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EXISTENCE OF A MINIMIZER FOR THE
QUASI-RELATIVISTIC KOHN-SHAM MODEL

CARLOS ARGAEZ, MICHAEL MELGAARD

Abstract. We study the standard and extended Kohn-Sham models for quasi-
relativistic N -electron Coulomb systems; that is, systems where the kinetic
energy of the electrons is given by the quasi-relativistic operatorq

−α−2∆xn + α−4 − α−2.

For spin-unpolarized systems in the local density approximation, we prove
existence of a ground state (or minimizer) provided that the total charge Ztot

of K nuclei is greater than N−1 and that Ztot is smaller than a critical charge
Zc = 2α−1π−1.

1. Introduction

The Density Functional Theory (DFT) of Kohn and Sham has emerged as the
most widely-used method of electronic structure calculation in both quantum chem-
istry and condensed matter physics [11, 18]. In this paper we establish existence
of a ground state (or minimizer) for the quasi-relativistic spin-unpolarized (or re-
stricted) Kohn-Sham problem given by

IRKS
N (V ) = inf

{
E(Φ) := α−1

Np∑
n=1

∫
R3

(
|T 1/2

0 φn|2 − |φn|2
)

+
∫

R3
V ρΦ + J (ρΦ) + Exc(ρΦ), ρΦ = 2

Np∑
n=1

|φn|2, Φ ∈ CNp

} (1.1)

with

CNp = {Φ = (φ1, . . . , φNp) ∈ H1/2(R3)Np : 〈φm, φn〉L2(R3) = δmn} (1.2)

Here T0 =
√
−∆xn + α−2 is (essentially) the quasi-relativistic kinetic energy of the

nth electron located at xn ∈ R3 (∆xn being the Laplacian with respect to xn), α is
Sommerfeld’s fine structure constant, H1/2(R3) is the Sobolev space in (2.1), V (·)
is the attractive interaction between an electron and the K nuclei (with changes
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Zk > 0, k = 1, 2, . . . ,K)

Ven(r) =
K∑

k=1

Vk(r); Vk(r) = − Zkα

|r−Rk|
, (1.3)

the Coulomb energy J (·) is given by

J (ρ) =
1
2

∫
R3

∫
R3

ρ(r)ρ(r′)
|r− r′|

drdr′, (1.4)

where the density is

ρΦ(r) =
N∑

n=1

∑
σ∈Σ

|φn(r, σ)|2. (1.5)

We limit ourselves to systems with an even number of electrons N = 2Np, where
Np is the number of electron pairs. The exchange-correlation functional is chosen
as

Exc(ρ) =
∫

R3
g (ρ(r)) dr, (1.6)

yielding the local density approximation (abbreviated LDA), and the following as-
sumptions imposed on the function g ensure that (1.6) incorporates all approximate
LDA functionals used in practical implementations (see, e.g., [19]).

Assumption 1.1. Let g be a twice differentiable function which satisfies

g ∈ C1(R+,R) (1.7)

g(0) = 0 (1.8)

g′ ≤ 0 (1.9)

∃ 0 < β− ≤ β+ < 1/3 such that sup
ρ∈R+

|g′(ρ)|
ρβ− + ρβ+

<∞ (1.10)

∃ 1 ≤ γ < 3/2 such that lim sup
ρ→0+

g (ρ)
ργ

< 0 (1.11)

We establish the following theorem for the minimization problem (1.1)-(1.2) and
its extended version formulated in (4.2)-(4.3).

Theorem 1.2. Suppose that N = 2Np ≤ Ztot < Zc = 2α−1π−1 and let Assumption
1.1 be satisfied. Then the extended Kohn-Sham LDA problem (4.2)-(4.3) has a
minimizer D satisfying

D = χ(−∞,εF ) (TρD ) +D(δ) (1.12)

for some εF , where

TρD = α−1T̃0 + α−1V + ρD ∗
1
|r|

+ g′(ρD), (1.13)

with χ(−∞,εF ) being the characteristic function of the range (−∞, εF ) and with
D(δ) ∈ S(L2(R3)) satisfying 0 ≤ D(δ) ≤ 1 and Ran(D(δ)) ⊂ Ker(TρD − εF ). (We
refer to Section 4 for the definition of T̃0 and S(L2(R3))).
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Few rigorous results on Kohn-Sham theory are found in the mathematical liter-
ature. In the non-relativistic setting, Le Bris [12, 13] treated the standard Kohn-
Sham model. Le Bris proved existence of a ground state using concentration-
compactness type arguments as pioneered by Lions in his work on Thomas-Fermi
type models [15, 16]. Our result, covering both the standard and extended Kohn-
Sham models, is the analogue of the recent non-relativistic result by Anantharaman
and Cancès [2, Theorem 1] and we follow the same scheme of proof. In addition
to the usual mathematical difficulties for these models (nonlinearity, nonconvexity
and the possible loss of compactness at infinity), the quasi-relativistic setting re-
quires that almost all arguments have to be addressed anew because the underlying
single-particle Hilbert space is H1/2(R3) instead of H1(R3) and, furthermore, the
kinetic energy is described by a nonlocal, pseudodifferential operator. Moreover,
the Coulomb potential is not relatively compact (in the operator sense) with respect
to the quasi-relativistic energy operator. In particular, the energy functional is not
weakly lower semicontinuous in the usual sense. Nevertheless, one can establish a
decreasing property, see Section 6, which suffices for our purpose.

The quasi-relativistic setting has attracted substantial interest lately. Enstedt
and Melgaard [8] established existence of infinitely many distinct solutions to the
quasi-relativistic Hartree-Fock equations, including a ground state. The results
are valid under the hypotheses that the total charge Ztot of K nuclei is greater
than N − 1 and that Ztot is smaller than the above-mentioned critical charge Zc.
The proofs are based on a new application of the Lions-Fang-Ghoussoub critical
point approach to multiple solutions on a complete, C2 Hilbert-Riemann manifold.
Existence of a ground state for an atom was first addressed by Dall’Acqua et al
[5], who applied the relaxation method by Lieb and Simon. In addition, regularity
of the ground state away from the nucleus and pointwise exponential decay of the
orbitals were established in [5]. Furthermore, Dall’Acqua and Solovej [6] have shown
that the maximal negative ionization charge and the ionization energy of an atom
remain bounded independently of the nuclear charge and the fine structure constant
provided their product is bounded. In a recent work, Argaez and Melgaard [3]
have proved existence of infinitely many solutions, finitely many being interpreted
as excited states, to the multi-configurative quasi-relativistic Hartree-Fock type
equations. Furthermore, Melgaard and Zongo have shown existence of multiple
solutions to the Choquard equation in the quasi-relativistic setting [17].

2. Preliminaries

Throughout this article, we denote by c and C (with or without indices) various
positive constants whose precise value is of no importance. Moreover, we will denote
the complex conjugate of z ∈ C by z.

Function spaces. For 1 ≤ p ≤ ∞, let Lp(R3) be the space of (equivalence classes
of) complex-valued functions φ which are measurable and satisfy

∫
R3 |φ(x)|p dx <∞

if p < ∞ and ‖φ‖L∞(R3) = ess sup |φ| < ∞ if p = ∞. The measure dx is the
Lebesgue measure. For any p the Lp(R3) space is a Banach space with norm
‖ · ‖Lp(R3) = (

∫
R3 | · |p dx)1/p. In the case p = 2, L2(R3) is a complex and separable

Hilbert space with scalar product 〈φ, ψ〉L2(R3) =
∫

R3 φψdx and corresponding norm
‖φ‖L2(R3) = 〈φ, φ〉1/2

L2(R3). Similarly, L2(R3)N , the N -fold Cartesian product of

L2(R3), is equipped with the scalar product 〈φ, ψ〉 =
∑N

n=1〈φn, ψn〉L2(R3). The
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space of infinitely differentiable complex-valued functions with compact support
will be denoted C∞0 (R3). The Fourier transform is given by

(F ψ)(ξ) = ψ̂(ξ) = (2π)−1/2

∫
R3
e−ixξψ(x) dx.

Define
H1/2(R3) = {φ ∈ L2(R3) : (1 + |ξ|)1/2φ̂ ∈ L2(R3)}, (2.1)

which, equipped with the scalar product

〈φ, ψ〉H1/2(R2) =
∫

R3
(1 + |ξ|)φ̂(ξ)ψ̂(ξ) dξ,

becomes a Hilbert space; evidently, H1(R3) ⊂ H1/2(R3). We have that C∞0 (R3)
is dense in H1/2(R3) and the continuous embedding H1/2(R3) ↪→ Lr(R3) holds
whenever 2 ≤ r ≤ 3 [1].

Moreover, we shall use that any weakly convergent sequence in H1/2(R3) con-
verges strongly in Lp

loc(R3), p < 3, and it has a pointwise convergent subsequence.
Standard arguments yield the following result; an analogue of Lions’ result [15, Part
II, Lemma I.1].

Proposition 2.1. Let r > 0 and 2 ≤ q < 3. If the sequence {uj} is bounded in
H1/2(R3) and if

sup
y∈R3

∫
B(y,r)

|uj |q → 0 as j →∞

then uj → 0 in Lr(R3) for any 2 < r < 3.

Operators. Let T be a self-adjoint operator on a Hilbert space H with domain
D(T ). The spectrum and resolvent set are denoted by spec(T ) and ρ(T ), respec-
tively. We use standard terminology for the various parts of the spectrum; see, e.g.,
[7, 10]. The resolvent is R(ζ) = (T − ζ)−1. The spectral family associated to T is
denoted by ET (λ), λ ∈ R. For a lower semi-bounded self-adjoint operator T , the
counting function is defined by

Coun(λ;T ) = dim RanET ((−∞, λ)).

The space of trace operators, respectively, Hilbert-Schmidt operators, on h =
L2(R3) is denoted by S1(h), respectively S2(h) or, in short, Sj , j = 1, 2. The
space of bounded self-adjoint operators is designated by S(h).

We need the following abstract operator result by Lions [16, Lemma II.2].

Lemma 2.2. Let T be a self-adjoint operator on a Hilbert space H, and let H1, H2

be two subspaces of H such that H = H1 ⊕H2, dimH1 = h1 <∞ and P2TP2 ≥ 0,
where P2 is the orthogonal projection onto H2. Then T has at most h1 negative
eigenvalues.

3. Atomic and molecular Hamiltonians

By p we denote the momentum operator −i∇ on L3(R3). The operator T0 =√
p2 + α−2 is generated by the closed, (strictly) positive form

t0[φ, φ] = 〈T 1/2
0 φ, T

1/2
0 φ〉H

on the form domain D(t0) = H1/2(R3). Set S(x) = Zα/|x|, Z > 0, Zc = 2α−1π−1,
and let T̃0 = T0 − α−1. The following facts are well-known for the perturbed
one-particle operator H1,1,α = T̃0 − S(x) [9, 10].
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Small perturbations. If Z < π
2Zc then S is T̃0-bounded with relative bound

equal to two. If, on the other hand, (2α)−1 < Z < Zc then S is T̃0-form bounded
with relative bound less than one.

We prove the above-mentioned form-boundedness. It follows from the following
inequality (first observed, it seems, by Kato [10, Paragraph V-§5.4]):

〈Sφ, φ〉L2(R3) ≤ (Z/Zc)‖φ‖2
H1/2(R3), ∀φ ∈ H1/2(R3). (3.1)

Indeed, if, for any ψ, φ ∈ H1/2(R3), we define the sesquilinear forms

s[ψ, φ] := 〈S1/2ψ, S1/2φ〉L2(R3),

t0[ψ, φ] := 〈T 1/2
0 ψ, T

1/2
0 φ〉L2(R3),

t̃0[ψ, φ] := t0[ψ, φ]− α−1〈ψ, φ〉L2(R3),

then (3.1) shows that s is well-defined and also, by invoking the inequality |− i∇| ≤
T0 , we infer that, for all φ ∈ H1/2(R3),

s[φ, φ] < t0[φ, φ] provided Z < Zc. (3.2)

This is the Coulomb uncertainty principle in the quasi-relativistic setting. The
KLMN theorem (see, e.g., [10, Paragraph VI-1.7]) implies that there exists a unique
self-adjoint operator, denoted H1,1,α, generated by the closed sesquilinear form

h1,1,α[ψ, φ] := t̃0[ψ, φ]− s[ψ, φ], ψ, φ ∈ D(h1,1,α) = H1/2(R3), (3.3)

which is bounded below by −α−1. It is well-known [9] that

spec(H1,1,α) ∩ [−α−1, 0) is discrete

spec(H1,1,α) ∩ [0,∞) is absolutely continuous
(3.4)

In particular,
specess(H1,1,α) = [0,∞). (3.5)

The form construction of the atomic Hamiltonian H1,1,α can be generalized to the
molecular case, describing a molecule with N electrons and K nuclei of charges
Z = (Z1, . . . , ZK), Zk > 0, located at R1, . . . , RK , Rk ∈ R3, if we substitute s by

ven[ψ, φ] =
K∑

k=1

〈V 1/2
k , ψ, V

1/2
k φ〉, ψ, φ ∈ H1/2(R3), (3.6)

where Vk is defined in (1.3) and by assuming that Ztot < Zc.
We shall use the following IMS-type localization estimate [14, Lemma A.1].

Lemma 3.1. Suppose {ξj}j∈J is a smooth partition of unity such that
∑

j∈J ξj(x)
2

≡ 1 and ∇ξj ∈ Ls(Rn) with s ∈ (2n,∞]. Then the following IMS type estimate
holds for T0:

T0 ≥
∑
j∈J

ξjT0ξj −
1
π

∫ ∞

0

1
T 2

0 + τ

( ∑
j∈J

|∇ξj |2
) 1
T 2

0 + τ

√
τ dτ.

Moreover, we need the following spectral result found in [8]. Its proof is based
on Glazman’s lemma for the counting function (see, e.g, [20, Lemma A.3]).
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Lemma 3.2. Assume ϑ < Ztot < Zc, and let ρ ∈ L1(R3) ∩ L4/3(R3) such that∫
R3 ρdx < ϑ. Define the quasi-relativistic Schrödinger operator

T = α−1T̃0 + α−1Ven + ρ ∗ 1
|x|
.

Then, for any κ ≥ 1 and any 0 ≤ ϑ < Ztot, there exists εκ,ϑ > 0 such that
Coun(−εn,ϑ;T ) ≥ κ.

4. Density operator framework

To turn the minimization problem (1.1)-(1.2) into a convex problem, we proceed
to extend the definition of the restricted Kohn-Sham (RKS) energy functional. We
can re-express the RKS functional and the Kohn-Sham ground state energy via
the one-to-one correpondence between elements of CNp and projections onto finite-
dimensional subspaces of L2(R3). Indeed, given an element {φn}N

n=1 in CNp we can
associate a canonical projection operator, D =

∑N
n=1〈·, φn〉φn with trace equal to

N . We may therefore write the RKS energy functional as

E(D) = α−1
(
Tr

[
T̃0D

]
− Tr[VenD]

)
+ J (ρD) + Exc(ρD), (4.1)

where

Tr[T̃0D] =
N∑

n=1

t0[φn, φn]− α−1[φn, φn]

Tr[VenD] =
N∑

n=1

ven[φn, φn]

The direct Coulomb energy defined (in terms of the Coulomb inner product) as

J (ρD) =
1
2

∫
R3

∫
R3
ρD(r)|r− r′|−1ρD(r′) dr dr′

and the exchange-correlation functional defined as in (1.6). Then we embed (1.1)-
(1.2) in the collection of problems

Iλ = inf{E(D) : D ∈ Kλ} (4.2)

parametrized by λ ∈ R+, where

Kλ = {D ∈ S(L2(R3)) : 0 ≤ D ≤ 1, Tr(D) = λ, Tr(T0D) <∞}, (4.3)

with S(L2(R3)) being the space of all bounded, self-adjoint operators on L2(R3).
Likewise, we introduce the problem at infinity

I∞λ = inf{E∞(D) : D ∈ Kλ}, (4.4)

where
E∞(D) = α−1 Tr(T̃0D) + J (ρD) + Exc(ρD). (4.5)

The operator D is the so-called (reduced) one-particle density operator. The general
theory of trace class operators on L2(R3) asserts that any operator D in K admits
a complete set of eigenfunctions {φi} in H1/2(R3) associated to the eigenvalues
νn ∈ [0, 1], counted with multiplicity. Hence we may decompose D along such an
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eigenbasis of L2(R3), in such a way that its Hilbert-Schmidt kernel may be written
as

ρ(x, y) =
∑
n≥1

νnφn(x)φn(y).

Since D is trace class, the corresponding density is well-defined as a nonnegative
function in L1(R3) through ρ(x, x) =

∑
n≥1 νn|φn(x)|2, and TrD =

∫
R3 ρ(x, x) dx =∑

n≥1 νn. Furthermore, the spectral decomposition of D enable us to give sense to

Tr[T0D] =
∑
n≥1

νn

∫
R3
|T 1/2

0 φn(x)|2 dx. (4.6)

We introduce the vector space

H =
{
D ∈ S1 : T 1/2

0 DT 1/2
0 ∈ S1

}
equipped with the norm ‖ ·‖H = Tr(·)+Tr(T 1/2

0 ·T 1/2
0 ). Furthermore, we introduce

the convex set

K = {D ∈ S(h) : 0 ≤ D ≤ 1, Tr(D) <∞, Tr(T 1/2
0 DT 1/2

0 ) <∞}.

5. Concentration-compactness type inequalities

The aim of this section is to establish concentration-compactness type inequal-
ities, see Proposition 5.5. To achieve this we need to prove a series of auxiliary
results.

Lemma 5.1. For any D ∈ K one has
√
ρD ∈ H1/2(R3) and, moreover, the follow-

ing inequalities are valid:
Lower bound on the kinetic energy:

‖√ρD‖2
H1/2(R3) ≤ C Tr[T0D], (5.1)

Tr[D] ≤ C Tr[T0D] (5.2)

Upper bound on Coulomb energy:

0 ≤ J (ρD) ≤ C Tr[T0D] Tr[D] (5.3)

Bounds on nuclei-electron interaction: For Ztot < Zc = 2/(απ),

− C Tr[T0D] ≤
∫
VenρD dx ≤ 0. (5.4)

Bounds on exchange correlation energy:

− C
(
Tr[D]1−

β−
2 (Tr[T0D])3β− + Tr[D]1−

β+
2 (Tr[T0D])3β+

)
≤ Exc(ρD) ≤ 0.

(5.5)

Proof. We shall prove the inequalities in the order of appearance. Inequality (5.1):
For any

D =
∑

νn|φn〉〈φn|, νn ∈ [0, 1],

we have
Tr(T0D) =

∑
νn〈T 1/2

0 φn, T
1/2
0 φn〉 .

From the convexity of the relativistic kinetic energy; i.e., for any φ, ψ ∈ H1/2(R3),

〈
√
|φ|2 + |ψ|2, T̃0

√
|φ|2 + |ψ|2〉 ≤ 〈φ, T̃0φ〉+ 〈ψ, T̃0ψ〉
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we obtain

〈√ρD, T̃0
√
ρD〉 =

〈( ∑
n

νn|φn|2
)1/2

, T̃0

( ∑
n

νn|φn|2
)1/2〉

≤
∑

n

νn〈φn, T̃0φn〉 = Tr[T̃0D].

Inequality (5.2) follows from (5.1) and the Sobolev inequality for H1/2(R3).
Inequality (5.3): We apply the Hardy-Littlewood-Sobolev inequality, Lp inter-

polation, and the inequality (5.2) to get

J (ρD) ≤ C1‖ρD‖L6/5 ≤ C1‖ρD‖L3/2‖ρD‖L1

≤ C2 Tr[D] Tr[T0D].

Inequality (5.4): The Hardy-Kato inequality (3.1), together with (5.1), yields∫
R3

ρD
|r−Rk|

dr ≤ C1

∑
n

‖φn‖2
H1/2 ≤ C2 Tr(T0D)

whence (5.4) follows.
Inequality (5.5): We see from Assumption 1.1 that Exc(ρ) ≤ 0. From the funda-

mental theorem of calculus and (1.7)-(1.10) we have that

|g(ρ)| =
∣∣ ∫ ρ

0

g′(ρ̃) dρ̃
∣∣ ≤ C2

(
ρ1+β− + ρ1+β+

)
and, therefore, with p± = 1 + β±,

|Exc(ρ)| =
∣∣ ∫

R3
g(ρ(r)) dr

∣∣ ≤ C
( ∫

R3
ρp−dr +

∫
R3
ρp+ dr

)
. (5.6)

Now, using Lp interpolation and (5.2), we obtain∫
R3
ρ1+β± dr = ‖ρ‖1+β±

L1+β± ≤ ‖ρ‖1−2β±
L1 ‖ρ‖3β±

L3/2 ≤ C(Tr[D])1−2β±(Tr[T0D])3β±

From this we immediately get (5.5). �

Lemma 5.2. The functionals E and E∞ are continuous on H.

Proof. By definition of the norm in H, D 7→ Tr(T̃0D) is continuous on H. For the
term

∫
V u2, the continuity follows from the Cauchy-Schwarz inequality and the

Hardy-Kato inequality (3.1):∣∣ ∫
V u2 − V ũ2

∣∣ ≤ ∫
V |u− ũ||u+ ũ| dx

≤ C

∫
V |u− ũ|2 ≤ C‖u− ũ‖2

H1/2

Let W := 1/|x| = W1 +W2 where W1 ∈ L4 and W ∈ L∞. For the term J(·) the
estimate

|J(ρ)− J(ρ̃)| =
∣∣1
2

∫
[(ρ− ρ̃) ∗W ](ρ+ ρ̃) dx

∣∣
≤ C‖ρ− ρ̃‖L1 (‖W1‖L4‖ρ− ρ̃‖L4/3 + ‖W2‖L∞‖ρ+ ρ̃‖L1)

establishes the continuity. Now,

|Exc(ρDj )− Exc(ρD)| ≤ C

∫
R3
|ρ1+β±
Dj

− ρ
1+β±
D | dr
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≤ C
( ∫

|ρDj − ρD|1/(1−β±)
)1−β±( ∫

(ρβ±
Dj

+ ρ
β±
D )1/β±

)β±
.

Using the Sobolev embedding H1/2 ↪→ Lr(R3), 2 ≤ 2r ≤ 3, we have that

‖ρDj − ρD‖Lr(R3) ≤ C
( ∫

|√ρDj −
√
ρD|2r

)1/r

≤ C‖√ρDj
−√

ρD‖2
H1 .

Since ‖Dj − D‖H → 0, Lemma 8.1 implies that √ρDj converges strongly to
√
ρD

in H1/2(R3), we have established the continuity of Exc. �

Next we show that minimizing sequences cannot tend to zero.

Lemma 5.3. Suppose λ > 0 and let (Dj)j∈N be a minimizing sequence for (4.2).
Then there exists R > 0 such that

lim
j→∞

sup
x∈R3

∫
x+BR

ρDj > 0.

A similar statement is valid for the minimizing sequence for (4.4).

Proof. We argue by contradiction. So, suppose (Dj)j∈N is a minimizing sequence
for (4.2) such that, for all R > 0,

lim
j→∞

sup
x∈R3

∫
x+BR

ρDj = 0. (5.7)

In view of Lemma 5.1 {Dj} is a bounded sequence in H and, in particular, {ρDj
}

is bounded in H1/2(R3). The latter, in conjunction with (5.7) and an application
of Proposition 2.1 imply that ρDj converges (strongly) to zero in Lp(R3) provided
1 < p < 3/2. In particular, it follows that

lim
n→∞

∫
R3
Exc(ρDj

) = 0.

Indeed, for r ∈ (1, 3/2) and r−1 + q−1 = 1, Hölder’s inequality yields

|Exc(ρDj
)| ≤ C

∫
R3
ρ
1+β±
Dj

dr ≤ C
( ∫

ρr
Dj

)1/r( ∫
ρ

qβ±
Dj

)1/q

≤ C‖ρDj‖Lr → 0,

where we used that ρDj converges (strongly) to zero in Lp(R3) provided 1 < p < 3/2.
For any ε > 0 and R > 0 chosen such that |V | ≤ ελ−1 on Bc

R, we have that,
provided n is sufficiently large,∣∣ ∫

R3
V ρDj

∣∣ ≤ ∫
BR

|V |ρDj +
∫

Bc
R

|V |ρDj

≤
( ∫

BR

|V |p
′
)1/p′( ∫

BR

ρp
Dj

)1/p

+
ε

λ

∫
Bc

R

ρDj ≤ 2ε.

where, once again, we used that ρDj converges (strongly) to zero in Lp(R3) provided
1 < p < 3/2 and V ∈ Lq + Lq′ is clearly fulfilled for 3 < q, q′ <∞. Hence

lim
j→∞

∫
R3
V ρDj = 0.
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Since

E(ρDj
) ≥

∫
R3
V ρDj

+ Exc(ρDj
)

we find that Iλ ≥ 0 but this contradicts the previously proved result, Iλ < 0. Hence
we conclude that (ρDj )j∈N cannot vanish. The analogous problem in (4.2) is easier
to treat because the energy functional contains a single nonpositive term, namely
Exc(ρ). �

Lemma 5.4. Suppose (αn)n∈N is a sequence of positive numbers that converges to
1, and let (ρk)k∈N be a sequence of nonnegative densities such that (

√
ρn)n∈N is

bounded in H1/2(R3). Then

lim
k→∞

[Exc(αkρk)− Exc(ρk)] = 0.

Proof. Assumption 1.1 implies that there exists 1 < p− ≤ p+ < 5/3 and C ∈ R+

such that, provided k is sufficiently large,

|Exc(αkρk)− Exc(ρk)| ≤ C|αk − 1|
∫

R3
(ρp−

k + ρ
p+
k ).

Since (
√
ρk)k∈N is bounded in H1/2(R3), (ρk)k∈N is bounded in Lp(R3) for all

1 ≤ p ≤ 3/2, and (T 1/2
0

√
ρk)k∈N is bounded in (L2(R3))3, the result follows. �

With these preparations we are ready to establish concentration-compactness
type inequalities.

Proposition 5.5. Let Assumption 1.1 be satisfied. Then the minimization prob-
lems in (4.2) and (4.4) have the following properties:

(1) I0 = I∞0 = 0 and for all λ > 0, one has −∞ < Iλ < I∞λ < 0;
(2) For all 0 < µ < λ, one has

Iλ ≤ Iµ + I∞λ−µ ; (5.8)

The functions λ 7→ Iλ and λ 7→ I∞λ are continuous and decreasing.

Proof. Evidently, I0 = I∞0 and Iλ ≤ I∞λ for any λ ∈ R+. Next we establish
assertion 2.

Let ε > 0, 0 < µ < λ, and let D ∈ Kµ such that Iµ ≤ E(D) ≤ Iµ + ε. As a
consequence of Lemma 8.1 we may choose, without loss of generality, D on the form

D =
N∑

n=1

νn|φn〉〈φn|

with νn ∈ [0, 1],
∑N

n=1 νn = µ, 〈φm, φn〉 = δmn, φn ∈ C∞0 (R3). Indeed, the finite-
rank operators in H are dense and C∞0 (R3) is dense in L2(R3). Similarly, there
exists

D̃ =
N∑

n=1

ν̃n|φ̃n〉〈φ̃n|

with ν̃n ∈ [0, 1],
∑N

n=1 ν̃n = λ− µ, 〈φ̃m, φ̃n〉 = δmn, φ̃n ∈ C∞0 (R3) and satisfying

I∞λ−µ ≤ E∞(D̃) ≤ I∞λ−µ + ε.
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Let e be a unit vector of R3 and let Ta be the translation operator on L2(R3)
defined by Taf = f(· − a) for any f ∈ L2(R3). Define, for j ∈ N,

Dj = D + TjeD̃T−je.

For j large enough, we see that Dj ∈ Kλ and, using the Pauli principle,

Iλ ≤ E(Dj) ≤ E(D) + E∞(D̃) + 2J (ρD, Tjeρ eD) ≤ Iµ + I∞λ−µ + 3ε,

whence (5.8). By analogous reasoning, we also show that

I∞λ ≤ I∞µ + I∞λ−µ. (5.9)

Next, following Le Bris [12, p 122] we consider a L2-normalized function φ ∈
C∞0 (R3). For all σ > 0 and all λ ∈ [0, 1], the density operator Dσ,λ with den-
sity matrix given by

Dσ,λ(r, r′) = λσ3φ(σr)φ(σr′)
belongs to Kλ.

In view of (1.11), we infer that there exists 1 ≤ γ < 3/2, c > 0 and σ0 > 0 such
that for all λ ∈ [0, 1] and all σ ∈ [0, σ0], the estimate

I∞λ ≤ E∞(Dσ,λ) ≤ λσ2 t̃0[φ, φ] + λ2σJ (2|φ|2)− cλγσ3γ−1

∫
R3
|φ|2γ .

Hence I∞λ < 0 provided λ > 0 is sufficiently small. As a consequence of (1.11) and
(5.9), the functions λ 7→ Iλ and λ 7→ I∞λ are decreasing and, for any positive λ, we
conclude that

−∞ < Iλ ≤ I∞λ < 0.
Next we prove that Iλ < I∞λ and therefore we consider a minimizing sequence

(Dj)j∈N for (4.4). An application of Lemma 5.3 ensures the existence of η > 0 and
R > 0 such that for j large enough, there exists rj ∈ R3 so that∫

rj+BR

ρDj
≥ η

We define D̃j = TR1−rjDjTrj−R1 . Then D̃j ∈ Kλ and

E(D̃j) ≤ E∞(Dj)−
Z1αη

R
.

Hence

Iλ ≤ I∞λ − Z1αη

R
< I∞λ .

To prove that the functions λ 7→ Iλ and λ 7→ I∞λ are continuous, we will apply
Lemma 5.4. We establish left-continuity of λ 7→ Iλ. Let λ > 0, and let (λk)k∈N
be an increasing sequence of positive real numbers converging to λ. Let ε > 0 and
D ∈ Kλ such that

Iλ ≤ E(D) ≤ Iλ +
ε

2
.

For all k ∈ N, Dk = λkλ
−1D in Kλk

so that for all k ∈ N and all n ∈ N,

Iλ ≤ Iλk
≤ E(Dk).

Furthermore, by virtue of Lemma 5.4, we have that

E(Dk) =
λk

λ
α−1 Tr(T̃0D) +

λk

λ
α−1

∫
R3
V ρD



12 C. ARGAEZ, M. MELGAARD EJDE-2012/18

+
λk

λ2
J (ρD) + Exc

(λk

λ
ρD

)
−→
k→∞

E(D).

Hence, for k large enough,
Iλ ≤ Iλk

≤ Iλ + ε

We proceed to establishing the right-continuity of λ 7→ Iλ. Let λ > 0, and let
(λk)k∈N be a decreasing sequence of positive real numbers converging to λ. For
each k ∈ N we select Dk ∈ Kλk

such that

Iλk
≤ E(Dλk

) ≤ Iλk
+

1
k
.

For all k ∈ N, we define D̃k = λλ−1
k Dk. Since D̃k ∈ Kλk

we find that

Iλk
≤ E(D̃k) =

λ

λk
Tr(T0Dk) +

λ

λk

∫
R3
V ρDk

+
λ

λ2
k

J (ρDk
) + Exc

( λ
λk
ρDk

)
.

Since (Dk)k∈N is bounded in H and (√ρDk
)k∈N is bounded in H1/2(R3), an appli-

cation of Lemma 5.4 yields

lim
k→∞

(
E(D̃k)− E(Dk)

)
= 0.

Take ε > 0 and kε ≥ 2ε−1 such that for all k ≥ kε,∣∣E(D̃k)− E(Dk)
∣∣ ≤ ε

2
.

Then
∀k ≥ kε, Iλ − ε ≤ Iλk

≤ Iλ

which shows the right-continuity of λ 7→ Iλ on R+ \ {0}. Finally, the estimates in
Lemma 5.1 imply that limλ→0+ Iλ = 0. �

6. Decreasing property

Weakly lower semicontinuity is not valid in the usual sense. However, the fol-
lowing result suffices for our purpose.

Lemma 6.1. Let (Dj)j∈N be a sequence in K, bounded in H, such that Dj → D in
the weak-∗ topology of H. If limj→∞Tr(Dj) = Tr(D), then ρDj → ρD strongly in
Lp(R3) for all p ∈ [1, 3/2), and

E(D) ≤ lim inf
j→∞

E(Dj),

E∞(D) ≤ lim inf
j→∞

E∞(Dj).

Proof. Bear in mind that (Dj)j∈N converges to D in the weak-∗ topology of H
means that, for any compact K on L2(R3),

lim
j→∞

Tr(DjK) = Tr(DK), lim
j→∞

Tr(T 1/2
0 DjT

1/2
0 K) = Tr(T 1/2

0 DT 1/2
0 K).

In view of (3.4) we introduce P+(α) as the projection onto the pure point spectral
subspace of H1,1,α in H := L2(R3) and we let P−(α) = 1− P+(α). Then, following
the idea in [4, p 141], we decompose the functional E(·) into three terms

αE(Dj) = P1(Dj) + P2(Dj) + L(Dj), (6.1)
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where

P1(Dj) = Tr [P+(α)H1,1,αP+(α)Dj ] , (6.2)

P2(Dj) = Tr [P−(α)H1,1,αP−(α)Dj ] , (6.3)

L(Dj) =
1
2

(J (Dj)− Exc(Dj)) . (6.4)

Step 1. We begin by proving that P1(D) ≤ lim infj P1(Dj). We select an orthonor-
mal basis {ek} in H = L2(R3) such that ek ∈ H1/2(R3). Moreover, we introduce
the functions

ψk = [P+(α)H1,1,αP+(α)]1/2ek

If 〈·, ·〉 denotes the scalar product in H, then the weak convergence in S2(H) implies

P1(Dj) = Tr
(
[P+(α)H1,1,αP+(α)]1/2Dj [P+(α)H1,1,αP+(α)]1/2

)
=

∑
k

〈ψkDjψk〉

=
∑

k

〈T−1/2
0 ψk, D̃

(j)T
−1/2
0 ψk〉

where D̃(j) = T
1/2
0 DjT

1/2
0 . An application of Fatou’s lemma, together with the

nonnegativity of the Hilbert-Schmidt operator

Tk = 〈·, T−1/2
0 ψk〉T−1/2

0 ψk

and the hypothesis yield

lim inf
j→∞

P1(Dj) = lim inf
j→∞

∑
k

Tr[TkD̃(j)] ≥
∑

k

Tr[TkD̃] = P1(D).

A similar argument is found in [21, 4, 5].
Step 2. Since P−(α)H1,1,αP−(α) is a Hilbert-Schmidt operator (see, e.g., [5]) and
thus compact, we immediately obtain

lim
j→∞

P2(Dj) = lim
j

Tr[P−(α)H1,1,αP−(α)Dj ]

= Tr[P−(α)H1,1,αP−(α)D] = P2(DJ).

Step 3. We have seen that (√ρDj )j∈N is a bounded sequence in H1/2(R3), so
√
ρDj → √

ρD weakly in H1/2(R3) and strongly in Lp(R3) for all p ∈ [2, 3). In
particular, √ρDj

converges weakly to
√
ρD in L2(R3). On the other hand, we know

that

lim
j→∞

‖√ρDj‖2
L2 = lim

j→∞

∫
R3
ρDj = 2 lim

j→∞
Tr(Dj)

= 2Tr(D) =
∫

R3
ρD = ‖√ρD‖2

L2 .

We conclude that √ρDj →
√
ρD strongly in L2(R3). A standard bootstrap argu-

ment, using that ‖√ρDj‖Lp < C for any 2 ≤ p ≤ 3 and interpolation, implies that
{√ρDj}j∈N converges strongly to

√
ρD in Lp(R3) for all p ∈ [2, 3) and, consequently,

{ρDj}j∈N converges to ρD strongly in Lp(R3) for all p ∈ [1, 3/2). We immediately
obtain

lim
j→∞

J (ρDj ) = J (ρD), lim
j→∞

Exc(ρDj ) = Exc(ρD).
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Indeed,

|J(ρDj
)− J(ρD)|

=
∣∣∣1
2

∫
[(ρDj − ρD) ∗W ](ρDj + ρD) dx

∣∣∣
≤ C‖ρDj

− ρD‖L1

(
‖W1‖L4‖ρDj + ρD‖L4/3 + ‖W2‖L∞‖ρDj

+ ρD‖L1

)
and the claim thus follows from the afore-mentioned strong convergence. Similarly,
Hölder’s inequality and the strong convergence yield

|Exc(ρDj )− Exc(ρD)|

≤ C

∫
|ρDj

− ρD|(ρβ±
Dj

+ ρ
β±
D ) dr

≤ C
( ∫

|ρDj − ρD|1/(1−β±)
)1−β±( ∫

(ρβ±
Dj

+ ρ
β±
D )1/β±

)β±
−→
j→∞

0.

�

Arguments similar to those in Steps 1 and 2 are found in [21, 4, 5, 8].

7. Proof of main result

Proof of Theorem 1.2. It follows from Lemma 5.1 that E(·) is bounded from be-
low. Let (Dj)j∈N be a minimizing sequence for Iλ. Then Lemma 5.1 also shows
that (Dj)j∈N is bounded in H and that (√ρDj )j∈N is bounded in H1/2(R3). By
extracting a suitable subsequence, again denoted by (Dj)j∈N, we may assume that
(Dj)j∈N converges to some D ∈ K for the weak-∗ topology of H and that (√ρDj )j∈N

converges to
√
ρD weakly in H1/2(R3), strongly in Lp

loc(R3) for all 2 ≤ p < 3 and
almost everywhere.
Case Tr(D) = λ. Evidently, λ ∈ Kλ and Lemma 6.1 yields

E(D) ≤ lim inf
j→∞

E(Dj) = Iλ,

whence D is a minimizer of (4.2).
Case Tr(D) < λ. Define ϑ := Tr(D) and suppose that 0 < ϑ < λ. Let χ be
a smooth, radial function, non-increasing in the radial direction, which satisfies
χ(0) = 1, 0 ≤ χ(x) < 1 if |x| > 0, χ(x) = 0 if |x| ≥ 1, ‖∇χ‖L∞ ≤ 2 and
‖∇(1 − χ2)1/2‖L∞ ≤ 2. Introduce the quadratic partition of unity χ2 + ζ2 = 1
and put χR(·) = χ(·/R). For any j ∈ N, R 7→ Tr(χRDjχR) is a continuous
nondecreasing function which equals zero at R = 0 and limR→∞Tr(χRDjχR) =
Tr(Dj) = λ. Choose Rj > 0 such that Tr(χRjDχRj ) = ϑ. Then Rj → ∞,
otherwise (Rj)j∈N contains a subsequence which converges to some (finite value) R̃
and, consequently,∫

R3
ρD(x)χ2

R̃
(x) dx = lim

k→∞

∫
R3
ρDjk

(x)χ2
Rjk

dx

= 2 lim
k→∞

Tr(χRjk
Djk

χRjk
)

= 2ϑ =
∫

R3
ρD(x) dx
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Since χ2
R̃
< 1 on R3 \ {0} we obtain a contradiction. As a consequence, (Rj)j∈N

goes to infinity. Next we introduce

D1,j = χRj
DjχRj

, D2,j = ζRj
DjζRj

Then:

(1) 0 ≤ Di,j ≤ 1 ;
(2) Di,j are trace class self-adjoint operators on L2(R3);
(3) ρDj = ρD1,j + ρD2,j ; and
(4) Tr(D1,j) = ϑ, Tr(D2,j) = λ− ϑ.

The following IMS-type estimate

T0 ≥ χRjT0χRj + ζRjT0ζRj −
1
π

∫ ∞

0

1
T 2

0 + τ

(
|∇χRj |2 + |∇ζRj |2

) 1
T 2

0 + τ

√
τ dτ

is useful at this stage; see Lemma 3.1. Employing ‖∇χRj‖2
L∞ +‖∇ζRj‖2

L∞ ≤ C/R2

and the uniform boundedness of Tr(Dj), we obtain

Tr(T0Dj) ≥ Tr(T0D1,j) + Tr(T0D2,j)−
cλ

R2
j

(7.1)

We infer that the sequences (D1,j)j∈N and (D2,j)j∈N are bounded on H. For any
φ ∈ C∞0 (R3), we have that

Tr (D1,j |φ〉〈φ|) = Tr
(
D1,j

(
|ξRjφ〉〈ξRjφ|

))
= Tr

(
D1,j

(
|(ξRj − 1)φ〉〈ξRjφ|

))
+ Tr

(
Dj

(
|φ〉〈(ξRj − 1)φ|

))
+ Tr (Dj (|φ〉〈φ|))

−→
j→∞

Tr (D (|φ〉〈φ|)) ,

which shows that (D1,j)j∈N converges to D for the weak-∗ topology of H. Since
Tr(D1,j) = ϑ = Tr(D) for all j, we infer from Lemma 6.1 that (ρD1,j ) converges to
ρD strongly in Lp(R3), p ∈ [1, 3/2), and

E(D) ≤ lim
j→∞

E(D1,j) (7.2)

because ρD2,j = ρDj − ρD1,j . In particular, (ρD2,j ) converges strongly to zero in
Lp

loc(R3), p ∈ [1, 3/2) and (ρDj ) and (ρD1,j ) converge to ρD in Lp
loc. Another

application of (7.1) yields

E(Dj) = Tr(T̃0Dj) +
∫

R3
V ρDj

+ J (ρDj
) +

∫
R3
g(ρDj )

≥ Tr(T̃0D1,j) + Tr(T̃0D2,j) +
∫

R3
V ρD1,j

+
∫

R3
V ρD2,j

+

+ J (ρD1,j ) + J (ρD2,j ) +
∫

R3
g(ρD1,j + ρD2,j )−

cλ

R2
j

= E(D1,j) + E∞(D2,j) +
∫

R3
V ρD2,j

+
∫

R3

(
g(ρD1,j

+ ρD2,j
)− g(ρD1,j

)− g(ρD2,j
)
)
− cλ

R2
j

.
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Now, on the one hand, by choosing R large enough, we have that∣∣ ∫
R3
V ρD2,j

∣∣ ≤ αZtot

( ∫
B(0,R)

ρD2,j

)1/2

‖√ρD2,j‖H1/2 +
αZtot(λ− ϑ)

R
.

Furthermore, for some constant C independent of R and n, we have∣∣ ∫
R3

(
g(ρD1,j + ρD2,j

)
− g(ρD1,j )− g(ρD2,j )

∣∣
≤ C

{ ∫
BR

(
ρD2,j + ρ2

D2,j

)
+ ‖ρD1,j‖L2

( ∫
Bc

R

ρ2
D2,j

)1/2}
+ C

( ∫
BR

ρ
p−
D2,j

+ ρ
p+
D2,j

)
+ C

{∫
Bc

R

(
ρD1,j

+ ρ2
D1,j

)
+ ‖ρD2,j‖L2

( ∫
Bc

R

ρ2
D1,j

)1/2}
+ C

( ∫
Bc

R

ρ
p−
D1,j

+ ρ
p+
D1,j

)
We already know that the sequences (√ρD1,j )n∈N and (√ρD2,j )j∈N are bounded

in H1/2(R3), that ρD1,j
→ ρD in Lp(R3) for any p ∈ [1, 3/2) and that ρD2,j

→ 0 in
Lp

loc(R3) for any p ∈ [1, 3/2). Therefore, for all ε > 0, there exists J ∈ N such that
∀j ≥ J ,

E(Dj) ≥ E(D1,j) + E∞(D2,j)− ε ≥ Iϑ + I∞λ−ϑ − ε.

By letting j tend to infinity, ε tend to zero, and applying (5.8), we get that Iλ =
Iϑ + I∞λ−ϑ and that (D1,j)j∈N, respectively (D2,j)j∈N is a minimizing sequence for
Iϑ, respectively for I∞λ−ϑ. From (7.2); i.e., E(D) ≤ limj→∞ E(D1,j), it is seen that
D is a minimizer for Iϑ.

We take a closer look at the sequence (D2,j)j∈N. Since it is a minimizing sequence
for I∞λ−ϑ, the sequence (ρDj )j∈N cannot vanish. Therefore, there exist η > 0, R > 0
such that, for all j ∈ N, ∫

yj+BR

ρD2,j ≥ η

for some yj ∈ R3 and, as a consequence, the sequence (Tyj
D2,jT−yj

)j∈N converges
in the weak-∗ topology of H to some D̃ ∈ K satisfying Tr(D̃) ≥ η > 0. By setting
κ = Tr(D̃) we may argue as above to verify that D̃ is a minimizer for I∞κ and, in
addition,

Iλ = Iϑ + I∞κ + I∞λ−ϑ−κ.

However, Proposition 8.2 informs us that Iϑ+κ < Iϑ + I∞κ . Hence we conclude
that Iϑ+κ + I∞λ−ϑ−κ < Iλ which contradicts Proposition 5.5. This completes the
proof. �

Appendix: Auxiliary results

We collect some fundamental facts in the following result.

Lemma 8.1. Suppose λ > 0 and let D ∈ Kλ. There exists a sequence {Dj} with
the following properties:

(1) For all j ∈ N, Dj ∈ Kλ, Dj is finite-rank and Ran(Dj) ⊂ C∞0 (R3);
(2) The sequence {Dj} converges to D strongly in H;
(3) The sequence {√ρDj} converges to

√
ρD strongly in H1/2(R3);
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(4) The sequences {ρDj
} and {T 1/2

0
√
ρDj

} converge a.e. to ρD and T
1/2
0

√
ρD

respectively.

Proof. We divide the proof into two steps.
Step 1. Consider D ∈ Kλ. We have that

D =
+∞∑
n=1

νn|φn〉〈φn|

with νn ∈ [0, 1], φn ∈ H1/2(R3), 〈φm, φn〉L2 = δmn, Tr(D) =
∑+∞

n=1 νn = λ and
Tr(T0D) =

∑+∞
n=1 νn‖T 1/2

0 φn‖2
L2 <∞.

We begin by verifying that D can be approximated by a sequence of finite-rank
operators. Choose N0 ∈ N such that nN0 ∈ (0, 1); if no such N0 exists, then D
has finite rank and one can proceed to the second part of the proof without further
comments. For all N ∈ N , we introduce

D̃N =
N∑

i=1

ni|φi〉〈φi|+
(
λ−

N∑
i=1

ni

)
|φN0〉〈φN0 |.

By choosing N large enough, we have that D̃N ∈ Kλ and the sequence (D̃) evidently
converges to D in H.
Step 2. Next we show that ‖D̃N −D‖H → 0 implies statement 3. First we observe
that (ρ eDN

) converges a.e. to ρD. Second, we have the representation

〈f, T̃0f〉 = C

∫
R3

∫
R3

|f(x)− f(y)|2

|x− y|2
K2(α−1|x− y|) dx dy,

where K2(·) is the modified Bessel function of the third kind. We shall show that∣∣〈√ρ eDN
, T̃0

√
ρ eDN

〉 − 〈√ρD, T̃0
√
ρD〉

∣∣ → 0.

Since (ρ eDN
) converges a.e. to ρD, we have∣∣√ρ eDN

(x)−
√
ρ eDN

(y)
∣∣2 → ∣∣√ρD(x)−

√
ρD(y)

∣∣2 a.e.

Moreover, using Young’s inequality, we find that∣∣√ρ eDN
(x)−

√
ρ eDN

(y)
∣∣2

≤
∣∣√ρD(x)−

√
ρD(y)

∣∣2 +
∣∣√ρD(x) +

√
ρD(y)

∣∣2 (8.3)

An application of (5.1) shows that

C

∫
R3

∫
R3

|
√
ρD(x)−

√
ρD(y)|2

|x− y|2
K2(α−1|x− y|) dx dy

= 〈√ρD, T̃0
√
ρD〉

≤
∑

n

νn‖T̃ 1/2
0 φn‖2

L2 = Tr[T̃0D] <∞.

This settles the issue of dominance associated with the first term of the right-hand
of (8.3), and the second term is taken care of by utilizing the properties of φn and
K2(·). Hence Lebesgue’s dominated convergence theorem allows us to conclude.
The final part of the proof amounts to approximating each φn by a sequence of
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smooth compactly supported functions. The arguments, which also establishes
statement 4, are standard and thus omitted. �

Within the non-relativistic context a similar result was first given by Lions [16,
Lemma II.1]. By means of Lemma 3.2 we can prove the following result.

Proposition 8.2. Suppose ϑ > 0 and vk > 0 satisfy ϑ + κ ≤ Np ≤ (1/2)Ztot.
If the problems associated to Iϑ and I∞κ have minimizers, then the following strict
inequality holds:

Iϑ+κ < Iϑ + I∞κ (8.4)

Proof. If D is a minimizer for the problem Iϑ, then D is a solution to the Euler
equation

D = 1(−∞,εF)(TρD ) +D(δ)

for some Fermi level εF ∈ R. Here

TρD = α−1T̃0 + α−1V + ρD ∗ |r|−1 + g′(ρD), (8.5)

and the operator D(δ) satisfies 0 ≤ D(δ) ≤ 1 and Ran(D(δ)) ⊂ Ker(TρD − εF). By
standard arguments, one shows that specess(TρD ) = [0,+∞). Moreover, TρD is
bounded from below,

TρD ≤ α−1T̃0 + V + ρD ∗ |r|−1 (8.6)

Since −
∑M

k=1 Zk +
∫

R3 ρD = Ztot +2ϑ < −Ztot +2λ ≤ 0, we may apply Lemma 3.2
which tells us that the operator on the right-hand side of (8.6) has infinitely many
negative eigenvalues of finite multiplicity and TρD inherits this property. Hence, we
will have εF < 0 and

D =
ñ∑

n=1

|φn〉〈φn|+
m∑

n=ñ+1

νn|φi〉〈φi|

where νn ∈ [0, 1] and

α−1T̃0φn + V φn +
(
ρD ∗

1
|r|

)
φn + g′(ρD)φn = εnφn

where ε1 ≤ ε2 ≤ · · · < 0 denote the negative eigenvalues of TρD , taking into account
multiplicity. We have the following facts from [5] (requires a few additional, but
easy, arguments):

(1) ε1 is a nongenerate eigenvalue of HρD ;
(2) φn (and hence ρD belongs to H1/2(R3);
(3) φn decays exponentially fast to zero at infinity.

Next suppose D′ is a minimizer for the problem associated to I∞κ . Then

D̃ = 1(−∞,ε̃F)(T∞ρ eD ) + D̃(δ)

where
T∞ρ eD = α−1T̃0 + ρ eD ∗ |r|−1 + g′(ρ eD),

with 0 ≤ D̃ ≤ 1 and Ran(D̃) ⊂ Ker(T∞ρ eD − ε̃F) and ε̃F ≤ 0. Consider first the
situation ε̃F < 0. In this case we have that

D̃ =
m∑

n=0

|φ̃n〉〈φ̃n|+
m̃∑

n=m+1

ν̃n|φ̃n〉〈φ̃n|
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where every φ̃n ∈ C∞(R3) decays exponentially to zero at infinity. By choosing
j ∈ N sufficiently large, we infer that the operator

Dj := min{1, ‖D + TjeD̃T−je‖−1}
(
D + TjeD̃T−je

)
belongs to K and Tr(Dj) ≤ (ϑ+ κ). Since both φn and φ̃n decay exponentially to
zero at infinity, a straightforward computation implies that there exists some δ > 0
such that for j sufficiently large,

E(Dj) = E(D) + E∞(D̃)− 2ϑ(Ztot − 2κ)
j

+O(e−δj)

= Iϑ + I∞κ − 2ϑ(Ztot − 2κ)
j

+O(e−δj)

whence, for j large enough, (we have that 2κ < 2Np ≤ Ztot for j large enough)

Iϑ+κ ≤ ITr(Dn) ≤ E(Dj) < Iϑ + I∞κ .

If ε̃F = 0, then zero is an eigenvalue of T∞ρ eD and there exists a L2-normalized

ψ ∈ Ker(T∞ρ eD ) ⊂ H1/2(R3) such that D̃ψ = βψ with β > 0. For 0 < γ < β, both

D + γ|φm+1〉〈φm+1| and D̃ − γ|ψ〉〈ψ|
belong to K and a straightforward computation shows that

E(γ|φm+1〉〈φm+1|) = Iϑ + 2γεm+1 + o(γ)

and
E∞(D̃ − γ|ψ〉〈ψ|) = I∞κ + o(γ).

Since
Tr[γ|φm+1〉〈φm+1|] = ϑ+ γ and Tr[D̃ − γ|ψ〉〈ψ|] = κ− γ,

we infer that

Iϑ+γ ≤ Iϑ + 2γεm+1 + o(γ) and I∞κ−γ ≤ I∞κ + o(γ).

Then, by Proposition 5.5 and for γ small enough, we conclude that

Iϑ+κ ≤ Iϑ+γ + I∞κ−γ ≤ Iϑ + I∞κ + 2γεm+1 + o(γ) < Iϑ + I∞κ .
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