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SUBHARMONIC SOLUTIONS FOR NONAUTONOMOUS
SECOND-ORDER HAMILTONIAN SYSTEMS

MOHSEN TIMOUMI

ABSTRACT. In this article, we prove the existence of subharmonic solutions for
the non-autonomous second-order Hamiltonian system i(t) + V' (¢, u(t)) = 0.
Also we study the minimality of their periods, when the nonlinearity V' (¢, z)
grows faster than |z|®, o € [0, 1] at infinity. The proof is based on the Least
Action Principle and the Saddle Point Theorem.

1. INTRODUCTION

Consider the non-autonomous second-order Hamiltonian system
i(t) + V'(t,u(t)) =0, (1.1)

where V : R x RN — R, (t,2) — V(t,z) is a continuous function, T-periodic
(T > 0) in the first variable and differentiable with respect to the second variable
such that the gradient V'(t,z) = %—‘;(t, x) is continuous on R x RY. In this work,
we are interested in the existence of subharmonic solutions of . Assuming that
T > 0 is the minimal period of the time dependence of V (¢, z), by subharmonic
solution of we mean a kT-periodic solution, where k is any integer; when
moreover the solution is not T-periodic we call it a true subharmonic.

Using variational methods, there have been various types of results concerning
the existence of subharmonic solutions to system . Many solvability conditions
are given, such as a convexity condition [4} [12], a super-quadratic condition [7,[I1], a
subquadratic condition [4 [6], a periodic condition [], a bounded nonlinearity con-
dition [1,2,5], and a sublinear condition [I0]. In particular, under the assumptions
that there exists a constant M > 0 such that

V'(z)| < M, VzeRY, (1.2)
‘zl‘Lm(V’(x) —é)x = +o0, (1.3)

where e : R — R is a continuous periodic function having minimal period T > 0,
and € is the mean value of e, A. Fonda and Lazer in [2] showed that the system

i(t) + V'(u(t)) = e(t) (1.4)
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admitted periodic solutions with minimal period kT, for any sufficiently large prime
number k. After that, Tang and Wu in [I0] generalized these results without
studying the minimality of periods. Precisely, it was assumed that the nonlinearity
satisfied the following restrictions:

V'(t,2)| < f(t)|z]* +g(t), Ve € RN, a.e. t€0,T], (1.5)
1 T
W/ V(t,x)dt — +oo as |z| — +oo, (1.6)
0

here f,g € L'(0,T;RT) are T-periodic and « € [0, 1].

In [2, [I0], the nonlinearity is required to grow at infinity at most like |x|® with
a € [0,1[. In this article, we will firstly, establish the existence of subharmonic
solutions for the system when the nonlinearity V'(¢, z) is required to have a
sublinear growth at infinity faster than |z|®, «a € [0,1]. Our first main result is as
follows.

Theorem 1.1. Let w € C([0,00[,RT) be a nonincreasing positive function with the
properties:

w(s)

hgr_l)})rgfm > 0, (1.7)
w(s) =0, w(s)s—o00 ass— oo. (1.8)

Assume that V satisfies: There exist two T-periodic functions f € L*(0,T;R*) and
g € LY(0,T;R") such that

V()| < FOalle] + o), Ve e RN ae te. T  (19)
1 T
—_— V(t,z)dt - +oco as |z| — oo 1.10
SR S, V) . (10
There is a subset C of [0, T] with meas(C) > 0 and h € L'(0,T;R) such that
‘ llim V(t,z) = 400, a.e. teC, (1.11)
V(t,x) > h(t) foralzeRY, ae te(0,T]. (1.12)

Then for all positive integer k, the system (1.1)) has at least one kT -periodic solution
ug satisfying

lim |uglleo = 400,

k—o0
where ||ul|o = sup;cp |u(t)].

Remark 1.2. Let

|=[? N
Vit,z) =vt) ———5, YV eR", VieR
( ,.’E) 7( >ln(2+|x|2)’ T e ) € R,
where
() = sin(27t/T), te€[0,7/2]
o, te[T/2,T).
Taking w(s) = m, C = [0, Z]. By a simple computation, we prove that V (¢, z)

satisfies ((1.9)—(V3) and does not satisfy the conditions (1.2]), (1.3) nor (1.5, (1.6).
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Corollary 1.3. Assume that (1.9) holds and there exists a subset C' of [0,T] with
meas(C) > 0 and h € L'(0,T;R) such that

im V(t, x)
e[ —o0 [w(|z])]z(]?
V(t,x) > h(t), forallr € RN, ae. t€0,T]. (1.14)
Then the conclusion of Theorem[1.1] holds.

=400, a.e teC, (1.13)

There are a few results studying the minimality of periods of the subharmonics,
see [12] for the case of convexity, and [2] for the case of bounded gradient. We
study this problem and obtain the following result.

Theorem 1.4. Assume that V satisfies (1.9) and
V'(t
% — 400 as |z| — oo, uniformly fort € [0,T). (1.15)
[w([]) ][]
Then, for all integer k > 1, Equation (1.1)) possesses a kT -periodic solution uy such
that limg_ oo ||uk||co = +00. If moreover V' satisfies the assumption:
If u(t) is a periodic function with minimal period rT with r
rational, and V' (t,u(t)) is a periodic function with minimal (1.16)
period T, then r is necessarily an integer.
Then, for any sufficiently large prime number k, kT is the minimal period of ug.
As an example of a function V' we have
|z () 1
— w(s) = ————=.
In(2 + |z|2)’ In(2 + s2)

Then V (¢, x) satisfies (1.9) (1.15) and (1.16)), Our main tools, for proving our results,
are the Least Action Principle and the Saddle Point Theorem.

Vit z) = (24 cos(%rt))

2. PROOF OF THEOREMS

Let us fix a positive integer k and consider the continuously differentiable func-

tion
KT 4

eutu) = [ IO = V(e

defined on the space H}, of kT-periodic absolutely continuous vector functions
whose derivatives have square-integrable norm. This set is a Hilbert space with the
norm

kT kT 1/2
e = [ oPar+ [ papa] " ue
0 0

and the associated inner product

kT
(1, v = / a(t)o(t) + a(t)o(t)]dt, v € Hp.
0
For u € Hlp, let 4 = = OkT u(t)dt and 4(t) = u(t) — u, then we have Sobolev’s
inequality,
_ kT kT
a3, <

N ] 2
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and Wirtinger’s inequality,

kT ~ ) k2T2 kT ' )
/ (o) Pde < / la(t) 2t (2.2)
0 a 0

It is easy to see that the norm ||ul|x is equivalently to the norm

kT . ) . 1/2
ol = [ [ i+ 1]

In the following, we will use this last norm. It is well known that ¢y is continuously
differentiable with

kT
el (u)v = /0 [a(t)o(t) — V'(t, u(t))v(t)ldt, Vu,v € Hyp

and its critical points correspond to the kT-periodic solutions of the system ([1.1]).

Proof of Theorem Here, we will show that, for every positive integer k, one
can find a kT-periodic solution uy of in such a way that the sequence (uy)
satisfies
lim 1<p;.c(uk) = —o0. (2.3)
k—oo k
This will be done by using some estimates on the critical levels of ¢y given by the

Saddle Point Theorem. The following lemma will be needed for the study of the
geometry of the functionals ¢y,.

Lemma 2.1. Assume that , hold. Then there exist a nonincreasing pos-
itive function 6 € C(]0,00[,RT) and a positive constant co satisfying the following
conditions:
(i) 6(s) — 0, O(s)s — +00 as s — o0,
IVl < @lou)ul-+1), for all v €
iii

—_— V(t,z)dt - +o0o as |zx| — +o0.
[0(|])|[]? /0
Proof. For u € E, let A= {t € [0,kT)/|u(t)| > |lul|*/?}. By (1.9), we have

V(1)
T
< [ retu@Dluo]+ g(o)]a
<l ([ @Dl + g
<5 ([ Q2 aoPacs [ swpate)uldr) " + gl

[0,kT]—A 5>0

1/2
<1 Fllez [Pl ) 72 + kTSgIng(S)HUIH + llgllzr-

So there exists a positive constant ¢y such that

1/2
V' (&, u)llr < co ([ (a2 [ull® + lull] " +1).
Take

0(s) = [W2(s/?) + 2]1/2, §>0, (2.4)
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then 0 satisfies (ii) and it is easy to see that 6 satisfies (i).
Now, by (a), we have p = liminfs_, w;J(S(ls/)Q) > 0. By (L.10), for any v > 0,
there exists a positive constant ¢; such that

kT
V(t,z)dt > ylw(|z])|z* - e1. (2.5)

Combining ([2.4)) and ( . yields

lgTvmet>fWAMMMF—Q

> . (2.6)
[O(lz)]x]]* — w?zV/2)]z]* + |2
By the definition of p, there exists R > 0 such that for all s > R
w?(s)s? o
> 2.7
w2(s1/2)s2 +5 = 2 (27)
and c wp
1
< = 2.8
wi(s)s?+s — 47 (28)
Therefore, by (2.6)-(2.8)), we have
kT
V(t,z)dt
Jo V@@L ap s R

[O(zDll]? — 47
Since « is arbitrary chosen, condition (iii) holds. The proof of Lemma is com-
plete. ([l

Now, we need to show that, for every positive integer k, one can find a critical
point wug of the functional ¢ in such a way that ( . ) holds. To this aim, we
will apply the Saddle Point Theorem to each of the ¢’ s. Let us fix £ and write
H}p = RN @ H}., where RY is identified with the set of constant functions and
H} o consists of functions u in H} o such that f u(t)dt = 0. First, we prove the
Palais-Smale condition.

Lemma 2.2. Assume that (1.9) and (1.10) hold. Then py satisfies the Palais-
Smale condition.

Proof. Let (uy,) be a sequence in H}-p. such that (¢ (u,)) is bounded and ¢} (u,,) —
0 as n — oo. In particular, for a positive constant co we will have

kT
P (Un )l = / [l (£)|* — V' (t, wn ()i ()] dE < co|in]]. (2.9)
0
Since 6 is non increasing and ||u|| > max(|al, ||@||), we obtain

O(l[ull) < min(0(|al), O([|z]]))- (2.10)
Combining Sobolev’s inequality, Lemma (ii) and (2.10]), we can find a positive
constant c3 such that

kT

[ VIl < ol o0 Dl + 1)
~ ~ - _ _ 2.11
< collinlloo [6(linl)En]l + 0(@al)@nl +1] 2V

< eallinll [0 n )| + 6| an] + 1]

for all n € N.
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From Wirtinger’s inequality, there exists a constant ¢4 > 0 such that
liallze < lall < 3"l e (2.12)

Therefore, by (2.9) and (2.11)), we obtain

kT kT
coltnll > O (un, .ﬁn:/ Up|?dt — V' (t, wp ) ndt
il = )i = [ il = [ V() o1y

> callnll® = esllan | [0 @n D @nll + 0(an]) ] + 1].

Assume that (]|@y||) is unbounded, by going to a subsequence if necessary, we can
assume that ||@,|| — oo as n — oo. Since (s) — 0 as s — oo, we deduce from
(2.13) that there exists a positive constant ¢5 such that

1/2

1l < es8(@nDan] = e5[w? (Tl /)|@n]® + |aal] (2.14)

for n large enough. Since w is bounded, it follows that |@,| — oo as n — co.
Now, by the Mean Value Theorem and Lemma (ii), we obtain

kT kT 1
|/ (V(t,un)fV(t,ﬂn))dt|:|/ /V’(t,ﬂn)Jrsﬂn)andsdﬂ
0 0 0
1 kT
§||an|\oo/ / \V/(t, T + siin)| ds dt
0 0

1
< colliin|so /0 [0 it + siial]) [ + 5700 | + 1] ds.
(2.15)

Since ||ty + sty| > |Gy | for all s € [0,1], we deduce from (2.1)), (2.14) and (2.15)

that there exists a positive constant cg such that

kT
[ W) - Vi)
0
< 6 (10010 12+ 0[O0 ) 1 2 + 0[]
Thus, by (2.14]) and (2.16]), we obtain for a positive constant cz,

Pk (un>

T kT . kT )
§Hun||L2 - (V(t,upn) — V(t,ap))dt — V (t, ty,)dt
0 0

(2.16)

kT
er (100 ) i + 000 O30 1+ O il ) = [ V)

IA

(lanDlin| — crl0(an])[@nl]? Jo
s0 ¢(u,) — —oo as n — oo. This contradicts the boundedness of (pg(uy)).
Therefore (||ty,]|) is bounded.

It remains to prove that (|@,|) is bounded. Assume the contrary. By taking

a subsequence, if necessary, we can assume that ||@,| — oo as n — oco. By the
preceding calculus, we obtain for some positive constants cg, cg such that

e B[ )|l |1+ 0(1]) + 5 Vit a,)dt

Pk (un)
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kT
< s nl? + i |01 )] + 601 Dllin] + 1] - [ vt
0

kT
<09[1+0(|un\)|un|+9 |un| / Vit
0

1+ 6(|n)) 1 M
+ — — V(t, uy,)dt
[0(|an)|an]? (|un|)|un\ col0(|un])|anll* Jo
$0 ¢ (uy) — —00 as n — oo, which also contradicts the boundedness of (g (uy,)).
So (|@y]) is bounded and then (||u,||) is also bounded. By a standard argument, we
conclude that (u,) possesses a convergent subsequence and the proof is complete.

< col0(| ) I

O
Now, it is easy to show that (L.10]) yields
kT
op(u) = f/ V(t,u)dt — —co as |u| — oo in RY. (2.17)
0

On the cher hand, by the Mean Value Theorem, (|1.9) and Holder’s inequality, for
all u € H}p and a € RY |a| > 0, we have

kT
[ W) = vieaya
kT 1
:\/0 /0V’(t,a+s(u—a))(u—a)dsdt|
1 kT
Shu=ale [ [ W(tatstu=apldes
k:T
<||ufa||oo// w(la+ s(u— a)la + s(u - a)] + g(8)] dt
1 kT L
< Ju=aloo(171= | [/0 (@(la+ s(u—a))la-+ s(u—a))dr] “ds + gl ).

For s € [0,1], take
A(s) ={t € [0,kT]/]|a + s(u(t) — a)| > |al}.

By a classical calculation as in the proof of Lemma we obtain some positive
constants c¢1g and ¢(a) such that

kT
I/ (V(t,u) = V(t, a))dt| < crow(a)|ull® + c(a)(||ul| + 1).
0

Since w(la]) — 0 as |a| — oo, there exists |a| > 0 such that cjow(|a]) < 1ci and

then we obtain

kT
[ V) = Vit < Jelul + ca)(full + 1)

which implies that

o(u) > Zcillull? - cla)(ull +1) — V(t,a)dt — oo as |ul| —o0. (2.18)
0

>~
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We deduce from Lemma [2.2]and (2.17)), (2.18) that all the Saddle Point Theorem’s
assumptions are satisfied. Therefore the functional (; possesses at least a critical
point uy satisfying
—oo < inf ¢ < r(ug) < sup g (2.19)
HkT RN 4y,
where ey (t) = kcos(3t)zg for t € R, o0 = 2% and some 9 € RY with |zo| = 1. The

k T
first part of Theorem [T.1]is proved.

Next, we will prove that the sequence (ux)r>1 obtained above satisfies ([2.3). For
this aim, the following two lemmas will be needed.

Lemma 2.3 ([9]). If (1.11)) holds, then for every 6 > 0 there exists a measurable
subset Cs of C with meae(C’ Cs) < 6 such that

V(t,z) — +oo as |z| — oo, uniformly in t € Cs.

Lemma 2.4. Suppose that V satisfies (L.11| -, then

1

limsup sup —pr(r+ ex) = —oo. (2.20)
k—oo xeRN k

Proof. Let x € RV, we have

1 kT
or(z+ex) = ZkTO'Z - V(t,z + e(t))dt.
0

By (1.11)) and Lemma for § = %meas(C) and all v > 0, there exist a measurable
subset Cs C C with meas(C — Cs) < ¢ and r > 0 such that

V(t,z) >, V]z|>rVteCs. (2.21)

Let
By ={t € [0,kT]: |z +en(t)] <r}.

Then we have

ko
meas(By) < 5 (2.22)
In fact, if meas(By) > kd/2, there exists to € By such that
ko kT kb
— <ty < — — — 2.2
] = 0= 2 ] ) ( 3)
kT ké ko
— + — <ty <kKT — — 2.24
5 + 3 0 g’ ( )
and there exists t; € By, such that
)
t1 —to| > 3 (2.25)
ko
[t1 — (KT —to)| > 3 (2.26)
It follows from (2.26]) that
to+t, T._ 6
- = > —. 2.2
| 2k 2 |z 16 (2.27)
By (2.23)) and (2.24)), one has
d clott 0
oth p_ 2 (2.28)

6= 2k 16
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Combining (2.27) and ([2.28]), yields

t t )
|Sin(%a)| > sin(T2).

On the other hand, by (2.25)) we have

(2.29)

} O'tl

t t t
\cos(%) - COS(T 0ot h

. to—11 . 9,00
‘ > 2sin?( 2o
5% o)]| sin( T o)| > 2sin (16),

)| = 2] sin(

and

2r

) = e+ exltr) — (& + exlto))] < =

O’to O'tl
|co&(§) - cos(%

which is impossible for large k. Hence (2.22)) holds.
Now, let Cf = Uf;& (JT + Cs). Tt follows from (2.22)) that for all k,

meas(Cy — By) > %5

By ([2.21]), we have

1 kT
k™ top(z +ex) = ZTO'Q — k! / V(t,z+ex(t))dt
0

1

< -To? - k—l/ h(t)dt — k™ 'y meas(C), — By)

4 [0,k ~(Ck—By)

1 T &y

<lp2 —/ ()|t — 2
4 0

for all large k, which implies

1 r 5
limsup sup kg (z 4+ ex) < ZTO‘Q +/ |h(t)|dt — 7,
0

k—oo zeRN 2

By the arbitrariness of v, we obtain

limsup sup k™ 'op(z +ep) = —oo0.
k—oo zeRN

The proof of Lemma [2.4]is complete. (I
It remains to prove that the sequence (||ug|l~) of solutions of (1.1) obtained

above, is unbounded. Arguing by contradiction, assume that (||ug|le) is bounded,
then there exists R > 0 such that (||ug|le) < R for all £ > 1. We have

E op(ug) > —k1 /OkT V (¢, ug)dt. (2.30)
Since V is T-periodic in ¢t and continuous, then there exists a constant p > 0 such
that
V(t,z)] < p, Yz eRY, |z| <R, ae. teR.
Therefore,
kY on(uy) > —pT (2.31)
which contradicts with . The proof of Theorem is complete.
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Proof of Theorem [1.4] The following lemma will be needed.

Lemma 2.5. Let (| , (1.15] ) hold. Then for all p > 0, there exists a constant
, > 0 such that for all x € RY, || > 1 and for a.e. t € [0,T],
1 1
V(t.z) > V(t,0)+ Llw(la)a?(1 - —3) — cpn(|z]) — sasupw(r) — g(t). (2.32)
2 |£17| 2 r>0

Proof. For x € RV, |z| > 1, we have

V(t,z) =V (t,0) + /1 V'(t,sx)x ds
0

L 1 (2.33)
=V(t,0) +/ V’(t,sx)xds—i—/ V'(t, sz)z ds.
0 e
By (1.9 , we have
|/“ tsmds|<|z|/ w(Jsellszl + g(8))dt
B
<|z|[f(t) sup w(r |x|/ sds+ g(t —] (2.34)
r>0 | |
1
< ST (B supw(r) + (1),
r>0
Let p > 0, then by (L.15]), there exists a positive constant ¢, such that
VI(t,2)x > pl(|al)al)? - cp. (2.35)
Therefore,
L v ds
Vi(t, sx)xds = V'(t, sx)sx—
Tl El y
1
d
> [ (plotlsablsal® - )% (2.36)
1
o1
> Llolalal2( — —) — ebB)n(lz])
T2 =27 " '

Combining (2.33)), (2-34) and (2.36)), we obtain (2.32) and Lemma[2.5|is proved. O
w(s)
1

Now, since ag = liminf,_, > 0, for s large enough, we have

w(s2
1 1

< 2.37
w(s) ~ agw(sl/2) (237)

which implies that for |x| large enough

In(lz|) In(|z]) 1
< — 0 as|z| — 0. (2.38)

[w(la])]=(]? |z aflw(|z[/2)]z|1/2]?

Combining 7 we obtain (Vy). By applying Corollary we obtain a
sequence (ug) of kT-periodic solutions of such that limg_, o0 [|ug|lee = +00.
It remains to analyst the minimal periods of the subharmonic solutions found
with the previous results. For this, we will split the problem into two parts. Firstly,
we claim that for a sufficiently large integer k, the subharmonic solution uy is not
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T-periodic. In fact, let Sp be the set of T-periodic solutions of , we will show
that St is bounded in H}.. Assume by contradiction that there exists a sequence
(un) in St such that |luy|1 — oo as n — oco. Let us write u,(t) = @y, + @n (%),
where u,, is the mean value of u,. Multiplying both sides of the identity

tin () + V' (£, un(t)) =0 (2.39)
by @y, (t) and integrating, we obtain by (1.9) and Holder’s inequality

T T
/ |, |2 dt = —/ i Uy dt
0 0

T
= / V' (t, up ), dt
0 (2.40)

T
< Jlinlloo / [/ () (i (D)) ()] + g (8)] it

1/2

<l (1122 [ om0 ) + ]

By (2.1)), (2.2]) and (2.40)), there exists a positive constant c;; such that
T
. 1/2
[an[r < 011[(/0 [w(lun (@) |un(t)2dt) "~ +1]. (2.41)

Let p > 0 and let ¢, be a constant satisfying (2.35). Multiplying both sides of the
identity (2.39) by u,(t) and integrating

T T
/ |ty |?dt = 7/ Ty Updt
0 0

T
= / V' (t, wp ) updt (2.42)
0

T
>0 [ ollun(ODlua ()]t .

We deduce from (2.42)) and Wirtinger inequality that there exists a positive constant
c12 such that

[ = 012[/)/0 [w (fun (8) ) Jun (1) dt — ¢, T]. (2.43)

Combining (2.41)) with (2.43), we can find a positive constant c;3 such that

T T
p/ [w(Jun (8)])Jun (B)]]*dt — ¢, T < 013[/ [w(lun(@Dlun(®)Pdt + 1], (2.44)
0 0

Since p is arbitrary chosen,

(/ [w(|tn (1)])|un (t)]]?dt) is bounded. (2.45)
0

Combining and yields (%) is bounded in H% and then |&,| — oo as
n — oo. Since the embedding H: — L?(0,T;RY), u — u is compact, then we can
assume, by going to a subsequence if necessary, that u,(t) — (t) as n — oo, a.e.
t € [0, T]. We deduce that

[un(t)] = 0o asn — oo, a.e. t € [0,T]. (2.46)
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Fatou’s lemma and (2.46]) imply
T
/ (1t (8)) [ (£) |2 — 00 a5 1 — 00 (2.47)
0

which contradicts (2.45]). Therefore St is bounded in H}. As a consequence,
©1(S7) is bounded, and since for any u € St one has pr(u) = ke (u), then there
exists a positive constant ci4 such that

1
E|<pk(u)\ <cua, YueSr, Vk>1. (2.48)

Consequently by (2.3), for k large enough, ux ¢ Sp. Finally, assumption (1.16))
requires that the minimal period of each solution wy of (1.1) is an integer multiple

of T. So if k is chosen to be a prime number, the minimal period of u; has to be
kT. The proof of Theorem [T.4]is complete.

Acknowledgments. I wish to thank the anonymous referee for his/her suggestions
and interesting remarks.
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