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LOWER SEMICONTINUITY OF PULLBACK ATTRACTORS FOR
A SINGULARLY NONAUTONOMOUS PLATE EQUATION

RICARDO PARREIRA DA SILVA

ABSTRACT. We show the lower semicontinuity of the family of pullback attrac-
tors for the singularly nonautonomous plate equation with structural damping

wtt + alt, @)us + (—A)ug + (—A)2u + A = f(u),

in the energy space H32(2) x L?(2) under small perturbations of the damping
term a.

1. INTRODUCTION

In this paper, we shall continue the study started in [5] about the asymptotic
behavior under perturbations of the nonautonomous plate equation

wi + ac(t w)us + (—A)ug + (~A)%u+hu = f(u) in©,

1.1
u=Au=0 on 0f, (L.1)

where  is a bounded domain in R"®, A > 0 and f € C?(R) is a nonlinearity
satisfying

1<p<Z—fj if n > 5,

' ()] < e(1 P~y Vs € R, with
(@) A () < el 4770, Vs Y pe (L), ifn=1,2,34; (12)

(#5) f(s)s <0, Vs eR.

The map R > ¢ — ac(t,-) € L*°(Q) is supposed to be Holder continuous with
exponent 0 < 3 < 1 and constant C' uniformly in € € [0,1], 0 < ag < ac(t,z) <
ay, for (t,z,e) € R x Q x [0,1], and ac(t, z) =9 ag(t,x), uniformly in R x Q.
Such problems arise on models of vibration of elastic systems, see for example
6, 7, 18, [0}, [11].

Writing A := (—A)? with domain D(A) = {u € H*(Q) N Hg(Q) : Auppg = 0},
it is well known that A is a positive self-adjoint operator in L?(Q2) with compact
resolvent. For a > 0, we consider the scale of Hilbert spaces E* := (D(A®), A~ -

lz2(2) + || - lz2(02)), where A® = I. Tt is of special interest the case o = %, where
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—A'Y2 is the Laplace operator with homogeneous Dirichlet boundary conditions;
ie., AY/2 = —A with domain EV/? = H?(Q) N H}(Q).

Setting the Hilbert space X? := EY/2 x E° let A(t) : D(A(t)) € X° — X be
defined by

0 -1
Ae(t) = A+)\I A1/2 —i—ae(t)l )

with domain D(A.(t)) := E' x E'/? (independent on t and €¢). We also define
a+1 o
X*:=FE72 xE2.
In this framework was shown in [0] that the problem (1.1) can be written as an
ordinary differential system

%(u,v) + At (u,v) = F((u,v)), (u(r),v(r)) = (ug,v0) € X°,t > 7 € R, (1.3)

where F((u,v)) = (0, f¢(u)) and f¢ is the Nemitskii operator associated to f. This
equation yields an evolution process {S(¢,7) : t > 7} in X which is given by

t
Sec(t, ) = L(t,7)x —l—/ Lc(t,s)F(Sc(s,T)x)ds, Vt=T€eR, x€ X" (14)

being {L.(t,7) : t > 7 € R} the linear evolution process associated to the homoge-
neous system

%(u,v) + Ac(t)(u,v) = (0,0), (u(r),v(r)) = (up,v0) € X°, t > 7. (1.5)

Furthermore the evolution process {Se(¢,7) : t > 7} has a pullback attractor
{A(t) : t € R} with the property that

Uee[0,e0] YterA((t) C X° is bounded. (1.6)
Recalling the Hausdorff semi-distance of two subsets A, B C X

dist (A, B) := 21618 gglf; lla — b]| xo,

also was shown the upper semicontinuity of the family {A.(¢) : t € R} at e = 0; i.e.,
dist 17 (Ac(t), Ag(t)) =2 0.

Our aim in this paper is to prove its lower semicontinuity at € = 0; i.e.,
dist 17 (Ao (1), Ac () =2 0.

To achieve this propose we proceed in the following way: We assume there exists
only a many finite number of equilibrium e* of , all of them hyperbolic in
the sense that the linearized operator of around e* admits an exponential di-
chotomy. Then we write the limit attractor as an unstable manifold of the equilibria
set, allowing us to obtain the lower semicontinuity as in [3].

This article follows closely [Il, 2], and it is organized as follows: In Section [2] we
derive some additional stability properties of the solutions starting in the pullback
attractors. In Section [3| we get the characterization of the pullback attractor as a
unstable manifold of the equilibria set, and in Section 4 we show the hyperbolicity
property of the equilibria of and we derive the lower semicontinuity of the
pullback attractors.



EJDE-2012/185 LOWER SEMICONTINUITY OF PULLBACK ATTRACTORS 3

2. STABILITY OF THE PROCESS ON THE ATTRACTOR

In this section we prove an asymptotically stability result of the evolution pro-
cesses starting on the attractors. First we recall from (1.6]) that

{A(t):t€R} ={¢ € C(R,X") : ¢ is bounded and S,(t,7)&(7) = £(t)}.
Therefore if £(t) € Ac(t) for all t € R, then

t

§(t) = (u(t), ue(t)) = Le(t, 7)8(7) +/ Le(t,s)F(£(s)) ds,

T

and by the exponential decay of L(t,7) [5, Theorem 3.1], we can write

£(t) = / Le(t, 5)F(£(s)) ds. (2.1)

— 00

For wg = £(7) fixed, consider

U(t, ) := (w(t),w(t)) = / L.(t,8)F(Sc(s,T)wp) ds,

and note that
Wy + ae(t, x)wy + (—A)wy + (—A)Qw + dw = f(u(t,7,wp)),

w(T) = we(7) = 0. (22)

Also notice that by [B, Theorem 3.2], {U(¢t,7) : t > 7} is a bounded subset of
X0, Therefore using the fact that f¢ maps bounded subsets of E'/2? to bounded
subsets of E_%*‘;Y, for some 4 > 0 [5, Lemma 2.5], we can state the problem
in X2 = E2* x E7 with 0 < 4 < 7 (note that U(0,0) = (0,0) € Ez™Y x E),
and we have [4] the estimate

t
e B e e CACEs) I FRUROY S

t
< K/ (t — s) 12T 27emalt=s) g,

Noticing that —1 4+ 25 > —1, from ({2.1)) it follows that

Sy s €O e, <o
From the compact embedding Ex+t7 x EY & EV2 EY, the set Ueelo,1] Uter Ac is
a compact subset of X0,

The rest of the section is dedicated to show asymptotically stability of those
solutions starting on the attractors. Since the map ¢ — ag(t,z) is a bounded and
Lipschitz function uniform in z € €, given a sequence {t,} C R, we have for each ¢t €
R fixed, that the sequence {a (¢, ) := ao(t + t,,z)} has a subsequence convergent
an(t,x) — a(t,z), uniformly in compact subsets of R and = € Q. Therefore a
inherits the same boundedness and Lipschitz properties of ag. This allows us to
consider the following two problems:

wgr + an(t, 2)ur + (—A)us + (=A)?u+ M= f(u) in Q,
u=Au=0 on 0, (2.3)
u(t) =up € HA(Q) N HY(Q), u (1) = vo € L*(Q),
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and
wge + alt, x)uy + (—=A)ug + (=A)*u + Au = f(u) in Q,
u=Au=0 on 0f, (2.4)
u(t) = ug € H*(Q) N HF(Q), us(r) = v € L*(Q).
We want to compare solutions of the above problems with initial data (ug, vg) €

A, (1), where {A,(t) : ¢t € R} and {A(t) : ¢ € R} are the pullback attractors of
(2.3) and (2.4) respectively. Proceeding as above we obtain that

Unen User Ap () U A (t) is a compact subset of X°.

For (ug,vo) € A,(7), let &,(t) and £(t) be the solutions of and respec-
tively. Defining w(t) := &,(t) — £(t), we have
wy = a(t, )& — an(t, 2)€ + Awy — A%w — Mw + f(€) = £(€)

w(7r) = w(r) = 0. (2:5)

Define Z(u,v)) = 4 (||lul? 12 T ||1)||L2(Q ). Since that f¢ is Lipschitz in bounded
sets from F1'/2 to E°, and &, €, &, & are bounded, Young’s Inequality leads to

2w, w)

= (w,wy) g1z + (We, Wie) L2 ()
= (Aw, Awy) 12() + Mw, wi) 2 Q) + (Wi, Wie) 12(0)
= (A%w + Aw + wyy, W) £2(Q)
= (a(t, )& — an(t, 2)& + Awy + f(£) — f(E), wi) r2(0)
= (—a(t,z)w; + (at, x) — an(t, ))&, we) 12 () — [|Vwel T2
+(f (&) — f(),wi) 20
< —agllwellZ2 0y + 1@ = anll oo (ragx o 1€ell L2 lwell 22 )
+ K (w720 + 1wl 72(0))
< KZ((w,wy)) + Kl|a — an|| Lo ((r,x0)-

Therefore,

Z((w,wy)) K/ J(5))ds + K (t = 7)1 — an | 1~ (jr et

Z((w(r), wt(T)))

~ t

<K [ Z((w,wy))ds + K(t = 7)l|a — an| = (ir.0x0),

T

where K = max {f( , M} Gronwall’s Inequality yields

(a1 —a)

t

I6n (1) = €50 < Klla— anIILw([T,t]XQ)/ eK(=9) 4, 0, (2.6)

T

as n — 0o in compact subsets of R.
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3. STRUCTURE OF THE PULLBACK ATTRACTOR

We will assume that there exist only finitely many {uj,...,u}} solutions of the
problem
(=A)*u+ A u= f(u) inQ, (3.1)
u=Au=0 on 0f, ’
Defining € = {ef, ..., e}, where e} := (u},0), we will show that
Ao(t) = U_ W™ (e])(t), forallteR, (3.2)
where

W(ef) = {(r,¢) € R x X°: there exists a backwards solution &(t,7,() of (L.3)
(e = 0) satisfying £(7,7,¢) = ¢ and [|(t,7,¢) — €f | xo “==" 0},

and W(e5)(t) = {C € X« (£,€) € W (e})}.
Consider the norms in £'/2 and X° given respectively by:

lully 2 = [1AulF2 () + MulZ2i]? and [|(u,v)]xo = [lul} /o + V172"
For any 0 < b < 1/4 fixed we have

1 1 3

@) o < Sl )l + 2002, ) 2@y < Sl
Let us consider the Lyapunov functional V : X — R defined by

1
V() = 5 0, 0)l 3o + 2012, )y — / Fo(u) dr, (3.3)
Q

where F¢ is the Nemitskii map associated to a primitive of f, F(s) = Jo F()dt.
If uw = u(t) is a solution of the equation (|1.1) (¢ = 0) then

d
aV((u, ut))
= (Au, Aug) 20y + M, u) p2 ) + (U ) 120y + 2002 (g, wg) 120

+ 2b)\1/2<u7utt>L2(Q) —/ f(uw)updx

Q

= (Au, Aug) r2() + Mu, ug) L2() + (ug, —ac(t, v)up — (—A)%u
— (=A)us — M+ f(u))r2) + 2b)\1/2<ut, ) 2(0) + 2b)\1/2<u, —ac(t, x)uy
(=AY — (— A — Nt (1) 20y — /Q F(wurda

< —(ag — 20AM2 — pAY/2 — bay A1/

uelF2g) + A2 (bary — bA)|[ul 22 (o)

— OAV2(| A2y + Al 2a(ey) + 200172 /Q f(wyuds,

for all n > 0. The choice n = O% leads to

2
bay

d
2V () < —(a0 = 26XV —bAVZ — STL

el Zz() — A2 ull /2

+ 2b/\1/2/ f(u)udz <0,
Q
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which means that V is non-increasing on solutions of and the global solutions
where V' is constant must be an equilibrium. This implies in particular, that in £
there is no homoclinic structure.

Finally, we show that all solutions in the pullback attractor {Ag : ¢ € R} are
forwards and backwards asymptotic to equilibria.

Let {&(t) : t € R} C {Ag(t) : t € R} a global solution in the attractor. Since

t——+o0

it lies in a compact set of X0, V(£(t + 7)) "==° w; and V(£(t + 7)) "=25° wy, for
some w1, we € R and r € R.

We can choose a sequence t, —5 oo such that ag(t, +r,z) "— a(r,z), uni-
formly for r in compact subsets of R and z € Q. Therefore, the solution (¢, (;) of
the problem

wge + alt, x)uy + (—A)ug + (=AY u + Au = f(u) in Q, a4

u=Au=0 on 0f, (34)
satisfies V((¢,(¢)) = wa, for all t € R. Hence (¢, () € € and &(t + r) =y (¢, Ce)-
Taking £, "—> —oo we obtain a similar result.

Now we show that this convergence does not depend on the particular choice of
subsequences. In fact, suppose that there are sequences {t,},{s,} "—= oo, such
that £(t,) "= e} # e; "> ¢(sn). Reindexing if necessary we can suppose that
tny1 > Sp > ty, for all n € N.

If 7, € (tn, $n), then 7, "=3 oo and (taking subsequence if necessary), ag(7, +

n—oo _ n—oo

r) =% a(r). Therefore we also have that &(7, +7) "—> ((r), which is a solution
of
wgs + a(t, x)ug + (—A)ug + (—A)?u+ du = f(u) in Q,

3.5
u=Au=0 on 0%, (3:5)

with V(¢,{;) = wy for all t € R. Consequently, {(t) = e, € £\ {e}, e} }.
Choosing 7, € (T, sn) We can repeat the argument that leads to a contradiction
with the fact that there are only finitely many equilibria. Therefore we can write

the pullback attractor as in (3.2]).

4. LOWER SEMICONTINUITY OF ATTRACTORS

Definition 4.1. We say that a linear evolution process {L(¢,7) : t > 7} C L(X)
in a Banach space X has an exponential dichotomy with exponent w and constant
M if there is a family of bounded linear projections {P(¢) : t € R} C £L(X) such
that
(i) P(t)L(t,7) = L(t,7)P(7), for all t > T;
(ii) The restriction L(t,7)p(r)x, is an isomorphism from P(7)X into P(t)X,
for all t > 7
(iii) There are constants w > 0 and M > 1 such that

IL(t, 7)(I = P(7))|lex) < Me ) ¢ > 7,
IL(t, 7)P(T)|| ey < Me* =7 ¢ < 7.

To see that the linear process {L¢(¢,7) : ¢ > 7} has an exponential dichotomy,
given u, the global solution of (1.3)), define z(t) := uc(t) —ej, for any e} € €. Then
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we have
Zey + ae(t, ) zey + (—A)zey + (—A)2Z€ + Aze — fl(e;)ze = h(ze)
2e(T) = zeo,  2e4(T) = 21
where h(u) = f(u+e}) — f(e}) — f'(e})u. Note that h(0) = 0 as well Dh(0) =0 €
L(X0).
Let us consider the system
d _

%(u, v) + Ac(t) (u,v) = (0, h(u)), (4.2)

(4.1)

where

= 0 -1

A= |(CAP — AT = () A+ au)]
Under the hypothesis on the map t — a.(t), it follows from [9 Theorem 7.6.11]
that the process {L.(t,7) : t > 7} has an exponential dichotomy, for all € € [0, €],
for some €y > 0 sufficiently small.

Therefore, the proof of the lower semicontinuity of the family {A. : ¢ € R}, based

on the proof of the continuity of the sets W*(e;) and W* (e} ), is achieved thanks
to the following Theorem from [3].

Theorem 4.2 ([3| Theorem 3.1]). Let X be a Banach space and consider a family
{Sc(t,7) : t > T}eepo], of evolution process in X. Assume that for any x in a

compact subset of X, ||Sc(t,7)x — So(t, 7)z|x =90, for [1,t] C R and suppose
that for each € € [0,1] there exist a pullback attractor {A.(t) : t € R}, such that
Uter Ueeo,eo] Ae(t) C X is relatively compact and {Ao(t) : t € R} is given as (3.2).
Further, assume that for each e} € &y:

(i) Given 6 > 0, there exist €; 5 such that for all 0 < € < ¢; 5 there is a global
hyperbolic solution & ¢ of (1.3) that satisfies sup,cp ||&i,e(t) — €| < 6;
(ii) The local unstable manifold of &; . behaves continuously at € = 0; i.e.,

. . —0
HlaX[dISt H(WOu:loc(e;k)’ :loc(eze))7 dist H( elfloc(eze% W&loc(e?))} €—> Oa

where W (-) = W"(-) N Bx (-, p), for some p > 0.
Then the family {Ac(t) : t € R}cepo,e,) is lower semicontinuous at € = 0.
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