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EXISTENCE OF SMOOTH GLOBAL SOLUTIONS FOR A 1-D
MODIFIED NAVIER-STOKES-FOURIER MODEL

JIANZHU SUN, JISHAN FAN, GEN NAKAMURA

Abstract. We prove the existence of strong global solutions of the 1-D mod-
ified compressible Navier-Stokes-Fourier equations proposed by Howard Bren-
ner [1, 2].

1. Introduction

We consider the modified Navier-Stokes-Fourier equations proposed by by Bren-
ner [1, 2]:

∂tρ + div(ρvm) = 0, (1.1)

∂t(ρv) + div(ρv ⊗ vm) +∇p = div S, (1.2)

∂t(ρ(
1
2
v2 + e)) + div(ρ(

1
2
v2 + e)vm) + div(pv) + div q = div(Sv), (1.3)

v|∂Ω = 0, vm · n|∂Ω = ∇ρ · n|∂Ω = 0, q · n|∂Ω = ∇θ · n|∂Ω = 0, (1.4)

(ρ, v, θ)|t=0 = (ρ0, v0, θ0) in Ω := (0, 1). (1.5)

where ρ is the mass density, v is the fluid-based (Lagrangian) volume velocity, vm

is the mass-based (Eulerian) mass velocity, p = Rρθ is the pressure with positive
constant R > 0, e = CV θ the specific internal energy, θ the temperature, S the
viscous stress tensor, we will adopt the Newton’s rheological law:

S := µ
(
∇v +∇vT − 2

3
div vI

)
+ η div vI, (1.6)

where µ ≥ 0 and η ≥ 0 stand for the shear and bulk viscosity coefficients, respec-
tively. The relationship between vm and v is a cornerstone of Brenner’s approach.
After a careful study [1, 2], Brenner proposes a universal constitutive equation in
the form:

v − vm = K∇ log ρ, (1.7)
with K ≥ 0 a purely phenomenological coefficient.

Moreover, we suppose the heat flux obeys Fourier’s law, specifically,

q = −k∇θ, (1.8)

where k is the heat conductivity coefficient.
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We will assume K = 1, Cv = 1, R = 1, µ > 0, η = 0, and

k(θ) := k0(1 + 4θ3), (1.9)

with a positive constant k0 = 1. (1.9) is physically relevant as radiation heat
conductivity at least for large values of θ (see [8]).

Very recently, Feireisl and Vasseur [4] proved the global-in-time existence of weak
solutions to the problem (1.1)-(1.5). Under the conditions that ρ0, θ0, v0 ∈ L∞(Ω)
and ρ0 ≥ C > 0, θ0 ≥ C > 0 in Ω. Here it should be noted that similar result for
the classical Navier-Stokes-Fourier system ((1.1)-(1.3) with v = vm) have not yet
been proved. In their proof, they obtained the following global-in-time estimates:

‖v‖L2(0,T ;H1(Ω)) ≤ C, (1.10)

‖θ3/2‖L2(0,T ;H1(Ω)) ≤ C, (1.11)

‖∇θ‖L2(0,T ;L2(Ω)) ≤ C, (1.12)

where C is a positive constant depending on
∫
Ω

ρ0dx,
∫
Ω

ρ( 1
2v2

0 + CV θ0)dx, and∫
Ω

ρ0s(ρ0, θ0)dx, the other norms of ρ0 and v0, θ0.
Our aim in this article is to show the existence of a smooth global solution to

the problem (1.1)-(1.5).

Theorem 1.1. Let ρ0, v0, θ0 ∈ H1(Ω) with inf ρ0 > 0, inf θ0 > 0 in Ω. Then there
exists a unique strong solution (ρ, v, θ) to the problem (1.1)-(1.5) satisfying

(ρ, v, θ) ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)), (∂tρ, ∂tv, ∂tθ) ∈ L2(0, T ;L2(Ω))

for any given T > 0 and

inf ρ(x, t) > 0, inf θ(x, t) > 0 in Ω× (0, T ). (1.13)

Remark 1.2. The methods for the one-dimensional classical Navier-Stokes-Fourier
equations [6, 7] do not work here. Because their clever method for proving 0 < 1

C ≤
ρ ≤ C < ∞ does not work here.

The continuity equation (1.1) can be rewritten as

∂tρ + div(ρv) = ∆ρ. (1.14)

The energy equation (1.3) can be rewritten as

∂t(ρθ) + div(ρvmθ) + div q = S : ∇v − p div v. (1.15)

2. Proof of Theorem 1.1

Since it is easy to prove a local existence result for smooth solution, which is
very similar as that in [3], we omit the details here. We need to prove only the a
priori estimates for smooth solutions and omit the proof of the uniqueness which is
standard.

Since we take x ∈ Ω := (0, 1) and ∂Ω = {0, 1}, it follows that div = ∇ = ∂x,
∆ = ∂2

x, S := ( 4
3µ + η)∂xv and (1.4) becomes

v|∂Ω = 0, ∇ρ|∂Ω =
∂ρ

∂x

∣∣
∂Ω

= 0, ∇θ|∂Ω =
∂θ

∂x

∣∣
∂Ω

= 0.

First, we note that in 1-D, we have

‖ρ‖L∞ ≤ C‖ρ‖H1 , ‖θ‖L∞ ≤ C‖θ‖H1 , ‖v‖L∞ ≤ C‖∇v‖L2 . (2.1)
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Lemma 2.1. If (ρ, v, θ) is a strong solution, then

‖ρ‖L∞(0,T ;H1) + ‖ρ‖L2(0,T ;H2) ≤ C(T ),

‖∂tρ‖L2(0,T ;L2) ≤ C(T ),
1

C(T )
≤ ρ.

Proof. Testing (1.14) with ρ, using (1.10) and (2.1), we have
1
2

d

dt

∫
ρ2dx +

∫
|∇ρ|2dx =

∫
ρv∇ρdx

≤ ‖ρ‖L2‖v‖L∞‖∇ρ‖L2 ≤ C‖∇v‖L2‖ρ‖L2‖∇ρ‖L2

≤ 1
2
‖∇ρ‖2

L2 + C‖∇v‖2
L2‖ρ‖2

L2

which gives
‖ρ‖L∞(0,T ;L2) + ‖ρ‖L2(0,T ;H1) ≤ C(T ).

Similarly, testing (1.14) with −∆ρ, using (1.10) and (2.1), we see that
1
2

d

dt

∫
|∇ρ|2dx +

∫
|∆ρ|2dx =

∫
(ρ div v + v∇ρ)∆ρdx

≤ (‖ρ‖L∞‖div v‖L2 + ‖v‖L∞‖∇ρ‖L2)‖∆ρ‖L2

≤ C‖ρ‖H1‖∇v‖L2‖∆ρ‖L2

≤ 1
2
‖∆ρ‖2

L2 + C‖∇v‖2
L2‖ρ‖2

H1

which yields (2.1). Here we have div v = ∇v = ∂v
∂x . Then (2.1) follows easily from

(1.14) and (2.1).
To prove (2.1), we multiply (1.14) by 1

ρ to obtain

∂t log ρ−∆ log ρ = |∇ log ρ|2 − v · ∇ log ρ− div v

=
(
∇ log ρ− 1

2
v
)2

− 1
4
v2 − div v

≥ −1
4
v2 − div v.

By the classical comparison principle, it is easy to infer that log ρ ≥ w, with w a
solution to the problem

∂tw −∆w = −1
4
v2 − div v, ∇w|∂Ω =

∂w

∂x

∣∣
∂Ω

= 0, w|t=0 = log ρ0, (2.2)

with fixed v satisfying (1.10).
Testing (2.2) with w, using (1.10), we find that

1
2

d

dt

∫
w2dx +

∫
|∇w|2dx ≤ (

1
4
‖v‖L∞‖v‖L2 + ‖div v‖L2)‖w‖L2

≤ C(‖∇v‖L2 + ‖∇v‖2
L2)‖w‖L2

which gives
‖w‖L∞(0,T ;L2) + ‖w‖L2(0,T ;H1) ≤ C(T ).

Similarly, testing (2.2) with −∆w, using (1.10), we infer that
1
2

d

dt

∫
|∇w|2dx +

∫
|∆w|2dx ≤

∣∣ ∫
1
4
∇v2 · ∇wdx

∣∣ + |
∫

div v ·∆wdx|
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≤ 1
2
‖v‖L∞‖div v‖L2‖∇w‖L2 + ‖div v‖L2‖∆w‖L2

≤ 1
2
‖∆w‖2

L2 + C‖div v‖2
L2 + C‖∇v‖2

L2‖∇w‖L2

which yields
‖w‖L∞(0,T ;H1) ≤ C(T ).

This yields
log ρ ≥ w ≥ −C(T ) > −∞

and thus (2.1) holds. The proof is complete. �

Using (1.1), (1.2), (2.1), (2.1), p := Rρθ, (1.11), (1.12) and the method in [4], it
is easy to verify the following lemma.

Lemma 2.2 ([4]). If (ρ, v, θ) is a weak solution, then

‖v‖L∞(0,T ;Lm(Ω)) ≤ C(T ) for some m > 2. (2.3)

It follows from (1.11) and (2.1) that

‖θ‖L3(0,T ;L∞(Ω)) ≤ C(T ). (2.4)

Lemma 2.3. If (ρ, v, θ) is a strong solution, then

‖v‖L∞(0,T ;H1) + ‖vt‖L2(0,T ;L2) ≤ C(T ), (2.5)

‖v‖L2(0,T ;H2) ≤ C(T ). (2.6)

Proof. We start rewriting the momentum equation (1.2) in the form

ρ(∂tv + vm · ∇v) + R∇(ρθ) = µ∆v +
1
3
µ∇ div v. (2.7)

Testing (2.7) with vt, using (2.1), (2.1), (1.12), (2.3) and (2.4), we deduce that

1
2

d

dt

∫
µ|∇v|2 +

1
3
µ(div v)2dx +

∫
ρv2

t dx

= −
∫

ρvm · ∇v · vtdx−R

∫
∇(ρθ) · vtdx

= −
∫

ρv · ∇v · vtdx +
∫
∇ρ · ∇v · vtdx−R

∫
(ρ∇θ + θ∇ρ)vtdx

≤ ‖ρ‖L∞‖v‖L∞‖∇v‖L2‖vt‖L2 + ‖∇ρ‖L∞‖∇v‖L2‖vt‖L2

+ R(‖ρ‖L∞‖∇θ‖L2 + ‖θ‖L∞‖∇ρ‖L2)‖vt‖L2

≤ C‖∇v‖2
L2‖vt‖L2 + C‖∆ρ‖L2‖∇v‖L2‖vt‖L2

+ C(‖∇θ‖L2 + ‖θ‖L∞)‖vt‖L2 .

(2.8)

On the other hand, using (2.7) and the H2-theory of second order elliptic equations,
we have

‖v‖H2 ≤ C‖ρ∂tv + ρvm · ∇v + R∇(ρθ)‖L2

≤ C(‖vt‖L2 + ‖v · ∇v‖L2 + ‖∇ρ‖L∞‖∇v‖L2 + ‖∇θ‖L2 + ‖θ‖L∞)

≤ C(‖vt‖L2 + ‖∇v‖2
L2 + ‖∆ρ‖L2‖∇v‖L2 + ‖∇θ‖L2 + ‖θ‖L∞).

(2.9)

Now using (2.3), Young’s inequality and the Gagliardo-Nirenberg inequality [5],

‖∇v‖2
L2 ≤ C‖v‖2α

Lm‖v‖2(1−α)
H2 ≤ C‖v‖2(1−α)

H2 ≤ 1
2C

‖v‖H2 + C,
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with 1− α = m+2
3m+2 < 1

2

)
, we obtain

‖v‖H2 ≤ C(‖vt‖L2 + ‖∆ρ‖L2‖∇v‖L2 + ‖∇θ‖L2 + ‖θ‖L∞ + C). (2.10)

Combining (2.8), (2.9) and (2.10) and using Gronwall’s inequality, we obtain (2.5)
and (2.6). This completes the proof. �

Lemma 2.4. Let K(θ) := θ + θ4. If (ρ, v, θ) is a strong solution, then

‖K(θ)‖L∞(0,T ;L2) + ‖K(θ)‖L2(0,T ;H1) ≤ C(T ). (2.11)

Proof. We start by rewriting the energy equation (1.15) in the form:

ρ∂tK(θ) + ρvm · ∇K(θ)−∆K(θ) = (S : ∇v − p div v)K ′(θ). (2.12)

Testing (2.12) with K(θ), using (1.1), (2.5), (2.1) and (2.1), we find that

1
2

d

dt

∫
ρK2(θ)dx +

∫
|∇K(θ)|2dx

=
∫

(S : ∇v − p div v)K ′(θ)K(θ)dx

≤ ‖S‖L2‖∇v‖L2‖K ′(θ)K(θ)‖L∞ + C‖ρ‖L∞‖div v‖L2‖K(θ)‖2
L4

≤ C‖K(θ)‖7/4
L∞ + C‖K(θ)‖2

L4

≤ C‖K(θ)‖7/8
L2 ‖K(θ)‖7/8

H1 +
1
8
‖∇K(θ)‖2

L2 + C‖K(θ)‖2
L2

≤ 1
4
‖∇K(θ)‖2

L2 + C‖K(θ)‖2
L2 + C

which yields (2.11). Here we have used the Gagliardo-Nirenberg inequalities:

‖K(θ)‖L∞ ≤ C‖K(θ)‖1/2
L2 ‖K(θ)‖1/2

H1 ,

‖K(θ)‖L4 ≤ C‖K(θ)‖3/4
L2 ‖K(θ)‖1/4

H1 .

This completes the proof. �

Lemma 2.5. If (ρ, v, θ) is a strong solution, then

‖θ‖L∞(0,T ;H1) + ‖θ‖L2(0,T ;H2) ≤ C(T ), (2.13)

‖θt‖L2(0,T ;L2) ≤ C(T ). (2.14)

Proof. We start by rewriting the energy equation (2.12) in the form:

∂tK(θ) + vm · ∇K(θ)− 1
ρ
∆K(θ) =

S : ∇v − p div v

ρ
K ′(θ).

Testing the above equation with −∆K(θ), using (2.5), (2.6), (2.1), (2.1) and (2.11),
we deduce that

1
2

d

dt

∫
|∇K(θ)|2dx +

∫
1
ρ
|∆K(θ)|2dx

=
∫ [

(v −∇ log ρ)∇K(θ)− S : ∇v − p div v

ρ
K ′(θ)

]
∆K(θ)dx

≤
(
‖v‖L∞‖∇K(θ)‖L2 +

∥∥∥∥1
ρ

∥∥∥∥
L∞

‖∇ρ‖L∞‖∇K(θ)‖L2

+ ‖1
ρ
‖L∞‖S : ∇v‖L2‖K ′(θ)‖L∞ + C‖div v‖L2‖K(θ)‖L∞

)
‖∆K(θ)‖L2
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≤ C(‖K(θ)‖H1 + ‖ρ‖H2‖K(θ)‖H1 + ‖∇v‖2
L4‖K(θ)‖3/4

L∞)‖∆K(θ)‖L2

≤ C(‖K(θ)‖H1 + ‖ρ‖H2‖K(θ)‖H1 + ‖v‖1/2
H2 ‖K(θ)‖3/8

H1 )‖∆K(θ)‖L2

≤ 1
2
‖∆K(θ)‖2

L2 + C‖K(θ)‖2
H1 + C‖ρ‖2

H2‖K(θ)‖2
H1 + C‖v‖H2‖K(θ)‖3/4

H1

which yields (2.13). Here we have used the Gagliardo-Nirenberg inequalities:

‖∇v‖2
L4 ≤ C‖∇v‖3/2

L2 ‖v‖1/2
H2 , ‖K(θ)‖L∞ ≤ C‖K(θ)‖1/2

L2 ‖K(θ)‖1/2
H1 ,

‖θ‖L∞(0,T ;L∞) ≤ C‖θ‖L∞(0,T ;H1),

‖∇θ‖L∞(0,T ;L2) ≤ C‖∇K(θ)‖L∞(0,T ;L2),

‖∆θ‖L2(0,T ;L2) ≤ C‖∆K(θ)‖L2(0,T ;L2).

Equation (2.14) follows easily from (2.12), (2.13), (2.5), (2.6), and (2.1). This
completes the proof. �
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