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LOWER SEMICONTINUITY OF PULLBACK ATTRACTORS FOR
A SINGULARLY NONAUTONOMOUS PLATE EQUATION

RICARDO PARREIRA DA SILVA

Abstract. We show the lower semicontinuity of the family of pullback attrac-
tors for the singularly nonautonomous plate equation with structural damping

utt + a(t, x)ut + (−∆)ut + (−∆)2u + λu = f(u),

in the energy space H2
0 (Ω)×L2(Ω) under small perturbations of the damping

term a.

1. Introduction

In this paper, we shall continue the study started in [5] about the asymptotic
behavior under perturbations of the nonautonomous plate equation

utt + aε(t, x)ut + (−∆)ut + (−∆)2u + λu = f(u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in Rn, λ > 0 and f ∈ C2(R) is a nonlinearity
satisfying

(i) |f ′(s)| 6 c(1 + |s|ρ−1), ∀s ∈ R, with

{
1 < ρ < n+4

n−4 if n ≥ 5,

ρ ∈ (1,∞), if n = 1, 2, 3, 4;

(ii) f(s)s < 0, ∀s ∈ R.

(1.2)

The map R 3 t 7→ aε(t, ·) ∈ L∞(Ω) is supposed to be Hölder continuous with
exponent 0 < β < 1 and constant C uniformly in ε ∈ [0, 1], 0 < α0 6 aε(t, x) 6

α1, for (t, x, ε) ∈ R × Ω × [0, 1], and aε(t, x) ε→0−→ a0(t, x), uniformly in R × Ω.
Such problems arise on models of vibration of elastic systems, see for example
[6, 7, 8, 10, 11].

Writing A := (−∆)2 with domain D(A) = {u ∈ H4(Ω) ∩H1
0 (Ω) : ∆u|∂Ω = 0},

it is well known that A is a positive self-adjoint operator in L2(Ω) with compact
resolvent. For α > 0, we consider the scale of Hilbert spaces Eα :=

(
D(Aα), ‖Aα ·

‖L2(Ω) + ‖ · ‖L2(Ω)

)
, where A0 = I. It is of special interest the case α = 1

2 , where
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−A1/2 is the Laplace operator with homogeneous Dirichlet boundary conditions;
i.e., A1/2 = −∆ with domain E1/2 = H2(Ω) ∩H1

0 (Ω).
Setting the Hilbert space X0 := E1/2 ×E0, let Aε(t) : D(Aε(t)) ⊂ X0 → X0 be

defined by

Aε(t) :=
[

0 −I
A + λI A1/2 + aε(t)I

]
,

with domain D(Aε(t)) := E1 × E1/2 (independent on t and ε). We also define
Xα := E

α+1
2 × E

α
2 .

In this framework was shown in [5] that the problem (1.1) can be written as an
ordinary differential system

d

dt
(u, v) +Aε(t)(u, v) = F ((u, v)), (u(τ), v(τ)) = (u0, v0) ∈ X0, t > τ ∈ R, (1.3)

where F ((u, v)) = (0, fe(u)) and fe is the Nemitskĭi operator associated to f . This
equation yields an evolution process {Sε(t, τ) : t > τ} in X0 which is given by

Sε(t, τ)x = Lε(t, τ)x +
∫ t

τ

Lε(t, s)F (Sε(s, τ)x) ds, ∀t > τ ∈ R, x ∈ X0, (1.4)

being {Lε(t, τ) : t > τ ∈ R} the linear evolution process associated to the homoge-
neous system

d

dt
(u, v) +Aε(t)(u, v) = (0, 0), (u(τ), v(τ)) = (u0, v0) ∈ X0, t > τ. (1.5)

Furthermore the evolution process {Sε(t, τ) : t > τ} has a pullback attractor
{Aε(t) : t ∈ R} with the property that

∪ε∈[0,ε0] ∪t∈RAε(t) ⊂ X0 is bounded. (1.6)

Recalling the Hausdorff semi-distance of two subsets A,B ⊂ X

dist H(A,B) := sup
a∈A

inf
b∈B
‖a− b‖X0 ,

also was shown the upper semicontinuity of the family {Aε(t) : t ∈ R} at ε = 0; i.e.,

dist H(Aε(t), A0(t))
ε→0−→ 0.

Our aim in this paper is to prove its lower semicontinuity at ε = 0; i.e.,

dist H(A0(t), Aε(t))
ε→0−→ 0.

To achieve this propose we proceed in the following way: We assume there exists
only a many finite number of equilibrium e∗ of (1.3), all of them hyperbolic in
the sense that the linearized operator of (1.3) around e∗ admits an exponential di-
chotomy. Then we write the limit attractor as an unstable manifold of the equilibria
set, allowing us to obtain the lower semicontinuity as in [3].

This article follows closely [1, 2], and it is organized as follows: In Section 2 we
derive some additional stability properties of the solutions starting in the pullback
attractors. In Section 3 we get the characterization of the pullback attractor as a
unstable manifold of the equilibria set, and in Section 4, we show the hyperbolicity
property of the equilibria of (1.1) and we derive the lower semicontinuity of the
pullback attractors.
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2. Stability of the process on the attractor

In this section we prove an asymptotically stability result of the evolution pro-
cesses starting on the attractors. First we recall from (1.6) that

{Aε(t) : t ∈ R} = {ξ ∈ C(R, X0) : ξ is bounded and Sε(t, τ)ξ(τ) = ξ(t)}.

Therefore if ξ(t) ∈ Aε(t) for all t ∈ R, then

ξ(t) := (u(t), ut(t)) = Lε(t, τ)ξ(τ) +
∫ t

τ

Lε(t, s)F (ξ(s)) ds,

and by the exponential decay of Lε(t, τ) [5, Theorem 3.1], we can write

ξ(t) =
∫ t

−∞
Lε(t, s)F (ξ(s)) ds. (2.1)

For w0 = ξ(τ) fixed, consider

U(t, τ) := (w(t), wt(t)) =
∫ t

τ

Lε(t, s)F (Sε(s, τ)w0) ds,

and note that
wtt + aε(t, x)wt + (−∆)wt + (−∆)2w + λw = f(u(t, τ, w0)),

w(τ) = wt(τ) = 0.
(2.2)

Also notice that by [5, Theorem 3.2], {U(t, τ) : t > τ} is a bounded subset of
X0. Therefore using the fact that fe maps bounded subsets of E1/2 to bounded
subsets of E− 1

2+γ̃ , for some γ̃ > 0 [5, Lemma 2.5], we can state the problem (1.3)
in X2γ = E

1
2+γ × Eγ with 0 < γ < γ̃ (note that U(0, 0) = (0, 0) ∈ E

1
2+γ × Eγ),

and we have [4] the estimate

‖U(t, τ)‖X1+2γ 6
∫ t

τ

‖Lε(t, s)‖L(X1+2γ ,X−1+2γ̃)‖F (Sε(s, τ))w0‖
E

1
2 +γ×E−

1
2 +γ ds

6 K

∫ t

τ

(t− s)−1+2γ̃−2γe−α(t−s) ds.

Noticing that −1 + 2γ̃ > −1, from (2.1) it follows that

sup
ε∈[0,1]

sup
t∈R

sup
ξ∈Aε(t)

‖ξ(t)‖
E

1
2 +γ×Eγ

<∞.

From the compact embedding E
1
2+γ ×Eγ cc

↪→ E1/2 ×E0, the set ∪ε∈[0,1] ∪t∈R Aε is
a compact subset of X0.

The rest of the section is dedicated to show asymptotically stability of those
solutions starting on the attractors. Since the map t 7→ a0(t, x) is a bounded and
Lipschitz function uniform in x ∈ Ω, given a sequence {tn} ⊂ R, we have for each t ∈
R fixed, that the sequence {an(t, x) := a0(t + tn, x)} has a subsequence convergent
an(t, x) → ā(t, x), uniformly in compact subsets of R and x ∈ Ω. Therefore ā
inherits the same boundedness and Lipschitz properties of a0. This allows us to
consider the following two problems:

utt + an(t, x)ut + (−∆)ut + (−∆)2u + λu = f(u) in Ω,

u = ∆u = 0 on ∂Ω,

u(τ) = u0 ∈ H2(Ω) ∩H1
0 (Ω), ut(τ) = v0 ∈ L2(Ω),

(2.3)
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and
utt + ā(t, x)ut + (−∆)ut + (−∆)2u + λu = f(u) in Ω,

u = ∆u = 0 on ∂Ω,

u(τ) = u0 ∈ H2(Ω) ∩H1
0 (Ω), ut(τ) = v0 ∈ L2(Ω).

(2.4)

We want to compare solutions of the above problems with initial data (u0, v0) ∈
An(τ), where {An(t) : t ∈ R} and {A∞(t) : t ∈ R} are the pullback attractors of
(2.3) and (2.4) respectively. Proceeding as above we obtain that

∪n∈N ∪t∈R An(t) ∪ A∞(t) is a compact subset of X0.

For (u0, v0) ∈ An(τ), let ξn(t) and ξ̄(t) be the solutions of (2.3) and (2.4) respec-
tively. Defining w(t) := ξn(t)− ξ̄(t), we have

wtt = ā(t, x)ξ̄t − an(t, x)ξt + ∆wt −∆2w − λw + f(ξ)− f(ξ̄)

w(τ) = wt(τ) = 0.
(2.5)

Define Z(u, v)) = 1
2 (‖u‖21/2 + ‖v‖2L2(Ω)). Since that fe is Lipschitz in bounded

sets from E1/2 to E0, and ξ, ξ̄, ξt, ξ̄t are bounded, Young’s Inequality leads to

d

dt
Z((w,wt))

= 〈w,wt〉E1/2 + 〈wt, wtt〉L2(Ω)

= 〈∆w,∆wt〉L2(Ω) + λ〈w,wt〉L2(Ω) + 〈wt, wtt〉L2(Ω)

= 〈∆2w + λw + wtt, wt〉L2(Ω)

= 〈ā(t, x)ξ̄t − an(t, x)ξt + ∆wt + f(ξ)− f(ξ̄), wt〉L2(Ω)

= 〈−ā(t, x)wt + (ā(t, x)− an(t, x))ξt, wt〉L2(Ω) − ‖∇wt‖2L2(Ω)

+ 〈f(ξ)− f(ξ̄), wt〉L2(Ω)

6 −α0‖wt‖2L2(Ω) + ‖ā− an‖L∞([τ,t]×Ω)‖ξt‖L2(Ω)‖wt‖L2(Ω)

+ K(‖w‖2L2(Ω) + ‖wt‖2L2(Ω))

6 K̃Z((w,wt)) + K̃‖ā− an‖L∞([τ,t]×Ω).

Therefore,

Z((w,wt)) 6 K̃

∫ t

τ

Z((w(s), wt(s)))ds + K̃(t− τ)‖ā− an‖L∞([τ,t]×Ω)

+ Z
(
(w(τ), wt(τ))

)
6 ˜̃K

∫ t

τ

Z((w,wt))ds + ˜̃K(t− τ)‖ā− an‖L∞([τ,t]×Ω),

where ˜̃K = max
{
K̃, Z((w(τ),wt(τ)))

(α1−α0)

}
. Gronwall’s Inequality yields

‖ξn(t)− ¯ξ(t)‖2X0 6
˜̃̃
K‖ā− an‖L∞([τ,t]×Ω)

∫ t

τ

eK(t−s) ds→ 0, (2.6)

as n→∞ in compact subsets of R.
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3. structure of the pullback attractor

We will assume that there exist only finitely many {u∗1, . . . , u∗r} solutions of the
problem

(−∆)2u + λu = f(u) in Ω,

u = ∆u = 0 on ∂Ω,
(3.1)

Defining E = {e∗1, . . . , e∗r}, where e∗i := (u∗i , 0), we will show that

A0(t) = ∪r
i=1W

u(e∗i )(t), for all t ∈ R, (3.2)

where

Wu(e∗i ) =
{
(τ, ζ) ∈ R×X0 : there exists a backwards solution ξ(t, τ, ζ) of (1.3)

(ε = 0) satisfying ξ(τ, τ, ζ) = ζ and ‖ξ(t, τ, ζ)− e∗i ‖X0
t→−∞−→ 0

}
,

and Wu(e∗i )(t) = {ζ ∈ X0 : (t, ζ) ∈Wu(e∗i )}.
Consider the norms in E1/2 and X0 given respectively by:

‖u‖1/2 := [‖∆u‖2L2(Ω) + λ‖u‖2L2(Ω)]
1/2 and ‖(u, v)‖X0 = [‖u‖21/2 + ‖v‖2L2(Ω)]

1/2.

For any 0 < b 6 1/4 fixed we have
1
4
‖(u, v)‖2X0 6

1
2
‖(u, v)‖2X0 + 2bλ1/2〈u, v〉L2(Ω) 6

3
4
‖(u, v)]‖2X0 .

Let us consider the Lyapunov functional V : X0 → R defined by

V ((u, v)) =
1
2
‖(u, v)‖2X0 + 2bλ1/2〈u, v〉L2(Ω) −

∫
Ω

Fe(u) dx, (3.3)

where Fe is the Nemitskĭi map associated to a primitive of f , F(s) =
∫ s

0
f(t) dt.

If u = u(t) is a solution of the equation (1.1) (ε = 0) then

d

dt
V ((u, ut))

= 〈∆u, ∆ut〉L2(Ω) + λ〈u, ut〉L2(Ω) + 〈ut, utt〉L2(Ω) + 2bλ1/2〈ut, ut〉L2(Ω)

+ 2bλ1/2〈u, utt〉L2(Ω) −
∫

Ω

f(u)utdx

= 〈∆u, ∆ut〉L2(Ω) + λ〈u, ut〉L2(Ω) + 〈ut,−aε(t, x)ut − (−∆)2u

− (−∆)ut − λu + f(u)〉L2(Ω) + 2bλ1/2〈ut, ut〉L2(Ω) + 2bλ1/2〈u,−aε(t, x)ut

− (−∆)2u− (−∆)ut − λu + f(u)〉L2(Ω) −
∫

Ω

f(u)utdx

6 −(α0 − 2bλ1/2 − bλ1/2 − bα1λ
1/2

η
)‖ut‖2L2(Ω) + λ1/2(bα1η − bλ)‖u‖2L2(Ω)

− bλ1/2(‖∆u‖2L2(Ω) + λ‖u‖2L2(Ω)) + 2bλ1/2

∫
Ω

f(u)udx,

for all η > 0. The choice η = λ
α1

leads to

d

dt
V ((u, ut)) 6 −(α0 − 2bλ1/2 − bλ1/2 − bα2

1

λ1/2
)‖ut‖2L2(Ω) − bλ1/2‖u‖1/2

+ 2bλ1/2

∫
Ω

f(u)udx ≤ 0,
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which means that V is non-increasing on solutions of (1.1) and the global solutions
where V is constant must be an equilibrium. This implies in particular, that in E
there is no homoclinic structure.

Finally, we show that all solutions in the pullback attractor {A0 : t ∈ R} are
forwards and backwards asymptotic to equilibria.

Let {ξ(t) : t ∈ R} ⊂ {A0(t) : t ∈ R} a global solution in the attractor. Since
it lies in a compact set of X0, V (ξ(t + r)) t→−∞−→ ω1 and V (ξ(t + r)) t→+∞−→ ω2, for
some ω1, ω2 ∈ R and r ∈ R.

We can choose a sequence tn
n→∞−→ ∞ such that a0(tn + r, x) n→∞−→ ā(r, x), uni-

formly for r in compact subsets of R and x ∈ Ω. Therefore, the solution (ζ, ζt) of
the problem

utt + ā(t, x)ut + (−∆)ut + (−∆)2u + λu = f(u) in Ω,

u = ∆u = 0 on ∂Ω,
(3.4)

satisfies V ((ζ, ζt)) = ω2, for all t ∈ R. Hence (ζ, ζt) ∈ E and ξ(t + r) t→∞−→ (ζ, ζt).
Taking t̃n

n→∞−→ −∞ we obtain a similar result.
Now we show that this convergence does not depend on the particular choice of

subsequences. In fact, suppose that there are sequences {tn}, {sn}
n→∞−→ ∞, such

that ξ(tn) n→∞−→ e∗i 6= e∗j
n→∞←− ξ(sn). Reindexing if necessary we can suppose that

tn+1 > sn > tn, for all n ∈ N.
If τn ∈ (tn, sn), then τn

n→∞−→ ∞ and (taking subsequence if necessary), a0(τn +
r) n→∞−→ ā(r). Therefore we also have that ξ(τn + r) n→∞−→ ζ̄(r), which is a solution
of

utt + ā(t, x)ut + (−∆)ut + (−∆)2u + λu = f(u) in Ω,

u = ∆u = 0 on ∂Ω,
(3.5)

with V (ζ̄, ζ̄t) = ω2 for all t ∈ R. Consequently, ζ̄(t) ≡ e∗m ∈ E \ {e∗i , e∗j}.
Choosing τ̃n ∈ (τn, sn) we can repeat the argument that leads to a contradiction

with the fact that there are only finitely many equilibria. Therefore we can write
the pullback attractor as in (3.2).

4. lower semicontinuity of attractors

Definition 4.1. We say that a linear evolution process {L(t, τ) : t > τ} ⊂ L(X)
in a Banach space X has an exponential dichotomy with exponent ω and constant
M if there is a family of bounded linear projections {P (t) : t ∈ R} ⊂ L(X) such
that

(i) P (t)L(t, τ) = L(t, τ)P (τ), for all t > τ ;
(ii) The restriction L(t, τ)|P (τ)X , is an isomorphism from P (τ)X into P (t)X,

for all t > τ ;
(iii) There are constants ω > 0 and M > 1 such that

‖L(t, τ)(I − P (τ))‖L(X) 6 Me−ω(t−τ), t > τ,

‖L(t, τ)P (τ)‖L(X) 6 Meω(t−τ), t 6 τ.

To see that the linear process {Lε(t, τ) : t > τ} has an exponential dichotomy,
given uε the global solution of (1.3), define zε(t) := uε(t)−e∗j , for any e∗j ∈ E . Then
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we have
zεtt + aε(t, x)zεt + (−∆)zεt + (−∆)2zε + λzε − f ′(e∗j )zε = h(zε)

zε(τ) = zε0, zεt(τ) = zε1

(4.1)

where h(u) = f(u + e∗j )− f(e∗j )− f ′(e∗j )u. Note that h(0) = 0 as well Dh(0) = 0 ∈
L(X0).

Let us consider the system
d

dt
(u, v) + Āε(t)(u, v) = (0, h(u)), (4.2)

where

Āε(t) :=
[

0 −I
(−∆)2 − λI − f ′(e∗j ) −∆ + aε(t)I

]
.

Under the hypothesis on the map t 7→ aε(t), it follows from [9, Theorem 7.6.11]
that the process {Lε(t, τ) : t > τ} has an exponential dichotomy, for all ε ∈ [0, ε0],
for some ε0 > 0 sufficiently small.

Therefore, the proof of the lower semicontinuity of the family {Aε : t ∈ R}, based
on the proof of the continuity of the sets Wu(e∗i ) and Wu(e∗i,ε), is achieved thanks
to the following Theorem from [3].

Theorem 4.2 ([3, Theorem 3.1]). Let X be a Banach space and consider a family
{Sε(t, τ) : t ≥ τ}ε∈[0,1], of evolution process in X. Assume that for any x in a

compact subset of X, ‖Sε(t, τ)x − S0(t, τ)x‖X
ε→0−→ 0, for [τ, t] ⊂ R and suppose

that for each ε ∈ [0, 1] there exist a pullback attractor {Aε(t) : t ∈ R}, such that
∪t∈R ∪ε∈[0,ε0] Aε(t) ⊂ X is relatively compact and {A0(t) : t ∈ R} is given as (3.2).
Further, assume that for each e∗i ∈ E0:

(i) Given δ > 0, there exist εi,δ such that for all 0 < ε < εi,δ there is a global
hyperbolic solution ξi,ε of (1.3) that satisfies supt∈R ‖ξi,ε(t)− e∗i ‖ < δ;

(ii) The local unstable manifold of ξi,ε behaves continuously at ε = 0; i.e.,

max[dist H(Wu
0,loc(e

∗
i ),W

u
ε,loc(e

∗
i,ε)),dist H(Wu

ε,loc(e
∗
i,ε),W

u
0,loc(e

∗
i ))]

ε→0−→ 0,

where Wu
loc(·) = Wu(·) ∩BX(·, ρ), for some ρ > 0.

Then the family {Aε(t) : t ∈ R}ε∈[0,ε0] is lower semicontinuous at ε = 0.
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