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WEAK-STRONG UNIQUENESS OF HYDRODYNAMIC FLOW OF
NEMATIC LIQUID CRYSTALS

JI-HONG ZHAO, QIAO LIU

ABSTRACT. This article concerns a simplified model for a hydrodynamic sys-
tem of incompressible nematic liquid crystal materials. It is shown that the
weak-strong uniqueness holds for the class of weak solutions provided that

cither (u,Vd) € C([0,T), L3(R?)); or (u,Vd) € L(0,T; B, o /P29 (R3))
Withzgp<oo,2<q<ooand%+§>1.

1. INTRODUCTION

In this article, we study uniqueness criteria for solutions of a hydrodynamical
system modeling the flow of nematic liquid crystals in the whole space R?, namely
the Cauchy problem

Ou—vAu+u-Vu+ Vr = —-Adiv(Vd © Vd),
Od +u-Vd = y(Ad — g(d)),
divu =0,
(u,d)|t=0 = (ug,dp).
This system describes the time evolution of nematic liquid crystal materials (cf.

[18]), where u € R3 and 7 € R denote, respectively, the velocity field and the
pressure of the fluid, and d € R? denotes the director field of the nematic liquid

crystals; v, A,7 are positive constants, and g(d) = VG(d) with G(d) = % -
1dP?

(1.1)

is a Ginzburg-Landau approximation function; the unusual term Vd ©® Vd =
({0z,d,02,d))1<i j<3 is the stress tensor induced by the director field d, and the
notation (-,-) denotes the inner product in R3. Since the sizes of the viscosity
constants v, A and v do not play important roles in the proof of our main result,
we shall assume that v = A =~ = 1 throughout this paper.

As the authors pointed out in [20], although system is a simplified version
of the liquid crystal model proposed by Ericksen [3] and Leslie [16], but it still
retains most of the interesting mathematical properties. We refer the reader to
see [4, [10, [I7, 18] and the references therein for more discussions of the physical
background of this problem. In [20], using the modified Galerkin method and the
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compactness argument, Lin and Liu proved global existence of weak solutions of
with g(d) = VG(d) for some smooth and bounded function G : R?* — R.
Moreover, when g(d) = 0, they established global existence of strong solutions
if the initial data is sufficiently small (or if the viscosity v is sufficiently large).
The same as for the Navier-Stokes equations (which are equations obtained by
putting d = 0 in (L)), it is well known that weak solution of is unique
and regular in R?. However, the question of regularity and uniqueness of weak
solution is an outstanding open problem in R3. Hence, it is meaningful to find
sufficient conditions on a strong solution of such that all weak solutions sharing
the same initial data must coincide with the one which additionally satisfies these
sufficient conditions, and we say then weak-strong uniqueness holds. For the three
dimensional Navier-Stokes equations, Prodi [25] and Serrin [27] proved that weak-
strong uniqueness holds in the class

3 2
P = LY0,T; LP(R?) with =+ = =1, 3 <p< o0
P g

Von Wahl [28] and Giga [9] improved this result in the class
P = C([0,T], L*(R)).

Moreover, this last result was extended in the limit case by Kozono and Sohr [13],

and Escauriaza, Seregin and Sverak [5], who proved that weak strong uniqueness
holds for

P = L>(0,T; L*(R?)).
For uniqueness criteria related to the Sobolev spaces, we refer the reader to [T, 26].

Recently, many researches have refined the above results. Kozono and Taniuchi
[14] proved that weak-strong uniqueness holds in the class

P = L*(0,T; BMO).

Gallagher and Planchon [6] proved that weak-strong uniqueness holds for
P = L0, T; B;;+3/p+2/q(R3)) with 2 <p < 00, 2 < ¢ < 0o and 3 +2>1.
’ P q

Lemarié-Rieusset [I5] and Germain [§] proved that weak-strong uniqueness holds
for

P=c(0,7],x\”) or P=r¥0"7(0,T;X,) withre[-1,1).

Chen, Miao and Zhang [2] improved the above results by showing weak-strong
uniqueness for

P =L90,T; B;O@(RB)) with li-i-?" <p<oo,r€ (0,1 and (p,r) # (00, 1).

We refer the reader to see [8] and [15] for definitions of these function spaces.

In this article, we are interested in finding uniqueness criteria for weak solutions
of (L.1). For the two n x n matrixes A = (a;;)7;—; and B = (b;)}';—;, we define
A:B= ZZj:l ai;jbi;, and denote by ® the tensor product. Let us recall the
definition of weak solutions.

Definition 1.1. The vector-valued function (u, d) is called a weak solution of (|1.1))
on R? x (0,7T) if it satisfies the following conditions:
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(1) (u,vd) € L>®(0,T; L*(R?)) N L?(0, T; H'(R?)) := (£S), where H*(R?) is
the usual homogeneous Sobolev space; i.e., the space of functions whose
gradient belongs to L?(R3).

(2) (u,d) satisfies in the sense of distributions; i.e., divu = 0 in the
distributional sense and for all v € C§°(R3*x (0, 7)) and e € C§°(R3*x (0,7))
with divv = 0, we have

T T T
/ / u-atvdasdt—/ Vu:Vvdxdt—i—/ / u®u:Vvdxdt
0o Jrs 0o Jr3 o Jms

T
:—/ / Vdo Vd : Vvdx dt
o Jrs

and

T T T
/ / d-@tedxdt—/ Vd:Vedde—/ / u®d: Vedrdt
0o Jms 0o Jms 0o Jms

_ /OT/R3g(d)-edxdt.

(3) The following energy inequality holds (see (3.6) in the appendix):
t
la(®)lI72 + [Vd(t)[Z + 2/0 (IVu(m)|22 + |Ad(7)|Z2)dr
t
+ 6/ |d- vd|3.(r)dr
0

t
< IluolZ + Vo2 +/ IVA(r)|Zadr for all ¢ > 0,
0

Before presenting the exact statement of our result, let us first recall the defi-
nition of the homogeneous Besov spaces. Let S(R®) be the Schwartz space. We
denote by {Aj,S;}jez the Littlewood-Paley decomposition. Let Z(R?) = {f €

S(R3) : 9°f(0) =0, Vo € (NU {0})®}, and denote its dual by Z’(R?). Recall
that for s € R and (p,q) € [1,00] x [1, 00], the homogeneous Besov space B;q(ﬂ@)
is defined by

B; (%) = {f € Z'(®®): ||, , <o},

where
j 1
Ul = (Soea218571,) 7 for1<q <o,
B; 4 Supjez 2JS||Ajf||Lp for q = 0.
1 . . 3 N 3 B . 3 |
It is well-known that if either s < sors=2and ¢ =1, then (Bs ,(R?),]| - ||Bqu)

is a Banach space. For more details about the homogeneous Besov spaces, we refer
the reader to see [I5]. Next we introduce some notations. Given 0 < T' < co and a
Banach space X, we denote by C([0,7T],X) the Banach space of all bounded and
continuous mappings from [0,7] to X, and for p > 1, we denote by LP(0,T; X)
the set of Bochner measurable X-valued time dependent functions f such that
t — ||fllx belongs to L?(0,T). The product of Banach spaces X x Y will be
equipped with the usual norm ||(f, 9)||lxxy = || fllx + llglly, and if X = Y, we use

(£, 9)llx to denote [|(f, g)||xxx-
The main result of this paper is as follows.
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Theorem 1.2. Assume that (u,d) and (@1,d) are two weak solutions of for
a given initial data (g, Vdg) € L*(R3). Assume furthermore that for some T > 0,
either
(u,Vd) € C([0,T], L*(R?)) (1.2)
or
(u,Vd) € LU(0,T; B, s 3/pT2/9(R3)) (1.3)

with 2 <p < oo, 2<qg<00 and%—l—% >1. Thenu =1 and d = d on the time
interval [0, 7).

Remark 1.3. Theorem holds with % + % = 11in (1.3) as well, with the space

L(0,T; B,;;Jrg/erz/q(R?’)) replaced by L4(0,T; LP(R3)), when p > 3, namely, if we
assume that

3 2
(u,vd) € LY(0,T;, LP(R?)) with 3 < p < oo, 2§q<ooand5—|—5:1,

then u = @ and d = d on the time interval [0, T]. This can be seen as a consequence
of Prodi-Serrin’s uniqueness criterion.

Remark 1.4. We extend, in Theorem[I.2} the uniqueness criteria of weak solutions

of [28] and [6] for the system (L.I)).

Let us sketch an idea leading to the proof of Theorem We introduce the
function
F=vVd.
Let FT be the transpose of F. Then, taking the gradient of second equation of
(1.1, noticing the facts that F © F = FTF and

d (v Ou; 0d; | & 9 /0d;

foralli,k=1,2,...,n, system reads
du—Au=—-Vr—u-Vu-—div(FTF),
OF —AF = —u-VF — FVu— (3|d|> - 1)F,
divua =0,
(u, F)|t=0 = (o, Fo),

where Fy = Vdg. System is more related to the viscoelastic fluids, which
had attracted much attention recently; see for instance [2I]. Using the technical
matrixes analysis, the energy inequality and the similar argument in the studying
of the incompressible Navier-Stokes equations in [28] and [6], we can obtain some
important estimates which yield the proof of Theorem

Before ending this section, we mention some well-posedness results of the system
(1.1). Recently, when g(d) = 0, by using the maximal regularity of Stokes equations
and the parabolic equations, Hu and Wang [I2] proved global existence of strong
solutions to the system for small initial data belonging to Besov spaces of
positive-order. They also proved that when the strong solution exists, all global
weak solutions constructed by [20] must be equal to the unique strong solution.
In [19] and [22], the authors studied the system with g(d) = |Vd|*d in two
dimensions. They established the global existence, uniqueness and partial regularity

(1.4)
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of weak solutions and performed the blow-up analysis at each singular time. Hong
[11] proved independently the global existence of weak solutions of the system
in two dimensions. In [29], Wang established global well-posedness of with
g(d) = |Vd|?d for small initial data in BMO~! x BMO. Some regularity criteria
for weak solutions of the system were also established, see [7], [23] and [24].

The rest of this paper is organized as follows. In Section 2, we present the proof
of Theorem [I.2] In appendix, we shall establish the basic energy inequality of the
system , which gives global existence of weak solutions of .

2. THE PROOF OF THEOREM

Throughout this section, we assume that (ug, Vdy), (tig, Vdg) € L?*(R?), and
denote by (u,d) and (q, &), respectively, be two weak solutions associated with
initial conditions (ug, Vdp) and (ug, v&o), respectively.

Let us define F = Vd, F = Vd, F = Vd, and Fy, = Vd,. Obviously, by
Deﬁnition (u, F) and (a, F) verify equations and satisfy

la(t)2: + |F(0)]2 +2 / (IVu() |22 + [ VE(r)[22)dr
+6 / I[d|F |2 (7)dr (2.1)

t
< |luollZ2 + [[FollZ- +2/0 1E(T)|1Zdr,

t
a7z + [1F ()7 +2/O (IVa()z: + IVF(7)|72)dr
t
+6/ I IE|2s (r)dr (2.2)
0
~ t ~
< [[aollZ2 + [ FollZ2 +2/0 1F(7) || 2.
Settingw =u—1u, E=F — F, wo = ug — g and Ey = Fy — Fy, we divide the
proof of Theorem [T.2]into the following two cases.

Case 1. (u,Vd) € C([0,7], L3>(R3)). We shall prove the following stability
result.

Proposition 2.1. Assume that (u,Vd) € C([0,T], L3>(R3)). Then

I(w(t), E(t))IIZ +2/0 I(Vw(r), VE(7))|Z2dr

< li(wo, Eo)I3= exp (Ct(I(w, F)Z o710y + 1)),

(2.3)

where C is a constant depending on H(d,a)”Loo(O’T;Hl) and ||(d,c~l)|\L2(0,T;H2).

It is clear that, under the condition (|1.2), Theorem is an immediate conse-
quence of Proposition [2.1] Note that, by (2.1I)) and (2.2), the left hand side of (2-3)
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satisfies
(w(t), E@) 2 +2 / |(Yw(r), VE())|2sdr
0
— [[u(), F())]25 + | (8(), F(1))]25 +2 / |(Vu(r), VE(@)) [2adr
+ 2/ [(Va(r), VE(7))||22dr — 2(u(t)|a(t))
0
—2(F()|F(t)) — 4 / (Vu(r)|Va(r))dr —4 / (VF(r)|VE(r))dr (2.4)
0 0
< (a0, Fo)%n +2 / |F(r)[22dr — 6 / I F|2 (7)dr + [ (i, Fo) 25
+2 / |E(r)|2adr — 6 / IAE|2. (r)dr — 2(u()a()) — 2(F ()| F(1))
0 0
—4/0 (Vu(T)\Vﬁ(T))dT—4/O (VF(T)\VF(T))dT

where we denote by (-|-) the scalar product in L?(R?). Hence, we aim at proving
the following lemma.

Lemma 2.2. Under the assumptions of Proposition[2.1], the following equality holds
forallt <T,

(u()la() + (FO)F(D) +2 / (Vu(r)|[Va(r))dr + 2 / (VE(r)|VE(r)dr
0 0

= (uglua ) — w-Vw-udzxdr T E . Vude dr

— (woliio) + (FolFo) /0 [wev dd+/0/R3FF Vuded

t t
—1—/ FTF:VudxdT—/ Vu: (FT'F + FTF)dxdr
0 Jr3 o Jrs

t
—/ w-VF: FdxdT—f—// F:FVwdzdr
R3 R3

// (3|d* - 1)F : FdxdT—// (3|d|?> = 1)F : Fdxdr.
R3 R3
(2.5)

Proof. Let us choose two smooth sequences {(ii,,, Fj,)} (div i, = 0) and {(u,, F,)}
(divu, = 0) such that

lim (4, F,) = (i, F) in L?(0,T; H*(R?)),

e _ 2.6
lim (@, F,) = (@, F) weakly-star in L>°(0,T; L*(R?)) (26)
n—oo
and
lim (u,, F,) = (u,F) in L*(0,T; HY(R®)) n C([0,T], L3(R?)),
n—oo 2.7
lim (um F,) = (u,F) weakly-star in L>(0,T; L*(R?)). 27

We split the proof into the following two steps.
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Step 1. Taking the scalar product with @,, and u,, of the equation ([1.4) on u
and u respectively, after integration in time and integration by parts in the space
variables, we obtain

/0 t (([“)Tu|ﬁn) + (Vu|Vi,) + (u- Vuli,) + (div(FTF)\ﬁn)>dT —0  (28)
and

/Ot ((aTa|un) +(Va|Vu,) + (@ - Viju,) + (div(ﬁ'TF)|un))dT =0. (29)
By and (2.7)), it is obvious that

lim (/Ot(Vu|Vﬁn)dT+/Ot(Vﬁ|Vun)dT) :2/0t(Vu|Vf1)dT. (2.10)

n— oo

Applying the Hoélder inequality and the Sobolev embedding inequality, it follows
that

t t
/ (- Viajuy,)dr < C/ lall s ||Vl Lz lun || Lz dr
0 0

(2.11)
< C”ﬁniﬁ(o’T;Hl)HunHC([O,T],L'@')~
Since u,, converges to u in C([0,T], L3(R3)), (2.11) implies that
¢ ¢
lim [ (@ Viu,)dr = / (@ Viu)dr. (2.12)

Similarly, by applying (2.6)), (2.7) and (2.11]), we obtain the following three equali-
ties:
t t

lim [ (u-Vula,)dr =— lim [ (u-Vua,|lu)dr
f , (2.13)
= —/ (u-Valu)dr = / (u- Vu|u)dr,
0 0
t t
lim [ (div(FTF)|i,)dr = — lim [ (FTF|Va,)dr
f . (2.14)
=- / (FTF|Va)dr = / (div(FT F)|a)dr,
0 0
and
t o t 3 o ~ _
lim [ (div(FTF)|u,)dr = lim ( > (0., FTF + FT(r“)miF)|un)dT
n—oo Jo n—oo Jq —
=t (2.15)

t 3 t
= / (Z(axiFTF + FTa$iF)|u) dr = / (div(FT F)|u)dr.
0 “i=1 0
Since 9yt = At — it - Vit — div(FTF) — Vr holds in the sense of distribution, the
estimates (2.10]), (2.12)—(2.15) and divu,, = 0 imply in particular that

t t

lim [ (9-@un)dr = — lim ((Vﬁ|Vun)+(ﬁ-Vﬁ\un)—|—(div(FTF)|un)>dT
0

n—oo 0 n—oo

- /t ((Vﬁ|Vu) + (@ - Vi|u) + (div(FTF)|u))dT
0
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= /O t(37ﬁ|u)d7.

It can be proved analogously that

t

t
lim (8Tu|f1n)dT:/ (Oruju)dr.
0

n—oo 0

Putting these estimates together, and noticing that
t
[ @) + @rula)ar = (o)),
0
t t
/ ((ﬁ - Viilu) — (u- Vﬁ|u))d7‘ - / (w - Vwl|u)dr,
0 0
we obtain
t
(u(@®)u(t)) + 2/ (Vu|Va)dr
0
t ¢ o
= (ug|0y) —/ (w- Vw|u)d7‘—|—/ / FTF:Vudrdr
0 o Jrs

t
+// FTF :vVudzdr.
0 R3

Step 2. Proceeding in the same way as (2.8]) and (2.9)), we obtain
t
[ (@:F1F) + (VFIVE) + (- VFIF)
0
+ (FVulF,) + ((3|d]? - 1)F|Fn))d7 =0
and
t ~ ~ ~
[ (@ 1R + (VEIVE) + @ VFIF)
0

+ (FVa|F,) + ((3/d? - 1)F|Fn)>d7 —0.

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

By using assumptions ([2.6))—(2.7)) and similar argument in the proof of (2.11)), we

obtain

t
lim (/ (VF|VFn)dT+/

t t
lim [ (@ VF|F,)dr = / (- VE|F)dr,
n—oo 0 0
t N t 5
lim (u-VF|F,)dr = / (u-VF|F)dr,
0

n—oo 0

t t
(VFWFn)dT) = 2/ (VF|VE)dr,
0

t t
lim [ (FVa|F,)dr = / (FVa|F)dr,
n—=0 Jo 0
t

t
lim [ (FVulF,)dr = / (FVul|F)dr.
0

n—oo 0

(2.21)
(2.22)
(2.23)
(2.24)

(2.25)
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To estimate the remaining terms, the Holder inequality and the Sobolev embedding
theorem yield

t
/ (F @) Ea())dr < |F e | Eallzomis)
0
and
t N t 5
/0 (3IdPF|F,)(r)dr < C / 1) 2o |l F () || () | ol

< C”dHLoo(o,T;Hl)HF||L2(O,T;L2)||Fn||L2(o,T;H1)~
Hence, by (2.6)—(2.7)), we can easily see that

t t
im [ (3df2 — 1)F|B,)dr = / (3|d[2 — 1)F|F)dr. (2.26)
Similarly,
t t
lim ((3\d\2 —1)F|E,)dr = / ((3|d|* — 1) F|F)dr (2.27)

As in the derivations of estimates ) and ( - the above estimates (2.21))—
[2:27) imply

t

t
lim ((8TF|Fn)dT:/ (0, F|F)dr
0

n—oo Jq
t

t
lim (a.,-F|Fn)dT:/ (0. F|F)dr
0

n—oo 0

Since

/t(aTFF) + (8. F|F)dr = (F(t)|F(t)) — (Fo|Fo),

// VF:F+ua VF: F)dxdT—// V(F : F)dzdr =0,
R3 R3

FVu:F+F:FVu=Vu: (FTF+FTF),

we have
¢
/ / (w-VF:F+a-VE:F+FVu: F+ FVa: F)dedr
R3
t
:/ Vu:(FTF+FTF)+(u—ﬁ)-VF:F—F:FV(u—ﬁ))dde.
R3
Here we have used the facts divii =0 and AB:C = A: CBT = B : ATC for any

three n x n matrixes A, B and C. Finally, putting all above estimates together, we
obtain

(F(8)|F(1) + 2 /O (VF|VE)dr

t
:(F0|FO)—/ (Vu:(FTF+FTF)+W.VF:F—F;FVW) dx dr
0 JR

_/t/ (B2 =1)F: F)+ (8142 - )F : F)) dwdr.
0 JR3
(2.28)
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Now it is easy see that (2.5 follows from (2.18)) and (2.28). This proves Lemma
2.3 0

The following result plays a very important role in the proof of Proposition [2:1}

Lemma 2.3 ([28]). Let u be a measurable function in (LS) N C([0,T], L*(R3)).
Then for each € > 0 we can split u on [0,T] in u=m+1 withm € L*([0,T] x R3)
and ||l||L°°(O,T;L3) < e€.

Proof. The proof of this lemma is due to [28], but we give it for completeness. Since
u € C([0,T], L3(R?)), by the uniform continuity, we can choose N large enough such
that

N-1
k €
H’LL(,T,t) - ’;) X[%T,%T] (t)u(xv NT)HLOO(O,T;Li") < 5;

where x[q,5 denotes the characteristic function on the interval [a,b]. Now we may
approximate each u(-, £7) by a function my y € L (R?) with an error controlled
in L3-norm by |lu(-, £T) — my n(-)||s < /2. Now we define m as m(z,t) =
D 0<k<N_1 X[ &, k1) (tymg,n(x), and | = u — m. This proves Lemma. O

Proof of Proposition Since divw = 0, we obtain fg Jgs W-VF : Fdxdr = 0.
By (2.4) and Lemma [2.2] it follows immediately that

t
[(w(t), E(t))]7 +2/0 [(Vw(r), VE(T))||72dr
< [(wo, Fo)l72 + [ (o0, Fo)172 — 2(uo o) — 2(Fo| Fo)
t t
+2/ W'VW'udQSdT—Q//FTFSVUdJCdT
0 JR3 0 JR3
t t
—2// FTF:VﬁdxdT+2/ Vu: (FI'F+F'F)dzdr
0 JR3 0 JR3
t N t N t
+2/ W-VF:FdxdT—2/ F:Fdede—2/ |E|32dr
0 JR3 0 JR3 0
t
—6/ / ([dPE: F+|d|°E: F)dzdr
0 JR3
t t
< |[(wo, Eo)||32 +2/ W~Vw~uda:d7-—2/ / ETE:Vudzdr
0 JR3 0 JR3
t t t
—2/ w~VF:Ed;vdT+2/ ETF:VdedT—2/ |E||2.dr
0 JR3 0 JR3 0
t
- 6/ / ([dE: F + |d]*E : F) dxdr.
0 JR3
(2.29)
Since we have assumed that (u,F) € C([0,7T], L3(R?)), by Lemma [2.3] we can

split u = uy + uy and F = F; + F, such that (uy, Fy) € L*([0,T] x R3) and
|(uz, F2)|[ o< (0,7;13) < €, respectively, where € > 0 is a constant to be determined
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later. Then we see that

t
|/ W-Vw-udxd7'|
0 JR3

t
SOHquC([O,TLLs)/ IVw|3.dr
0

) ) (2.30)
) 1/2 ) 1/2
Hlwlloe oy ([ 19wiadr) ([ Iwiadr)
0 0
! 2 4 2 ! 2
<20e [ |Vwtadr + Z e oy, | Iwladr
Similarly, we obtain
t
‘// ETE:Vuda:dT‘
R3
= ‘ —/ div(ETE) - udl‘dT’ (2.31)
2 4 2 i 2
<2Ce ; ||VE||L2dT+@Hul\lm(m,ﬂxw) ; |E|7-dT;
t
‘/ w-VF:Ed:ch‘
R3
t
= ‘/ (w®F)~VEda:dT‘ (2.32)
0 JR3
K 2 4 2 i 2
<2Ce | |[(Vw,VE)|72dr + 07||F1||L°°([0,T]><]R3) [wl72dT;
0 € 0
t t
‘/ / ETF:VWdl‘dT’ S2C€/ (Vw, VE)|?.dr
0 R ) 0 . (2.33)
‘*‘@HFlHQLm([o,T]xRB)/O |E|72d;
t
’/ / (dPE: F +|d]*E : F) da:dT’
0 R3
t
< C/ (IdlZellF e + 1Qlf76 || Fl o) | ]| 2 dr
0 (2.34)

t
< C/O Ul F e + Il E ) I B z2dr

t
< c/ |22 dr,

where C'is a constant dependmg on ||(d,d)]| 0 and (d,d) M r2(0,702)- Re-
turning back to the estimate ), putting (2.30)—(2.34) together, and choosmg €

sufficiently small such that 16C5 <1, we obtaln

[(w(t), E())]72 +/ [(Vw(7), VE(T))|[72dT
0 (2.35)

t
< o Bl + € (102 Pl oirymoy +1) | (Il + 1z )ar
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The estimate above together with the Gronwall inequality yield the desired estimate
(2.3) immediately. We complete the proof of Proposition O

Case 2. (u,Vd) € Lq(O,T;B;;%/pH/q(R?’)). It suffices to establish the fol-
lowing stability result.

Proposition 2.4. Assume that (u,Vd) € L1(0,T; B_1+3/p+z/q(R?’)) with 2 <p <
oo,2<q<ooand%+§>1, Then

t
I(w(t), E(t))lI7- +2/ [(Vw(7), VE(T))|[72dr
0 . (2.36)
< w0, B3 x exp (G +-C [ 0(r) PN o).

0 p.q
where C is a constant depending on H(d,(~1)||Loo(07T;H1) and ||(d,(?l)HL2(0)T;H2).

To prove Proposition the key tool we shall use is the following Lemma whose
proof can be found in [6].

Lemma 2.5 ([6]). Let 2 <p < oo and 2 < q < oo such that % + ]% > 1. Then for
every T' > 0, the trilinear form

T
(u,v,w) € (LS) x (LS) x L%O,T;B;;*‘B/”H/Q(RS)) — / / u-Vv-wdzdt
R3
is continuous. In particular, the following estimate holds:

T
‘/ / u-Vv-wdxdt
RS

1-2
< CHuHLoc(o T;L2) ||Vu||L2(o/qT;L2) IVvlL2(0,7;2) HWHLq(O,T;B;é+3/P+2/q)

1-2/ 2.37

IVl 2 VI oy IV g 19 o o, o0
1-1 1 1-1
[l 22 o ooy IV g o V1 o 19V

L2(0,T;L?)
X HWHLq(O’T;B;’é‘F?’/P‘FQ/fI)-
Note that (2.37) holds in both scalar and vector cases.

Note that for the Navier-Stokes equations, Gallagher and Planchon [6] proved
that weak-strong uniqueness holds in the class

: 3 2
P = L0,T; B;;+3/p+2/q(R3)) with 2 < p < 00, 2 < ¢ < 00 and 5 N 5 -

Hence, we need only to deal with the remaining terms div(F? F) and FVu (the
term u-VF can be treated as the term u-Vu). Similarly as we have done before, we
choose two smooth sequences of {(i,, Fy,)} (diva, = 0) and {(u,, F,,)} (divu, =
0) such that

lim (un,Fn) = (4, F) in L*0,T; HY(R?)),

lim (@, F,) = (4, F) weakly-star in L°°(0,T; L*(R?))
and
lim (u,, F,) = (u,F) in L*(0,T; H'(R™)) N L0, T; B, }t"/PT2/4(R?)),

lim (u,, F,) = (0, F) weakly-star in L>(0,T; L*(R?)).

n—oo
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Applying the above assumptions and Lemma [2.5] we obtain

t t

lim [ (div(FTF)|d,)dr = — lim [ (FTF|Va,)dr

t t (2.38)
— / (FTF|Va)dr = / (div(FTF)|a)dr
0 0

and
t t n

lim [ (div(FTF)|u,)dr = lim (Z(@miFTFHLFT@IiFHun)dT

n—oo n—oo
0 0 i=1

(2.39)

n

= /0 t (D FTF + 70, F)[u)dr = /0 (div(FT F)fu)dr.

i=1

Hence, (2.18) still holds under the assumption of Proposition
It is clear that by Lemma 2.5

t t
lim [ (FValF,)dr = / (FVu|F)dr. (2.40)
0

n—oo 0

Since VF), converges to VF in L?(0,T; L?(R?)), and {F,} is bounded in he space
L*°(0,T; L?(R3)) which was ensured by the Banach-Steinhaus theorem due to F},
weakly-star converge to F in L>(0,T; L*(R?)), by Lemma we obtain

t

t
lim [ (FVulF,)dr = / (FVul|F)dr. (2.41)
0

n—oo 0

The two estimates (2.40)—(2.41)) imply that the equality (2.28) still holds under the

assumption of Proposition
Now we finish the proof of Proposition [2.4 Using the similar argument as in the
proof of Lemma [2.5 (see [6]), we obtain

t
‘/ W~Vw-udxd7‘
0 R3
t
< c/ kui/;||Vw\|§;2/q||u||371+3/p+2/da (2.42)
0 P,q

1 t t
<5 [ Iowliadr 4 € [ Iwlalul? oo
0 0 .

t
‘//ETESVUdIdT’
0 JR3

t
:’—/ / div(ETE)-ud:ch‘
0 R3

) (2.43)
<c / ARkl p—
0 P

1 [t t
§§/0 ||VE||%sz+C’/O ||EH%2||quB;é+3/p+2/qd7—;
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t
‘/ W-VF:Eda:dT‘
R3
t
- ‘/ (w® F)- VdedT‘ (2.44)
0 R3

1/t t
< 5/0 H(VW,VE)||2deT+C’/O II(w,E)\\§2||Fujgﬁg/p+2/qd7

and

t 1 [t
[ [ e Esvwasar| < 5 [ 19w VE) adr
R3 0 (2.45)

t
[ N BIENE yiopearetr
0 P.q

Returning back to the estimate (2.29) and putting the above estimates ([2.42)—(2.45)
and (2.34)) together, we obtain

I(w(t), E(t)]7 +2/O [(Vw(r), VE())|7-dr

! (2.46)
< ewo B0l + € [ (wlie + NEIZ)(+ [l 1o '
0 p;q

+ ||F||(]I'3;é+3/p+2/q)d7'-

Applying the Gronwall inequality, we obtain (2.36) immediately. The proof of
Proposition 2.4] is complete. O

3. APPENDIX

In this section we shall establish the basic energy inequality (see Definition
governing the system (|1.1)). In order to do so, let us consider a classical solution
(u,d) of the problem (|1.1). We first multiply the first equation of (1.1) by u

integrate over R3, and use the fact V- (Vd ® Vd) = V(5 |le )+ Ad - Vd, we see
that

5 dt||uHL2 + |[Vul|2: + (Ad - Vd, u) = 0. (3.1)

Next, we multiply the second equation of (1.1)) by —Ad + g(d), integrate over R?
and use the fact that (u-Vd,g(d)) = (u, VG(d)) = 0, we see that

4 |va)2. + / G(d)dz + |Ad — g(d)|2> — (u-Vd,Ad) =0.  (3.2)
2dt dt Jgs

Equations (3.1)) and (| . together imply

1d
: dt<||u||L2+HVdHL2+2 [, Glyde) + [Vults + ad = g(@)I: = 0. (33

Note that [p, G(d)dz = %[|d(¢)||1. — 3/d(¢)||22. Hence, in order to calculate the
term % ng G(d)d:v we multiply the second equation of ([1.1) by d to yield that

53l + 19l + [ gla)-ddz =

ie.,
1d
5 glalze + 1VdliZ: + [1d]7e = lld]7- (3.4)
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Similarly, multiplying the second equation of (1.1]) by |d|?d, we obtain

1d
11l +3lld - val: + dlge = [ld]f7:. (3.5)

On the other hand, it is obvious that
[Ad — g(d)||?: = (Ad — |d|’d + d,Ad — |d|*d + d)
= [|Ad[f7. - 2(Ad, |d]*d) +2(Ad, d) - 2(|d|*d, d) + (|d[*d, |d[*d) + (d,d)
= [Ad|[Z. +6]l[d[Va[Z. —2[Vd|[7. — 2/|d|zs + dlge + [ld]|Z-.
Putting the estimates (3.3)—(3.5) together, we obtain
ld
2dt
This yields immediately the energy inequality in Definition Finally, by applying
the Gronwall inequality, we obtain the following basic energy inequality:

(Ilaliz: + 1Vdl2: ) + IVuliZ + [ Ad]Z: + 3]1dIVd|3: = VA  (36)

()72 + [Va(®)]Z: +/O (IVa()lIZ: + 1Ad(7)]72)dr

< C([luolla, [IVdol[72)e*.

Combining the above energy estimate, the Galerkin approximate procedure and the
compactness argument give global existence of weak solutions of ([1.1)).

(3.7)
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