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EXISTENCE OF SMOOTH GLOBAL SOLUTIONS FOR A 1-D
MODIFIED NAVIER-STOKES-FOURIER MODEL

JIANZHU SUN, JISHAN FAN, GEN NAKAMURA

ABSTRACT. We prove the existence of strong global solutions of the 1-D mod-
ified compressible Navier-Stokes-Fourier equations proposed by Howard Bren-
ner [11 [2].

1. INTRODUCTION

We consider the modified Navier-Stokes-Fourier equations proposed by by Bren-
ner [11 2]:

Op + div(pvm,) =0, (1.1)
O(pv) + div(pv @ vy) + Vp = divs, (1.2)

1 1
8t(p(§v2 +e))+ diV(p(502 + €)vy,) + div(pv) + divg = div(Sv), (1.3)
'U‘QQ =0,vm -n‘ag =Vp- n‘ag =0,q- n|aQ =Ve- ’I’L|aQ =0, (1.4)
(p,v,9)|t:0 = (po,vo,eo) in Q.= (0, 1) (15)

where p is the mass density, v is the fluid-based (Lagrangian) volume velocity, vy,
is the mass-based (Eulerian) mass velocity, p = Rpf is the pressure with positive
constant R > 0, e = Cy 0 the specific internal energy, 6 the temperature, S the
viscous stress tensor, we will adopt the Newton’s rheological law:

2
S = u(w + v - 2 divv]I) +pdivol, (1.6)

where ¢ > 0 and 1 > 0 stand for the shear and bulk viscosity coeflicients, respec-
tively. The relationship between v, and v is a cornerstone of Brenner’s approach.
After a careful study [I], 2], Brenner proposes a universal constitutive equation in
the form:
v — v, = KVlogp, (1.7)
with K > 0 a purely phenomenological coefficient.
Moreover, we suppose the heat flux obeys Fourier’s law, specifically,

where k is the heat conductivity coefficient.
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We will assume K =1,C, =1, R=1, u >0, n7=0, and
k(0) := ko(1 + 46%), (1.9)

with a positive constant kg = 1. is physically relevant as radiation heat
conductivity at least for large values of 8 (see [§]).

Very recently, Feireisl and Vasseur [4] proved the global-in-time existence of weak
solutions to the problem —. Under the conditions that pg, 8y, vo € L ()
and pg > C > 0,00 > C > 0 in Q. Here it should be noted that similar result for
the classical Navier-Stokes-Fourier system ((L.1)-(L.3) with v = v,,) have not yet
been proved. In their proof, they obtained the following global-in-time estimates:

vl 20,7511 (0)) < C, (1.10)
16%/2] 20,721 (00)) < C, (1.11)
V0| L2(0,7;12(02)) < C, (1.12)

where C is a positive constant depending on fQ podz, fQ p(%v% + Cyby)dz, and
Jo Pos(po, 0o)dz, the other norms of pg and vo, 6p.
Our aim in this article is to show the existence of a smooth global solution to

the problem (|1.1)-(L.5).

Theorem 1.1. Let py,vo, 00 € HY(Q) with inf pg > 0,inf 0y > 0 in Q. Then there
exists a unique strong solution (p,v,0) to the problem (1.1)-(1.5)) satisfying

(p,v,0) € L>=(0,T; H* () N L?(0, T; H*(2)), (0p, Oy, :0) € L*(0,T; L*(2))
for any given T > 0 and
inf p(z,t) >0, infO(z,t) >0 inQx(0,T). (1.13)

Remark 1.2. The methods for the one-dimensional classical Navier-Stokes-Fourier
equations [6] [7] do not work here. Because their clever method for proving 0 < % <
p < C < oo does not work here.

The continuity equation (1.1]) can be rewritten as

Orp + div(pv) = Ap. (1.14)
The energy equation (|1.3) can be rewritten as
O (pf) + div(pv,0) +divg =S : Vv — pdive. (1.15)

2. PrROOF OoF THEOREM [L.1]

Since it is easy to prove a local existence result for smooth solution, which is
very similar as that in [3], we omit the details here. We need to prove only the a
priori estimates for smooth solutions and omit the proof of the uniqueness which is
standard.

Since we take z € 2 := (0,1) and 9Q = {0,1}, it follows that div =V = 0,
A=02S:= (514 n)0yv and becomes

op 00
vlga =0, Vplag = %’an =0, Vblosa= %L‘m =0.
First, we note that in 1-D, we have

ol < Cllplar, 10z < CllOlar,  [ollze < CIVolL2. (2.1)
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Lemma 2.1. If (p,v,0) is a strong solution, then
lplle 0,71y + ol L2 0,15m2) < C(T),

100l L2 0,7;12) < C(T),
1

c(T)
Proof. Testing ([1.14)) with p, using ((1.10)) and (2.1)), we have
1d
pzdx+/|Vp|2dx:/vapdx

2dt
<llpllzzllvllie=lVollee < ClIVol L2llpllz= [Vollz2

< p.

1
< gllvl)\\%? + O Vol Zlpl7-
which gives
Il o,7:22) + o201y < C(T).
Similarly, testing (1.14)) with —Ap, using (1.10) and (2.1)), we see that

1d
5%/|Vp\2dm+/|Ap|2dx=/(pdivv+va)Apdx

< (lpllz<ldivol Lz + [[ollze= [ VollL2) [ Apll 2
< Clpla Vol Apllze

1
< SI1AplL2 + ClIVolLallplln

which yields

(1) and (1),
To prove (2.1)), we multiply (L.14)) by % to obtain

dilogp — Alogp = |Vilogp|? —v-Viegp — dive

. Here we have divy = Vv = %. Then ([2.1) follows easily from

— (Viegp— 1v)’ = Loz _ i
= g p 2@ 41} v

1
> —sz — divw.

By the classical comparison principle, it is easy to infer that logp > w, with w a
solution to the problem

1 0
Ow — Aw = —ivz —dive, Vuw|sq = 871:‘69 =0, w|i=o = log po, (2.2)

with fixed v satisfying (1.10).
Testing (2.2) with w, using (1.10), we find that

1d 1 .
5 [ wide+ [19uPds < (Glollm ol + | divol o) ol
2dt 4
< C(Iols + VoIl
which gives

[wl[ oo 0,7302) + 1wl L20,73m1) < C(T).
Similarly, testing (2.2]) with —Auw, using ((1.10)), we infer that

%%/\Vw|2dx+/|Aw|2dx§ |/3Vv2-dem}+|/divv~Awdm|
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1 _ ,
< Slvllz=lldivollz2 [Vewllze + || divel zz | Aw] .

1 .
< SllAw]zz + Clldivols + ClIVol7al| Vel

which yields
lwl| Lo (0,7;51y < C(T).
This yields
logp>w>—-C(T) > —oc0
and thus holds. The proof is complete. ([
Using , , 7 , p:= Rpb, , and the method in [], it

is easy to verify the following lemma.

Lemma 2.2 ([]). If (p,v,0) is a weak solution, then

vl e 0,7;2m )y < C(T)  for some m > 2. (2.3)
It follows from and that
101 3 0,755 (0)) < C(T). (2.4)
Lemma 2.3. If (p,v,0) is a strong solution, then
[v]lLo<(0,7;11) + Vel 20,7 22) < C(T), (2.5)

lvllz20,7:m2) < C(T).
Proof. We start rewriting the momentum equation ([1.2)) in the form

1
p(Ov + vy, - V) + RV (pd) = pAv + g,uV div . (2.7)
Testing (2.7) with v, using (2.1)), (2.1), (1.12)), (2.3) and (2.4, we deduce that
1d N )
5 7 w|Vol® 4+ 3u(dlvv) dx—|—/pvtdx

:f/pvm~Vv~vtdmfR/V(p6’)~vtdx

= 7/pv Vo - vdz + /Vp -V - vdx — R/(pV9 + 0V p)vdx (2.8)
< lpllzee l[oll= IVollzl[oell 22 + Vol Lo [Vl L2 [|ve 22

+ R(llpllze=IVOllL2 + 10l o< IV ollL2) [l ve]| L2
< ClIVolza llvell 2 + Cl APl L2Vl 2 el 2

+ C(IVOllL> + [10]| o) [[vel 2

On the other hand, using (2.7)) and the H2-theory of second order elliptic equations,
we have

[vllz2 < Cllpdiv + pvm - Vo + RV (p0)|| 2
< C(fJvellzz + |lv - Vollpz + [Vl L [Vl L2 + (VO 2 +[[0]z<)  (2.9)
< O(llvellzz + IVoll72 + Aol 2 [ Vol 2 + IV 22 + [10]] <)
Now using , Young’s inequality and the Gagliardo-Nirenberg inequality [5],

o 2(1— 2(1— 1
IVolE: < CllolE ol < Cllolz™ < g5llvllue +C,
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with 1 —a = 37:’”122 < 1) we obtain

||U||H2 < Clllvellze + 1Apll 2| Vol[2 + VO 2 + [10]| Lo + C). (2.10)
Combining (2.8)), (2.9) and (2.10) and using Gronwall’s inequality, we obtain (2.5))
and (2.6). This completes the proof. (Il
Lemma 2.4. Let K(0) := 0+ 6*. If (p,v,0) is a strong solution, then

1K O]l 07,2 + 1K Ol 207580 < O(T). (2.11)

Proof. We start by rewriting the energy equation (1.15)) in the form:

p@tK(H) + pvy, - VK (0) — AK(G) = (S: Vv — pdive)K'(9). (2.12)

Testing (|2 with K (0), using (1.1] . and , we find that

1d
K?(0 K9
szl dx—|—/|V )|2dx

= /(S : Vo — pdive)K'(0) K (0)dx

< |IS|| 2 | Vol 2| K (0)K (8)]| 1 + Cllp]| oo || div v]| 2 | K (6) | 2
< C|K(0)|/2 +C|K(® >||i4

< K@) IK @) + f||w<< )22 + ClK(6)]2

1
< JIVEO)7: + CIKO)IIZ: + C

which yields . Here we have used the Gagliardo-Nirenberg inequalities:
2 1/2
1K (O)][ < CIEO)] 51K O)]37,

3/4 1/4

K O)2s < CUK @)K (0) 75
This completes the proof. O

Lemma 2.5. If (p,v,0) is a strong solution, then

10l o< 0.7:1) + 101l L2(0,7;12) < C(T), (2.13)
10¢]l22(0,7;12) < C(T)- (2.14)
Proof. We start by rewriting the energy equation ([2.12) in the form:
S di
0K (0) + vy - VK (0) — fAK(G) MK'(a).

Testing the above equation with —AK ), using , (12.6), (2.1), (2.1) and (2.11)),

we deduce that

2dt/|w< )| dw+/—|AK( )2da

_ / (v — Viog p)VE(0) — =0 PUVY pr 0y A g (0) e

Vol VE(O)]| 2
LO()

1
< (Wl IVE @l + | 5

1 :
2l IS Vol 2| K7(0) ]| L~ + C] dlvaLzllK(ﬂ)lle) IAK(O)]| >
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< CUE O + ol =l @) | + [Vl 24| K O)[74) | AK ()] 2
<CUEO |+ lola= KO + ol | K O)HFOIAK )2
1 3/4
< §||AK(9)||2L2 + CIEO) 3 + Cllol 2 K O0) 13 + Cllollz= | K (0)[13:
which yields (2.13]). Here we have used the Gagliardo-Nirenberg inequalities:
IVol24 < CIVol[E2 ol KO < K@) L 1K O)]5:,
101l oo (0,7, < CllO| Lo 0,111
VO] L0, 1522) < CIVE(0)]| Lo (0,722,
A0 22(0,7;22) < CIAK(0)||L2(0,7:L2)-

Equation (2.14]) follows easily from (2.12)), (2.13), (2.5), (2.6), and (2.1). This

completes the proof. O
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