sufficiently large orders, J. Diff. Eq. 127 (1996) 426-438.
- [2] A. Fonda, A. C. Lazer; Subharmonic solutions of conservative systems with nonconvex potentials, Proc. Amer. Math. Soc. 115 (1992) 183-190.
- [3] A. Fonda, M. Ramos; Large amplitude subharmonic oscillations for scalar second order differential equations with asymmetric nonlinearities, J. Diff. Eq. 109 (1994) 354-372.
- [4] A. Fonda, M. Ramos, M. Willem; Subharmonic solutions for second-order differential equations, Topol. Meth. Nonl. Anal. 1 (1993) 49-66.
- [5] F. Giannini; Periodic solutions of dynamical systems by a saddle point theorem of Rabinowitz, Nonl. Anal. 13 (1989) 707-719.
- [6] M. Y. Jiang; Subharmonic solutions of second order subquadratic Hamiltonian systems with potential changing sign, J. Math. Anal. Appl. 244 (2000) 291-303.
- [7] P. H. Rabinowitz; On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 33 (1980) 609-633.
- [8] E. Serra, M. Tarallo, S. Terracini; Subhamonic solutions to second order differential equations with periodic nonlinearities, Nonl. Anal. 41 (2000) 649-667.
- [9] C. L. Tang, X. P. Wu; Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2001) 386-397.
- [10] C. L. Tang, X. P. Wu; Subharmonic solutions for nonautonomous sublinear second order Hamiltonian systems, J. Math. Anal. Appl. 304 (2005) 383-393.
- [11] Z. L. Tao, C. L. Tang; Periodic and subharmonic solutions of second order Hamiltonian systems, J. Math. Anal. Appl. 293 (2004) 435-445.
- [12] M. Willem; Subharmonic oscillations of convex Hamiltonian systems, Nonl. Anal. Vol 9, No 11 (1995) 1303-1311.

Mohsen Timoumi

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, 5000 MONASTIR, TUNISIA *E-mail address*: m_timoumi@yahoo.com

12