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GENERATORS WITH INTERIOR DEGENERACY ON SPACES
OF L2 TYPE

GENNI FRAGNELLI, GISÈLE RUIZ GOLDSTEIN
JEROME A. GOLDSTEIN, SILVIA ROMANELLI

Abstract. We consider operators in divergence and in nondivergence form
with degeneracy at the interior of the space domain. Characterizing the do-
main of the operators, we prove that they generate positive analytic semigroups
on spaces of L2 type. Finally, some applications to linear and semilinear par-
abolic evolution problems and to linear hyperbolic ones are presented.

1. Introduction

This article is concerned with the generation property of a second order ordi-
nary differential degenerate operator in divergence or in nondivergence form un-
der Dirichlet boundary conditions in the real setting. In particular, we consider
both the operators A1u := (au′)′ and A2u := au′′ with a suitable domain, where
the function a vanishes at an interior point of the domain. Degenerate para-
bolic operators naturally arise in many problems. For some examples involving
degeneracy, let us recall some applications arising in aeronautics (the Crocco equa-
tion, see, e.g., [10]), in physics (boundary layer models, see, e.g., [6]), in genetics
(Wright-Fisher and Fleming-Viot models, see, e.g., [24, 27]) and in mathemati-
cal finance (Black-Merton-Scholes models, see, e.g., [12, 20, 23]). Moreover, de-
generate operators have been extensively studied since Feller’s investigations in
[15, 16], whose main motivation was the probabilistic interest of the associated
parabolic equation for transition probabilities. After that, the degenerate oper-
ator A1u or A2u has been studied under different boundary conditions, see, for
example, [7, 9, 11, 14, 30, 17, 19, 22, 28, 29, 31]. In particular, [30, 22, 28, 29]
develop a functional analytic approach to the construction of Feller semigroups
generated by degenerate elliptic operators with Wentzell boundary conditions. In
[19], the authors consider degenerate operators with boundary conditions of Dirich-
let, Neumann, periodic, or nonlinear Robin type. In [25], A. Stahel proves that the
Dirichlet parabolic problem associated to a degenerate operator in divergence form
with degeneracy at the boundary of the domain, has a unique solution under suit-
able assumptions on the degenerate function, using an approximation technique.
In [1, 9, 17], the authors consider the degenerate operator in divergence and in non
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divergence form with Dirichlet or Neumann boundary conditions, giving more im-
portance to controllability problems of the associated parabolic evolution equations.
However, all the previous papers deal with a degenerate operator with degeneracy
at the boundary of the domain. For example, as a, one can consider the double
power function

a(x) = xk(1− x)α, x ∈ [0, 1],

where k and α are positive constants.
To the best of our knowledge, Stahel’s paper [26] is the first treating a problem

with a degeneracy which may be interior. In particular, Stahel considers a parabolic
problem in RN with Dirichlet, Neumann or mixed boundary conditions, associated
with a N ×N matrix a, which is positive definite and symmetric, but whose small-
est eigenvalue might converge to 0 as the space variable approaches a singular set
contained in the closure of the space domain. In this case, he proves that the cor-
responding abstract Cauchy problem has a solution, provided that a−1 ∈ Lq(Ω, R)
for some q > 1, where

a(x) := min{a(x)ξ · ξ : ‖ξ‖ = 1}.

In the present paper we generalize his assumption when N = 1 and the degeneracy
is interior. More precisely, we shall admit two types of degeneracy for a, namely
weak and strong degeneracy according to the following definitions:

Definition 1.1. The operators A1u := (au′)′ and A2u = au′′ are weakly degenerate
if there exists x0 ∈ (0, 1) such that a(x0) = 0, a > 0 on [0, 1] \ {x0}, a ∈ C[0, 1] and
1
a ∈ L1(0, 1).

For example, as a, we can consider a(x) = |x− x0|α, 0 < α < 1.

Definition 1.2. The operators A1u := (au′)′ and A2u = au′′ are strongly de-
generate if there exists x0 ∈ (0, 1) such that a(x0) = 0, a > 0 on [0, 1] \ {x0},
a ∈ W 1,∞(0, 1) and 1

a 6∈ L1(0, 1).

For example, as a, one can consider a(x) = |x− x0|α, α ≥ 1.
We remark that, while in [26] only the existence of a solution for the parabolic

problem is considered, here we analyze in detail the underlying degenerate operator
in the spaces L2(0, 1) with or without weight, proving that under suitable assump-
tions it is nonpositive and selfadjoint, hence it generates an analytic semigroup
which is positivity preserving (see Theorems 2.2-2.7, 3.3 - 3.11).

Moreover, in the strongly degenerate case, we are able to characterize the domain
of the operator both in divergence and in non divergence cases (see Propositions 2.4,
3.8) under, possibly, additional assumptions on the function a. We point out that
the generation property of the operator in nondivergence form cannot be deduced
by the generation property of the operator in divergence form without additional
assumptions on the function a. In fact, the operator

A2u = au′′

can be recast using divergence form as follows

A2u = A1u− a′u′ (1.1)

at the price of adding the drift term −a′u′ to the divergence form operator A1 de-
fined in Definition 1.1 or Definition 1.2. Such an addition has major consequences.
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For example, as described in [4], degenerate operators of the form (1.1), where a de-
generates at the boundary of the domain, generate a strongly continuous semigroup
in L2(0, 1) under the structural assumption

|a′(x)| ≤ C
√

a(x) (1.2)

for any x ∈ [0, 1], where C is a positive constant. Hence, it is natural to expect that
a similar result holds also if a has an interior degeneracy. Similar considerations
also hold interchanging the role of divergence and nondivergence operators. This is
proved in Section 3, where, however, we establish the generation property of A2u =
au′′ on a suitable weighted space without any additional technical assumption on a.
The generator property of A1u = (au′)′ is proved without any further assumptions
on a in Section 2.

The paper is organized in the following way. In Section 2 we consider the degen-
erate operator in divergence form and we prove that it is nonpositive and selfadjoint
on L2(0, 1). In Section 3 we prove the same result for the operator in nondivergence
form on the space L2

1/a(0, 1). Moreover, under hypothesis (1.2), we prove that both
degenerate operators in nondivergence and in divergence form generate analytic
semigroups on L2(0, 1) and L2

1/a(0, 1), respectively (see Theorems 3.10 and 3.11).
As a consequence of the results proved in Sections 2 and 3, in Section 4 we obtain
existence results for linear and semilinear parabolic evolution problems and linear
hyperbolic evolution problems associated with the operators under consideration.
Finally, for the reader convenience, in the Appendix we give some compactness
theorems which are crucial for our proofs in the semilinear parabolic cases. In this
paper we will always consider spaces of real valued functions.

2. Divergence form

In this section we consider the operator in divergence form, that is A1u = (au′)′,
and we distinguish two cases: the weakly degenerate case and the strongly one.

2.1. Weakly degenerate operator. Throughout this subsection we assume that
the operator is weakly degenerate. To prove that A1, with a suitable domain,
generates a strongly continuous semigroup, we introduce, as in [1], the following
weighted space:

H1
a(0, 1) :=

{
u ∈ L2(0, 1) : u absolutely continuous in [0, 1],
√

au′ ∈ L2(0, 1) and u(0) = u(1) = 0
}

with the norm

‖u‖H1
a(0,1) :=

(
‖u‖2

L2(0,1) + ‖
√

au′‖2
L2(0,1)

)1/2

and consider
H2

a(0, 1) := {u ∈ H1
a(0, 1) : au′ ∈ H1(0, 1)}.

Then, define the operator A1 by

D(A1) = H2
a(0, 1),

and for any u ∈ D(A1),
A1u := (au′)′.

We prove the following Green’s formula:
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Lemma 2.1. For all (u, v) ∈ H2
a(0, 1)×H1

a(0, 1) one has∫ 1

0

(au′)′vdx = −
∫ 1

0

au′v′dx. (2.1)

Proof. Let (u, v) ∈ H2
a(0, 1)×H1

a(0, 1). For any sufficiently small δ > 0 one has∫ 1

0

(au′)′vdx =
∫ x0−δ

0

(au′)′vdx +
∫ x0+δ

x0−δ

(au′)′vdx +
∫ 1

x0+δ

(au′)′vdx

= (au′v)(x0 − δ)− (au′v)(0)

−
∫ x0−δ

0

au′v′dx +
∫ x0+δ

x0−δ

(au′)′vdx

+ (au′v)(1)− (au′v)(x0 + δ)−
∫ 1

x0+δ

au′v′dx

= (au′v)(x0 − δ)−
∫ x0−δ

0

au′v′dx +
∫ x0+δ

x0−δ

(au′)′vdx

− (au′v)(x0 + δ)−
∫ 1

x0+δ

au′v′dx,

(2.2)

since au′ ∈ H1(0, 1) and v(0) = v(1) = 0. Now, we prove that

lim
δ→0

∫ x0−δ

0

au′v′dx =
∫ x0

0

au′v′dx, lim
δ→0

∫ 1

x0+δ

au′v′dx =
∫ 1

x0

au′v′dx

and

lim
δ→0

∫ x0+δ

x0−δ

(au′)′vdx = 0. (2.3)

Toward this end, observe that∫ x0−δ

0

au′v′dx =
∫ x0

0

au′v′dx−
∫ x0

x0−δ

au′v′dx (2.4)

and ∫ 1

x0+δ

au′v′dx =
∫ 1

x0

au′v′dx−
∫ x0+δ

x0

au′v′dx. (2.5)

Moreover, (au′)′v and au′v′ ∈ L1(0, 1). Thus, for any ε > 0, by the absolute
continuity of the integral, there exists δ := δ(ε) > 0 such that∣∣ ∫ x0

x0−δ

au′v′dx
∣∣ ≤ ∣∣ ∫ x0

x0−δ

|au′v′|dx
∣∣ < ε,

∣∣ ∫ x0+δ

x0−δ

(au′)′vdx
∣∣ ≤ ∣∣ ∫ x0+δ

x0−δ

|(au′)′v|dx
∣∣ < ε,

∣∣ ∫ x0+δ

x0

au′v′dx
∣∣ ≤ ∣∣ ∫ x0+δ

x0

|au′v′|dx
∣∣ < ε.

Now, take such a δ in (2.2). Thus, ε being arbitrary,

lim
δ→0

∫ x0

x0−δ

au′v′dx = lim
δ→0

∫ x0+δ

x0−δ

(au′)′vdx = lim
δ→0

∫ x0+δ

x0

au′v′dx = 0.
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The previous equalities and (2.4), (2.5) imply

lim
δ→0

∫ x0−δ

0

au′v′dx =
∫ x0

0

au′v′dx and lim
δ→0

∫ 1

x0+δ

au′v′dx =
∫ 1

x0

au′v′dx.

To obtain the desired result it is sufficient to prove that

lim
δ→0

(au′v)(x0 − δ) = lim
δ→0

(au′v)(x0 + δ). (2.6)

Since au′ ∈ H1(0, 1) and v ∈ H1
a(0, 1),

lim
δ→0

(au′v)(x0 − δ) = (au′v)(x0) = lim
δ→0

(au′v)(x0 + δ). (2.7)

Thus, by (2.2) – (2.3) and (2.6), it follows that∫ 1

0

(au′)′vdx = −
∫ 1

0

au′v′dx. �

As a consequence of the previous lemma one has the next result.

Theorem 2.2. The operator A1 : D(A1) → L2(0, 1) is nonpositive and self-adjoint
on L2(0, 1). Moreover, the semigroup {T (t) = etA1 : t ≥ 0} generated by A1 is
positivity preserving.

Proof. Observe that D(A1) is dense in L2(0, 1). To show that A1 is nonpositive
and self-adjoint it suffices to prove that A1 is symmetric, nonpositive and (I −
A1)(D(A1)) = L2(0, 1) (see e.g. [3, Theorem B.14] or [18]).
A1 is symmetric. Indeed, for any u, v ∈ D(A1), one has

〈v,A1u〉L2(0,1) =
∫ 1

0

v(au′)′dx = −
∫ 1

0

au′v′dx =
∫ 1

0

(av′)′udx = 〈A1v, u〉L2(0,1).

A1 is nonpositive. By (2.1), it follows that, for any u ∈ D(A1)

〈A1u, u〉L2(0,1) =
∫ 1

0

(au′)′udx = −
∫ 1

0

a(u′)2dx ≤ 0.

I − A1 is surjective. First of all, observe that H1
a(0, 1) equipped with the inner

product

(u, v)1 :=
∫ 1

0

(uv + au′v′)dx,

for any u, v ∈ H1
a(0, 1), is a Hilbert space. Moreover,

H1
a(0, 1) ↪→ L2(0, 1) ↪→ (H1

a(0, 1))∗, (2.8)

where (H1
a(0, 1))∗ is the dual space of H1

a(0, 1) with respect to L2(0, 1) (cf. (2.8)).
Indeed, the continuous embedding of H1

a(0, 1) in L2(0, 1) is readily seen. In addition,
for any f, ϕ ∈ L2(0, 1)

|〈f, ϕ〉L2(0,1)| =
∣∣∣∣∫ 1

0

fϕdx

∣∣∣∣ ≤ ‖f‖L2(0,1)‖ϕ‖L2(0,1) ≤ ‖f‖H1
a(0,1)‖ϕ‖L2(0,1).

Hence, L2(0, 1) ↪→ (H1
a(0, 1))∗. Then, (H1

a(0, 1))∗ is the completion of L2(0, 1) with
respect to the norm of (H1

a(0, 1))∗. Now, for f ∈ L2(0, 1), consider the functional
F : H1

a(0, 1) → R defined as F (v) :=
∫ 1

0
fvdx. Since H1

a(0, 1) ↪→ L2(0, 1), we have



6 G. FRAGNELLI, G. R. GOLDSTEIN, J. A. GOLDSTEIN, S. ROMANELLI EJDE-2012/189

that F ∈ (H1
a(0, 1))∗. As a consequence, by Riesz’s Theorem, there exists a unique

u ∈ H1
a(0, 1) such that for all v ∈ H1

a(0, 1)

(u, v)1 =
∫ 1

0

fvdx. (2.9)

In particular, since C∞
c (0, 1) ⊂ H1

a(0, 1), (2.9) holds for all v ∈ C∞
c (0, 1); i.e.,∫ 1

0

au′v′dx =
∫ 1

0

(f − u)vdx, for all v ∈ C∞
c (0, 1).

Thus, the distributional derivative of au′ is a function in L2(0, 1), that is au′ ∈
H1(0, 1) (recall that

√
au′ ∈ L2(0, 1)) and (au′)′ = u − f a.e. in (0, 1). Then

u ∈ H2
a(0, 1) and, by (2.9) and Lemma 2.1, we have∫ 1

0

(u− (au′)′ − f)vdx = 0.

Consequently,
u ∈ D(A1) and u−A1u = f. (2.10)

As an immediate consequence of the Stone-von Neumann spectral theorem and
functional calculus associated with the spectral theorem, one has that the operator
(A1, D(A1)) generates a cosine family and an analytic semigroup of angle π

2 on
L2(0, 1). Positivity preserving follows as a consequence of the positive minimum
principle. �

2.2. Strongly degenerate operator. In this subsection we assume that the op-
erator is strongly degenerate. Following [1], we introduce the weighted space

H1
a(0, 1) :=

{
u ∈ L2(0, 1) : u locally absolutely continuous in [0, x0) ∪ (x0, 1],
√

au′ ∈ L2(0, 1) and u(0) = u(1) = 0
}

with the norm

‖u‖H1
a(0,1) :=

(
‖u‖2

L2(0,1) + ‖
√

au′‖2
L2(0,1)

)1/2

.

Define the operator A1 by
D(A1) = H2

a(0, 1),
and for any u ∈ D(A1),

A1u := (au′)′,
where H2

a(0, 1) is defined as before. Since in this case a function u ∈ H2
a(0, 1) is lo-

cally absolutely continuous in [0, 1]\{x0} and not necessarily absolutely continuous
in [0, 1] as for the weakly degenerate case, equality (2.7) is not true a priori. Thus,
we have to prove again the Green formula. To do this, an idea is to characterize
the domain of A1. The next results hold:

Proposition 2.3. Let

X :=
{

u ∈ L2(0, 1) : u locally absolutely continuous in [0, 1] \ {x0},
√

au′ ∈ L2(0, 1), au is continuous at x0 and

(au)(x0) = 0 = u(0) = u(1)
}

.

Then H1
a(0, 1) = X.
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Proof. Obviously, X ⊆ H1
a . Now we take u ∈ H1

a , and we prove that (au)(x0) = 0,
that is u ∈ X. Toward this end, observe that au ∈ H1

0 (0, 1). Indeed, using the
assumptions on u, one has that au ∈ L2(0, 1) and (au)(0) = (au)(1) = 0. Moreover,
since a ∈ W 1,∞(0, 1), (au)′ = a′u + au′ ∈ L2(0, 1). Thus au ∈ H1

0 (0, 1) ⊂ C[0, 1].
This implies that there exists limx→x0(au)(x) = (au)(x0) = L ∈ R. If L 6= 0, then
there exists C > 0 such that

|(au)(x)| ≥ C

for all x in a neighborhood of x0, x 6= x0. Thus, setting C1 := C2

max[0,1] a(x) > 0, it
follows that

|u2(x)| ≥ C2

a2(x)
≥ C1

a(x)
,

for all x in a neighborhood of x0, x 6= x0. But, since the operator is strongly
degenerate, 1

a 6∈ L1(0, 1) thus u 6∈ L2(0, 1). Hence L = 0, that is (au)(x0) = 0. �

Using the previous result, one can prove the following characterization.

Proposition 2.4. Let

D :=
{
u ∈ L2(0, 1) : u locally absolutely continuous in [0, 1] \ {x0},
au ∈ H1

0 (0, 1), au′ ∈ H1(0, 1) and (au)(x0) = (au′)(x0) = 0
}
.

Then D(A1) = D.

To prove Proposition 2.4, the following lemma is crucial:

Lemma 2.5. For all u ∈ D we have that

|a(x)u(x)| ≤ ‖(au)′‖L2(0,1)

√
|x− x0|,

and
|a(x)u′(x)| ≤ ‖(au′)′‖L2(0,1)

√
|x− x0|, (2.11)

for all x ∈ [0, 1].

Proof. Let u ∈ D. Since (au)(x0) = 0, then

|(au)(x)| =
∣∣ ∫ x

x0

(au)′(s)ds
∣∣ ≤ ‖(au)′‖L2(0,1)

√
|x− x0|,

for all x ∈ [0, 1]. Analogously, using the fact that (au′)(x0) = 0,

|(au′)(x)| =
∣∣ ∫ x

x0

(au′)′(s)ds
∣∣ ≤ ‖(au′)′‖L2(0,1)

√
|x− x0|,

for all x ∈ [0, 1]. �

Proof of Proposition 2.4. Let us prove that D = D(A1).
D ⊆ D(A1) : Let u ∈ D. It is sufficient to prove that

√
au′ ∈ L2(0, 1). Since

au′ ∈ H1(0, 1) and u(1) = 0 (recall that a > 0 in [0, 1] \ {x0}), for x ∈ (x0, 1] we
have∫ 1

x

[(au′)′u](s)ds = [au′u]1x −
∫ 1

x

(a(u′)2)(s)ds = −[au′u](x)−
∫ 1

x

(a(u′)2)(s)ds.

Thus

(au′u)(x) = −
∫ 1

x

[(au′)′u](s)ds−
∫ 1

x

(a(u′)2)(s)ds.
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Since u ∈ D, (au′)′u ∈ L1(0, 1). Hence, there exists

lim
x→x+

0

(au′u)(x) = L ∈ [−∞,+∞).

If L 6= 0, there exists C > 0 such that

|(au′u)(x)| ≥ C

for all x in a right neighborhood of x0, x 6= x0. Thus, by (2.11), there exists C1 > 0
such that

|u(x)| ≥ C

|(au′)(x)|
≥ C1√

(x− x0)
,

for all x in a right neighborhood of x0, x 6= x0. This implies that u 6∈ L2(0, 1).
Hence L = 0 and ∫ 1

x0

[(au′)′u](s)ds = −
∫ 1

x0

(a(u′)2)(s)ds. (2.12)

If x ∈ [0, x0), proceeding as before and using the condition u(0) = 0, it follows that:

(au′u)(x) =
∫ x

0

[(au′)′u](s)ds +
∫ x

0

(a(u′)2)(s)ds

and there exists
lim

x→x−0

(au′u)(x) = L ∈ (−∞,+∞].

As before, if L 6= 0, there exist two positive constants C ′ and C ′
1 such that

|u(x)| ≥ C ′

|(au′)(x)|
≥ C ′

1√
(x0 − x)

,

for all x in a left neighborhood of x0, x 6= x0. This implies that u 6∈ L2(0, 1). Hence
L = 0 and ∫ x0

0

[(au′)′u](s)ds = −
∫ x0

0

(a(u′)2)(s)ds. (2.13)

By (2.12) and (2.13), it follows that∫ 1

0

[(au′)′u](s)ds = −
∫ 1

0

(a(u′)2)(s)ds.

Since (au′)′u ∈ L1(0, 1), then
√

au′ ∈ L2(0, 1). Hence, D ⊆ D(A1).
D(A1) ⊆ D : Let u ∈ D(A1). As in the proof of Proposition 2.3, we can

prove that au ∈ H1
0 (0, 1). Moreover, by Proposition 2.3, (au)(x0) = 0. Thus,

it is sufficient to prove that (au′)(x0) = 0. Toward this end, observe that, since
au′ ∈ H1(0, 1), there exists L ∈ R such that limx→x0(au′)(x) = (au′)(x0) = L. If
L 6= 0, there exists C > 0 such that

|(au′)(x)| ≥ C,

for all x in a neighborhood of x0, x 6= x0. Thus

|(a(u′)2)(x)| ≥ C2

a(x)
,

for all x in a neighborhood of x0, x 6= x0. This implies that
√

au′ 6∈ L2(0, 1). Hence
L = 0, that is (au′)(x0) = 0. �
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We point out the fact that the condition 1
a 6∈ L1(0, 1) is crucial to prove the

previous characterizations. Clearly this condition is not satisfied if the operator is
weakly degenerate.

As for the weakly degenerate case and using the previous characterization, we
can prove the following Green’s formula.

Lemma 2.6. For all (u, v) ∈ H2
a(0, 1)×H1

a(0, 1) one has∫ 1

0

(au′)′vdx = −
∫ 1

0

au′v′dx.

Proof. Let (u, v) ∈ H2
a(0, 1) ×H1

a(0, 1). As for the weak case, one can prove that,
for any δ > 0:∫ 1

0

(au′)′vdx = (au′v)(x0 − δ)−
∫ x0−δ

0

au′v′dx

+
∫ x0+δ

x0−δ

(au′)′vdx− (au′v)(x0 + δ)−
∫ 1

x0+δ

au′v′dx.

(2.14)

Moreover,

lim
δ→0

∫ x0−δ

0

au′v′dx =
∫ x0

0

au′v′dx, lim
δ→0

∫ 1

x0+δ

au′v′dx =
∫ 1

x0

au′v′dx (2.15)

and

lim
δ→0

∫ x0+δ

x0−δ

(au′)′vdx = 0. (2.16)

To obtain the desired result it is sufficient to prove that

lim
δ→0

(au′v)(x0 − δ) = lim
δ→0

(au′v)(x0 + δ). (2.17)

First of all, observe that

(au′v)(x0 − δ) =
∫ x0−δ

0

((au′)′v)(s)ds +
∫ x0−δ

0

(au′v′)(s)ds

and

(au′v)(x0 + δ) = −
∫ 1

x0+δ

((au′)′v)(s)ds−
∫ 1

x0+δ

(au′v′)(s)ds.

Since (au′)′, v ∈ L2(0, 1) and
√

au′,
√

av′ ∈ L2(0, 1), by Hölder’s inequality,
(au′)′v ∈ L1(0, 1) and au′v′ ∈ L1(0, 1). Thus, there exist L1, L2 ∈ R such that

lim
δ→0

(au′v)(x0 − δ) = lim
δ→0

∫ x0−δ

0

((au′)′v)(s)ds + lim
δ→0

∫ x0−δ

0

(au′v′)(s)ds

=
∫ x0

0

((au′)′v)(s)ds +
∫ x0

0

(au′v′)(s)ds = L1

and

lim
δ→0

(au′v)(x0 + δ) = − lim
δ→0

∫ 1

x0+δ

((au′)′v)(s)ds− lim
δ→0

∫ 1

x0+δ

(au′v′)(s)ds

= −
∫ 1

x0

((au′)′v)(s)ds−
∫ 1

x0

(au′v′)(s)ds = L2.

If L1 6= 0, then there exists C > 0 such that

|(au′v)(x)| ≥ C



10 G. FRAGNELLI, G. R. GOLDSTEIN, J. A. GOLDSTEIN, S. ROMANELLI EJDE-2012/189

for all x in a left neighborhood of x0, x 6= x0. Thus, by (2.11),

|v(x)| ≥ C

|(au′)(x)|
≥ C1√

x0 − x

for all x in a left neighborhood of x0, x 6= x0, and for a suitable positive constant
C1. This implies that v 6∈ L2(0, 1). Hence L1 = 0. Analogously, one can prove that
L2 = 0. Thus (2.17) holds. In particular,

lim
δ→0

(au′v)(x0 − δ) = lim
δ→0

(au′v)(x0 + δ) = 0. �

As for the weakly degenerate case, one has the next result.

Theorem 2.7. The operator A1 : D(A1) → L2(0, 1) is self-adjoint and nonpositive
on L2(0, 1). Moreover, the semigroup {T (t) = etA1 : t ≥ 0} generated by A1 is
positivity preserving.

3. Non divergence form

Now, we consider the operator A2u = au′′ and we distinguish again between the
weakly and the strongly degenerate cases.

3.1. Weakly degenerate operator. Throughout this subsection we consider the
weakly degenerate operator and, as in [9], we consider the following Hilbert spaces:

L2
1/a(0, 1) :=

{
u ∈ L2(0, 1) :

∫ 1

0

u2

a
dx < ∞

}
,

H1
1/a(0, 1) := L2

1/a(0, 1) ∩H1
0 (0, 1)

with the norms

‖u‖2
L2

1/a
(0,1) :=

∫ 1

0

u2

a
dx,

and

‖u‖H1
1/a

(0,1) :=
(
‖u‖2

L2
1/a

(0,1) + ‖u′‖2
L2(0,1)

)1/2

,

respectively. Using the previous spaces, we define the operator A2 by D(A2) =
H2

1/a(0, 1), and for any u ∈ D(A2),

A2u := au′′,

where

H2
1/a(0, 1) :=

{
u ∈ H1

1/a(0, 1) ∩W 2,1
loc (0, 1) : au′′ ∈ L2

1/a(0, 1)
}
.

The following characterization is immediate.

Corollary 3.1. The spaces H1
1/a(0, 1) and H1

0 (0, 1) coincide algebraically. More-
over the two norms are equivalent.

Proof. Clearly H1
1/a(0, 1) ⊆ H1

0 (0, 1). Now, if u ∈ H1
0 (0, 1) then∫ 1

0

u2

a
dx ≤ max

[0,1]
u2

∫ 1

0

1
a
dx ∈ R,

using the fact that 1
a ∈ L1(0, 1), that is u ∈ L2

1/a(0, 1). This implies u ∈ H1
1/a(0, 1).
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Moreover, using the embedding of H1
0 (0, 1) in C[0, 1], one has, for all u ∈

H1
0 (0, 1), ∫ 1

0

u2

a
dx ≤ ‖u‖2

C[0,1]‖
1
a
‖L1(0,1) ≤ C‖u‖2

H1
0 (0,1),

for a positive constant C. Thus, for all u ∈ H1
0 (0, 1),

‖u‖H1
1/a

(0,1) ≤ (C + 1)‖u‖H1
0 (0,1) ≤ (C + 1)‖u‖H1

1/a
(0,1),

for a positive constant C. �

As a consequence of the previous corollary one has that C∞
c (0, 1) is dense in

H1
1/a(0, 1).
Also for the weakly degenerate case, in order to prove that the operator generates

a cosine family and hence an analytic semigroup on L2
1/a(0, 1), we have to use a

Green formula similar to the one stated in Lemma 2.1 or Lemma 2.6. However, we
have to prove it again, since we cannot adapt the proof of these Lemma. In fact,
to proceed as before, we would need u′, v′ ∈ H1(0, 1), but this is not the case.

The following Green’s formula holds.

Lemma 3.2. For all (u, v) ∈ H2
1/a(0, 1)×H1

1/a(0, 1) one has∫ 1

0

u′′vdx = −
∫ 1

0

u′v′dx. (3.1)

Proof. First, we prove that H1
c (0, 1) :=

{
v ∈ H1(0, 1) : supp{v} ⊂ (0, 1) \ {x0}

}
is

dense in H1
1/a(0, 1). Indeed, if we consider the sequence (vn)

n≥max
n

4
x0

, 4
1−x0

o, where

vn := ξnv for a fixed function v ∈ H1
1/a(0, 1) and

ξn(x) :=



0, x ∈ [0, 1/n] ∪ [x0 − 1
n , x0 + 1

n ] ∪ [1− 1/n, 1],
1, x ∈ [2/n, x0 − 2/n] ∪ [x0 + 2/n, 1− 2/n],
nx− 1, x ∈ (1/n, 2/n),
n(x0 − x)− 1, x ∈ (x0 − 2/n, x0 − 1/n),
n(x− x0)− 1, x ∈ (x0 + 1/n, x0 + 2/n),
n(1− x)− 1, x ∈ (1− 2/n, 1− 1/n),

it is easy to see that vn → v in L2
1/a(0, 1). Moreover, one has that∫ 1

0

((vn − v)′)2dx

≤ 2
∫ 1

0

(1− ξn)2(v′)2dx + 2
∫ 1

0

(ξ′n)2v2dx

= 2
∫ 1

0

(1− ξn)2(v′)2dx

+ 2n2
( ∫ 2/n

1/n

v2dx +
∫ x0− 1

n

x0− 2
n

v2dx +
∫ x0+

2
n

x0+
1
n

v2dx +
∫ 1− 1

n

1− 2
n

v2dx
)
.

(3.2)

Obviously, the first term in the last member of (3.2) converges to zero. Furthermore,
since v ∈ H1

0 (0, 1), by Hölder’s inequality, one has that

v2(x) ≤ x

∫ x

0

(v′)2(y)dy,
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for all x ∈ [0, 1]. Therefore,

n2

∫ 2/n

1/n

v2dx ≤ n2

∫ 2/n

0

(v′)2dx

∫ 2/n

1/n

x dx → 0, as n →∞.

Since the remaining terms in (3.2) can be similarly estimated, our claim is proved.
Now, set Φ(v) :=

∫ 1

0
(u′v)′dx, with u ∈ H2

1/a(0, 1). It follows that

Φ(v) = 0,

for all v ∈ H1
c (0, 1). In fact, let v ∈ H1

c (0, 1). Let δ > 0 be such that v(x0 + δ) =
v(x0 − δ) = 0. Then, there holds∫ 1

0

u′′vdx =
∫ x0−δ

0

u′′vdx +
∫ x0+δ

x0−δ

u′′vdx +
∫ 1

x0+δ

u′′vdx

= (u′v)(x0 − δ)− (u′v)(0)−
∫ x0−δ

0

u′v′dx +
∫ x0+δ

x0−δ

u′′vdx

+ (u′v)(1)− (u′v)(x0 + δ)−
∫ 1

x0+δ

u′v′dx

= −
∫ x0−δ

0

u′v′dx +
∫ x0+δ

x0−δ

u′′vdx−
∫ 1

x0+δ

u′v′dx,

(3.3)

since v ∈ H1
c (0, 1). Now we prove that

lim
δ→0

∫ x0−δ

0

u′v′dx =
∫ x0

0

u′v′dx, lim
δ→0

∫ 1

x0+δ

u′v′dx =
∫ 1

x0

u′v′dx

and

lim
δ→0

∫ x0+δ

x0−δ

u′′vdx = 0. (3.4)

Toward this end, observe that∫ x0−δ

0

u′v′dx =
∫ x0

0

u′v′dx−
∫ x0

x0−δ

u′v′dx (3.5)

and ∫ 1

x0+δ

u′v′dx =
∫ 1

x0

u′v′dx−
∫ x0+δ

x0

u′v′dx. (3.6)

Moreover, using the Hölder inequality, one can prove that u′′v and u′v′ ∈ L1(0, 1).
Thus, for any ε > 0, by the absolute continuity of the integral, there exists δ :=
δ(ε) > 0 such that ∣∣ ∫ x0

x0−δ

u′v′dx
∣∣ ≤ ∣∣ ∫ x0

x0−δ

|u′v′|dx
∣∣ < ε,

∣∣ ∫ x0+δ

x0−δ

u′′vdx
∣∣ ≤ ∣∣ ∫ x0+δ

x0−δ

|u′′v|dx
∣∣ < ε,

∣∣ ∫ x0+δ

x0

u′v′dx
∣∣ ≤ ∣∣ ∫ x0+δ

x0

|u′v′|dx
∣∣ < ε.

Now, take such a δ in (3.3). Thus, ε being arbitrary,

lim
δ→0

∫ x0

x0−δ

u′v′dx = lim
δ→0

∫ x0+δ

x0−δ

u′′vdx = lim
δ→0

∫ x0+δ

x0

u′v′dx = 0.
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The previous equalities and (3.5), (3.6) imply

lim
δ→0

∫ x0−δ

0

u′v′dx =
∫ x0

0

u′v′dx and lim
δ→0

∫ 1

x0+δ

u′v′dx =
∫ 1

x0

u′v′dx.

Thus, by the previous equalities and by (3.3)– (3.4), it follows that∫ 1

0

u′′vdx = −
∫ 1

0

u′v′dx if and only if Φ(v) =
∫ 1

0

(u′v)′dx = 0,

for all v ∈ H1
c (0, 1). Then, Φ is a bounded linear functional on H1

1/a(0, 1) such that
Φ = 0 on H1

c (0, 1). Thus, Φ = 0 on H1
1/a(0, 1), that is, (3.1) holds.

�

As a consequence of the previous lemma one has the next proposition, whose
proof is similar to the proof of Theorem 2.2.

Theorem 3.3. The operator A2 : D(A2) → L2
1/a(0, 1) is self-adjoint and nonposi-

tive on L2
1/a(0, 1). Moreover, the semigroup {T (t) = etA2 : t ≥ 0} generated by A2

is positivity preserving.

3.2. Strongly degenerate operator. Assume that the operator A2 is strongly
degenerate and consider, as in [9], the spaces introduced in Section 3.1. Observe
that also in this case the space C∞

c (0, 1) is dense in H1
1/a(0, 1), since it is clearly

dense in H1
0 (0, 1) and dense in L2

1
a

(0, 1). Then, the conclusions of Lemma 3.2 and
Theorem 3.3 hold in this case.

Theorem 3.4. The operator A2 : D(A2) → L2
1/a(0, 1) is self-adjoint and nonposi-

tive on L2
1/a(0, 1). Moreover, the semigroup {T (t) = etA2 : t ≥ 0} generated by A2

is positivity preserving.

Moreover in this case, under an additional assumption on the function a, one
can characterize the spaces H1

1/a(0, 1) and H2
1/a(0, 1). We point out the fact that

in non divergence form, the characterization of the domain of the operator is not
important to prove the Green formula as in divergence form.

From now on, we make the following assumption on a.

Hypothesis 3.5. Assume that there exists a positive constant K such that 1
a(x) ≤

K
|x−x0|2 , for all x ∈ [0, 1] \ {x0} (e.g. a(x) = |x− x0|K , 1 ≤ K ≤ 2).

Proposition 3.6. Let

X := {u ∈ H1
1/a(0, 1) : u(x0) = 0}.

If Hypothesis 3.5 is satisfied, then

H1
1/a(0, 1) = X

and the norm ‖u‖H1
1
a

(0,1)
and

( ∫ 1

0
(u′)2dx

)1/2 are equivalent.

To prove Proposition 3.6 the following lemma is crucial.

Lemma 3.7. Assume that Hypothesis 3.5 is satisfied. Then, there exists a positive
constant C such that ∫ 1

0

v2 1
a
dx ≤ C

∫ 1

0

(v′)2dx,

for all v ∈ X.
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Proof. Let v ∈ X. By assumption, there exists K > 0 such that 1
a(x) ≤

K
|x−x0|2 , for

all x ∈ [0, 1] \ {x0}. Then, for a suitable ε > 0 and using the assumption on a and
the Hardy inequality, one has∫ 1

0

v2 1
a
dx =

∫ x0−ε

0

v2 1
a
dx +

∫ x0+ε

x0−ε

v2 1
a
dx +

∫ 1

x0+ε

v2 1
a
dx

≤ 1
min[0,x0−ε] a(x)

∫ x0−ε

0

v2dx +
∫ x0+ε

x0−ε

v2 1
a
dx

+
1

min[x0+ε,1] a(x)

∫ 1

x0+ε

v2dx

≤ 1
min[0,x0−ε]∪[x0+ε,1] a(x)

∫ 1

0

v2dx +
∫ x0

x0−ε

v2 1
a
dx +

∫ x0+ε

x0

v2 1
a
dx

≤ 1
min[0,x0−ε]∪[x0+ε,1] a(x)

∫ 1

0

v2dx + K

∫ x0

x0−ε

v2 1
|x− x0|2

dx

+ K

∫ x0+ε

x0

v2 1
|x− x0|2

dx

≤ 1
min[0,x0−ε]∪[x0+ε,1] a(x)

∫ 1

0

v2dx

+ CH

∫ x0

x0−ε

(v′)2dx + CH

∫ x0+ε

x0

(v′)2dx

≤ C
( ∫ 1

0

v2dx +
∫ 1

0

(v′)2dx
)
,

for a positive constant C. Here CH is the Hardy constant. By Poincaré’s inequality,
it follows that ∫ 1

0

v2 1
a
dx ≤ C

∫ 1

0

(v′)2dx

for a suitable constant C. �

Proof of Proposition 3.6. Obviously X ⊆ H1
1/a(0, 1). Now, take u ∈ H1

1/a(0, 1) and
prove that u(x0) = 0, that is u ∈ X. Since u ∈ H1

0 (0, 1), then there exists

lim
x→x0

u(x) = u(x0) = L ∈ R.

If L 6= 0, then there exists C > 0 such that

|u(x)| ≥ C,

for all x in a neighborhood of x0, x 6= x0. Thus,

u2(x)
a(x)

≥ C2

a(x)
,

for all x in a neighborhood of x0, x 6= x0. Since the operator is strongly degenerate,
1
a 6∈ L1(0, 1), then u 6∈ L2

1/a(0, 1). Hence L = 0.
Now, we prove that the two norms are equivalent. Take u ∈ X. Then, by Lemma

3.7, there exists a positive constant C such that

‖u′‖2
L2(0,1) ≤ ‖u‖2

H1
1/a

(0,1) ≤ C‖u′‖2
L2(0,1).

Hence the two norms are equivalent. �
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An immediate consequence is the following result.

Proposition 3.8. Let

D :=
{
u ∈ H1

1/a(0, 1) : au′′ ∈ L2
1/a(0, 1), au′ ∈ H1(0, 1), u(x0) = (au′)(x0) = 0

}
.

If Hypothesis 3.5 is satisfied, then H2
1/a(0, 1) = D.

Proof. Obviously, D ⊆ H2
1/a(0, 1). Now, we take u ∈ H2

1/a(0, 1) and we prove
that u ∈ D. By Proposition 3.6, u(x0) = 0. Thus, it is sufficient to prove that
au′ ∈ H1(0, 1) and (au′)(x0) = 0. Since u ∈ H1

0 (0, 1) and a ∈ W 1,∞(0, 1), then
u′ ∈ L2(0, 1),

√
au′ ∈ L2(0, 1) and au′ ∈ L2(0, 1). Moreover (au′)′ = a′u′ + au′′ ∈

L2(0, 1) (recall that au′′ ∈ L2
1/a(0, 1) ⊂ L2(0, 1)). Thus au′ ∈ H1(0, 1). This implies

that there exists limx→x0(au′)(x) = (au′)(x0) = L ∈ R. If L 6= 0, then there exists
C > 0 such that

|(au′)(x)| ≥ C

for all x in a neighborhood of x0, x 6= x0. Thus,

|a(u′)2(x)| ≥ C2

a(x)
,

for all x in a neighborhood of x0, x 6= x0. But 1
a 6∈ L1(0, 1), thus

√
au′ 6∈ L2(0, 1).

Hence L = 0, that is (au′)(x0) = 0. �

We point out the fact that also in non divergence form the condition 1
a 6∈ L1(0, 1)

is crucial to characterize the domain of the strongly degenerate operator.

3.3. The operator in non divergence form in the space L2(0,1). In the
previous subsections we have seen that without any additional assumptions on the
function a, the operator in non divergence form generates a cosine family, and
hence an analytic semigroup, on the space L2

1/a(0, 1). In this subsection we will
prove that this operator generates an analytic semigroup also on L2(0, 1) under a
suitable assumption on a. In particular we make the following hypothesis:

Hypothesis 3.9.

In the weakly degenerate case, assume further that a ∈ W 1,∞(0, 1)

and there exists C ≥ 0 such that |a′(x)| ≤ C
√

a(x) a.e. x ∈ (0, 1).
(3.7)

In the strongly degenerate case, assume further that there exists

C ≥ 0 such that |a′(x)| ≤ C
√

a(x) a.e. x ∈ (0, 1).
(3.8)

Now, define the operator A by D(A) = H2
a(0, 1), and for any u ∈ D(A),

Au := au′′,

where H2
a(0, 1) is the Sobolev space introduced in Section 2. Observe that if a

satisfies Hypothesis 3.9, then

au′′ ∈ L2(0, 1) if and only if (au′)′ ∈ L2(0, 1),

for all u ∈ D(A).

Theorem 3.10. Assume that the operator A is weakly or strongly degenerate. If
a satisfies Hypothesis 3.9, then A generates an analytic semigroup on L2(0, 1).
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Proof. Let Bu := a′u′, for all u ∈ D(A). Then Au = A1u − Bu, where, we recall,
A1u := (au′)′. Therefore, one has that B is A1− bounded with A1− bound b0 = 0,
where, we recall,

b0 := inf
{
b ≥ 0 : there exists c ∈ R+ such that

‖Bu‖L2(0,1) ≤ b‖A1u‖L2(0,1) + c‖u‖L2(0,1)

} (3.9)

(see, for example, [13, Definition III.2.1]). Indeed, using the assumption on a, one
has

‖Bu‖2
L2(0,1) =

∫ 1

0

(a′)2(u′)2dx ≤ C

∫ 1

0

au′u′dx

= −C

∫ 1

0

(au′)′udx ≤ ε
K

2

∫ 1

0

((au′)′)2dx +
K

ε

∫ 1

0

u2dx

= ε
K

2
‖A1u‖2

L2(0,1) +
K

ε
‖u‖2

L2(0,1)

for all u ∈ D(A1), for all ε > 0 and for a positive constant K. Hence B is a Kato
perturbation of A1. The conclusion follows by [13, Theorem III.2.10] and Theorems
2.2 and 2.7. �

3.4. The operator in divergence form in the space L2
1/a(0,1). As in the

previous subsection, interchanging the role of the divergence and nondivergence
operators, we can prove that the operator in divergence form generates an analytic
semigroup also on L2

1/a(0, 1) under Hypothesis 3.9. Indeed, define the operator A

by D(A) = H2
1/a(0, 1), and for any u ∈ D(A),

Au := (au′)′,

where H2
1/a(0, 1) is the Sobolev space introduced in Section 3. Also in this case we

have that if a satisfies Hypothesis 3.9, then

au′′ ∈ L2
1/a(0, 1) if and only if (au′)′ ∈ L2

1/a(0, 1),

for all u ∈ D(A). The following theorem holds.

Theorem 3.11. Assume that the operator A is weakly or strongly degenerate. If
a satisfies Hypothesis 3.9, then A generates an analytic semigroup on L2

1/a(0, 1).

Proof. Let Bu := a′u′, for all u ∈ D(A). Then Au = A2u + Bu, where, we recall,
A2u := au′′. As before, B is A2− bounded with A2− bound b0 = 0, where b0 is
defined in (3.9). Indeed, using the assumption on a, one has

‖Bu‖2
L2

1/a
(0,1) =

∫ 1

0

(a′)2(u′)2

a
dx ≤ C

∫ 1

0

u′u′dx

= −C

∫ 1

0

u′′udx = −C

∫ 1

0

√
au′′

u√
a
dx

≤ ε
K

2

∫ 1

0

a(u′′)2dx +
K

ε

∫ 1

0

u2

a
dx

= ε
K

2
‖A2u‖2

L2
1/a

(0,1) +
K

ε
‖u‖2

L2
1/a

(0,1)
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for all u ∈ D(A2), for all ε > 0 and for a positive constant K. Hence B is a Kato
perturbation of A2. The conclusion follows by [13, Theorem III.2.10] and Theorems
3.3 and 3.4. �

4. Applications

4.1. Linear problems. As an application of the previous theorems, consider the
linear operator B(t) defined as

B(t)u := −b(t, ·)∂u

∂x
− c(t, ·)u,

where b, c ∈ L∞(R+ × (0, 1)) and there exists a positive constant C such that
|b(t, x)| ≤ C

√
a(x), a.e. x ∈ (0, 1). Then B(t) is an A1− bounded operator on

L2(0, 1) or an A2− bounded operator on L2
1/a(0, 1). Observe that if b ≡ 0 and

c(t, ·) ≤ 0, the operator Ai − B(t) with domain D(Ai), i = 1, 2, is still selfadjoint
and nonpositive for each t. Moreover, D(Ai − B(t)) is independent of t. Thus
using evolution operator theory (see e.g. [18], pp. 140-147), we can prove that the
problem

∂u

∂t
−Au + b(t, x)

∂u

∂x
+ c(t, x)u = h(t, x), (t, x) ∈ R+ × (0, 1),

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(0, x) = u0(x), x ∈ (0, 1),

(4.1)

is wellposed in the sense of evolution operator theory, provided that A := A1 or
A := A2. In addition, setting QT := (0, T ) × (0, 1) for a fixed T > 0, the next
results follow by Theorems 2.2, 2.7, 3.3, 3.4.

Theorem 4.1. Assume that the operator A = A1 is weakly or strongly degener-
ate. If b(·, x), c(·, x) ∈ C1(R+) for all x ∈ [0, 1] and there exists a positive con-
stant C such that |b(t, x)| ≤ C

√
a(x), a.e. x ∈ (0, 1), then, for all h ∈ L2(QT )

and u0 ∈ L2(0, 1), there exists a unique weak solution u ∈ C([0, T ];L2(0, 1)) ∩
L2(0, T ;H1

a(0, 1)) of (4.1) and

sup
t∈[0,T ]

‖u(t)‖2
L2(0,1) +

∫ T

0

‖u(t)‖2
H1

a(0,1)dt ≤ CT (‖u0‖2
L2(0,1) + ‖h‖2

L2(QT )), (4.2)

for a positive constant CT . Moreover, if u0 ∈ D(A1), then

u ∈ H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2
a(0, 1)) ∩ C([0, T ];H1

a(0, 1)), (4.3)

and there exists a positive constant C such that

sup
t∈[0,T ]

(
‖u(t)‖2

H1
a(0,1)

)
+

∫ T

0

(∥∥∂u

∂t

∥∥2

L2(0,1)
+

∥∥ ∂

∂x

(
a
∂u

∂x

)∥∥2

L2(0,1)

)
dt

≤ C
(
‖u0‖2

H1
a(0,1) + ‖h‖2

L2(QT )

)
.

(4.4)

Remark 4.2. Actually, since D(A1) is dense in H1
a(0, 1), one can prove that (4.3)

and (4.4) also hold if u0 ∈ H1
a(0, 1).

Theorem 4.3. Assume that the operator A = A2 is weakly or strongly degenerate.
If b(·, x), c(·, x) ∈ C1(R+) for all x ∈ [0, 1] and there exists a positive constant C

such that |b(t, x)| ≤ C
√

a(x), a.e. x ∈ (0, 1), then, for all h ∈ L2
1/a(QT ) and
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u0 ∈ L2
1/a(0, 1), there exists a unique weak solution u ∈ C

(
[0, T ];L2

1/a(0, 1)
)
∩

L2
(
0, T ;H1

1/a(0, 1)
)

of (4.1) and

sup
t∈[0,T ]

‖u(t)‖2
L2

1/a
(0,1) +

∫ T

0

‖u(t)‖2
H1

1/a
(0,1)dt ≤ CT

(
‖u0‖2

L2
1/a

(0,1) + ‖h‖2
L2

1/a
(QT )

)
,

(4.5)
for a positive constant CT . Moreover, if u0 ∈ D(A2), then

u ∈ H1
(
0, T ;L2

1/a(0, 1)
)
∩ L2

(
0, T ;H2

1/a(0, 1)
)
∩ C

(
[0, T ];H1

1/a(0, 1)
)
, (4.6)

and there exists a positive constant C such that

sup
t∈[0,T ]

(
‖u(t)‖2

H1
1/a

(0,1)

)
+

∫ T

0

(∥∥∂u

∂t

∥∥2

L2
1/a

(0,1)
+

∥∥a
∂2u

∂x2

∥∥2

L2
1/a

(0,1)

)
dt

≤ C
(
‖u0‖2

H1
1/a

(0,1) + ‖h‖2
L2(QT )

)
.

(4.7)

Remark 4.4. Also in this case (4.6) and (4.7) hold if u0 ∈ H1
1/a(0, 1), since D(A2)

is dense in H1
1/a(0, 1).

By Theorem 3.10, one has the following result.

Theorem 4.5. Assume that the operator A = A2 is weakly or strongly degenerate.
If a satisfies Hypothesis 3.9, b(·, x), c(·, x) ∈ C1(R+) for all x ∈ [0, 1] and there
exists a positive constant C such that |b(t, x)| ≤ C

√
a(x), a.e. x ∈ (0, 1), then,

for all h ∈ L2(QT ) and u0 ∈ L2(0, 1), there exists a unique weak solution u ∈
C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1

a(0, 1)) of (4.1). If u0 ∈ D(A1), then

u ∈ H1
(
0, T ;L2(0, 1)

)
∩ L2

(
0, T ;H2

a(0, 1)
)
∩ C

(
[0, T ];H1

a(0, 1)
)
.

Moreover, (4.2) and (4.4) hold.

By Theorem 3.11, one has the following result.

Theorem 4.6. Assume that the operator A = A1 is weakly or strongly degenerate.
If a satisfies Hypothesis 3.9, b(·, x), c(·, x) ∈ C1(R+) for all x ∈ [0, 1] and there
exists a positive constant C such that |b(t, x)| ≤ C

√
a(x), a.e. x ∈ (0, 1), then,

for all h ∈ L2
1/a(QT ) and u0 ∈ L2

1/a(0, 1), there exists a unique weak solution

u ∈ C
(
[0, T ];L2

1/a(0, 1)
)
∩ L2

(
0, T ;H1

1/a(0, 1)
)

of (4.1). If u0 ∈ D(A2), then

u ∈ H1
(
0, T ;L2

1/a(0, 1)
)
∩ L2

(
0, T ;H2

1/a(0, 1)
)
∩ C

(
[0, T ];H1

1/a(0, 1)
)
.

Moreover, (4.5) and (4.7) hold.

Let
B(t)u := −c(t, ·)u,

where c ∈ L∞loc(R+ × [0, 1]) and c(·, x) ∈ C1(R+) for each x ∈ [0, 1]. Consider the
nonautonomous wave equation

∂2u

∂t2
−Au + c(t, x)

∂u

∂t
= h(t, x), (t, x) ∈ R+ × (0, 1),

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(0, x) = u0(x), x ∈ (0, 1),
∂u

∂t
(0, x) = u1(x), x ∈ (0, 1).

(4.8)
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We take A = Aj acting in Hj , for j = 1, 2, where

H1 = L2(0, 1), H2 = L2
1/a(0, 1).

In either case Aj = A∗j ≤ 0. Let Dj be the completion of D(Aj) in the norm

‖f‖Dj = ‖(−Aj)1/2f‖Hj .

Then (4.8) can be rewritten as
d

dt
U(t) = GU(t) + P (t)U(t) + H(t),

U(0) = U0 =
(

u0

u1

)
,

where

G =
(

0 I
Aj 0

)
, P (t) =

(
0 0
0 −c(t, ·)

)
, H(t) =

(
0

h(t, ·)

)
,

for j = 1, 2. By [18, Section II.7.1], on the completion Kj of Dj ⊕Hj in the norm∥∥(
v
w

) ∥∥
Kj

=
(
‖(−Aj)1/2v‖2

Hj
+ ‖w‖2

Hj

)1/2

,

G is skewadjoint and generates a (C0) unitary group. Moreover, each P (t) is
bounded and P ∈ C1(R+,Kj). Finally, we assume

h ∈ L∞loc(R+ × [0, 1])

and h(·, x) ∈ C1(R+) for each x ∈ [0, 1]. Then it follows that

H ∈ C1(R+,Kj).

The wellposedness of (4.8) now follows immediately by a simple modification of
[18, Theorem II.13.9].

4.2. Semilinear problems. In this subsection we extend the existence results
obtained in the previous theorems to semilinear degenerate parabolic systems of
the type:

ut −Au + f(t, x, u, ux) = h(t, x), (t, x) ∈ (0, T )× (0, 1),

u(t, 1) = u(t, 0) = 0, t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, 1),
(4.9)

where Au := A1u or Au := A2u, ut(t, x) := ∂u(t,x)
∂t and ux(t, x) := ∂u(t,x)

∂x . In
particular, recalling that QT = (0, T )× (0, 1), we give the following definitions:

Definition 4.7. Assume that Au := A1u, u0 ∈ L2(0, 1) and h ∈ L2(QT ). A
function u is said to be a solution of (4.9) if

u ∈ C(0, T ;L2(0, 1)) ∩ L2(0, T ;H1
a(0, 1))

and satisfies∫ 1

0

u(T, x)ϕ(T, x)dx−
∫ 1

0

u0(x)ϕ(0, x)dx−
∫ T

0

∫ 1

0

ϕt(t, x)u(t, x) dx dt

= −
∫ T

0

∫ 1

0

auxϕx dx dt +
∫ T

0

∫ 1

0

(−f(t, x, u, ux) + h(t, x))ϕ(t, x) dx dt,

for all ϕ ∈ H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H1
a(0, 1)).
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Definition 4.8. Assume that Au := A2u, u0 ∈ L2
1/a(0, 1) and h ∈ L2

1/a(QT ). A
function u is said to be a solution of (4.9) if

u ∈ C(0, T ;L2
1/a(0, 1)) ∩ L2(0, T ;H1

1/a(0, 1))

and satisfies∫ 1

0

u(T, x)ϕ(T, x)
a(x)

dx−
∫ 1

0

u0(x)ϕ(0, x)
a(x)

dx−
∫ T

0

∫ 1

0

ϕt(t, x)u(t, x)
a(x)

dx dt

= −
∫ T

0

∫ 1

0

uxϕx dx dt +
∫ T

0

∫ 1

0

(−f(t, x, u, ux) + h(t, x))
ϕ(t, x)
a(x)

dx dt,

for all ϕ ∈ H1(0, T ;L2
1/a(0, 1)) ∩ L2(0, T ;H1

1/a(0, 1)).

On the functions a and f we make the following assumptions:

Hypothesis 4.9. There exists x0 ∈ (0, 1) such that a(x0) = 0, a > 0 on [0, 1]\{x0},
a ∈ C[0, 1] and 1

a ∈ L1(0, 1).

Hypothesis 4.10. Let f : [0, T ]× [0, 1]× R → R be such that

∀(q, p) ∈ R2, (t, x) 7→ f(t, x, q, p) is measurable;

for a.e. (t, x) ∈ (0, T )× (0, 1), f(t, x, 0, 0) = 0;

fp(t, x, q, p) exists, fp is a Carathéodory function; i.e.,

∀(q, p) ∈ R2, (t, x) 7→ fp(t, x, , q, p) is measurable and

for a.e. (t, x) ∈ (0, T )× (0, 1), (q, p) 7→ fp(t, x, q, p) is continuous,

and there exists L > 0 such that for a.e.(t, x) ∈ (0, T )× (0, 1) and for any (q, p) ∈
R× R,

|fp(t, x, q, p)| ≤ L
√

a(x); (4.10)
fq(t, x, q, p) exists, fq is a Carathéodory function and there exists C > 0 such that
for a.e.(t, x) ∈ (0, T )× (0, 1) and for all (q, p) ∈ R× R

|fq(t, x, q, p)| ≤ C. (4.11)

However, to prove that (4.9) has a solution in the non divergence case, i.e.
Au := A2u, it is sufficient to substitute (4.10) with the more general condition:
there exists L > 0 such that for a.e. (t, x) ∈ (0, T )× (0, 1) and ∀ (q, p) ∈ R× R

|fp(t, x, q, p)| ≤ L. (4.12)

Moreover, to obtain the desired result, we introduce on the spaces H2
a(0, 1) and

H2
1/a(0, 1) the scalar products∫ 1

0

u(x)v(x)dx +
∫ 1

0

a(x)u′(x)v′(x)dx +
∫ 1

0

(a(x)u′(x))′(a(x)v′(x))′dx,

for all u, v ∈ H2
a(0, 1), and∫ 1

0

u(x)v(x)
a(x)

dx +
∫ 1

0

u′(x)v′(x)dx +
∫ 1

0

au′′(x)v′′(x)dx,

for all u, v ∈ H2
1/a(0, 1), respectively. The previous scalar products induce on

H2
a(0, 1) and H2

1/a(0, 1) the following two norms

‖u‖H2
a(0,1) :=

(
‖u‖2

H1
a(0,1) + ‖(au′)′‖2

L2(0,1)

)1/2

,
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‖u‖H2
1/a

(0,1) :=
(
‖u‖2

H1
1/a

(0,1) + ‖au′′‖2
L2

1/a
(0,1)

)1/2

.

Clearly, H2
a(0, 1) and H2

1/a(0, 1) are Hilbert spaces.
As a first step, we study (4.9) with u0 ∈ H1

a(0, 1), if Au := A1u, or u0 ∈
H1

1/a(0, 1), if Au := A2u.
To prove the existence results we will use, as in [1] or in [8], a fixed point

method. To this aim, we rewrite, first of all, the function f in the following way
f(t, x, u, ux) = b(t, x, u)ux + c(t, x, u)u, where

b(t, x, u) :=
∫ 1

0

fp(t, x, λu, λux)dλ, c(t, x, u) :=
∫ 1

0

fq(t, x, λu, λux)dλ.

In fact

f(t, x, u, ux) =
∫ 1

0

d

dλ
f(t, x, λu, λux)dλ

=
∫ 1

0

fq(t, x, λu, λux)udλ +
∫ 1

0

fp(t, x, λu, λux)uxdλ.

Using the fact that fp and fq are Carathéodory functions and the Lebesgue Theo-
rem, we can prove the following properties:

Proposition 4.11. For the functions b and c one has the following properties:
• b(t, x, u(t, x)) and c(t, x, u(t, x)) belong to L∞((0, T )× (0, 1));
• |b(t, x, u)| ≤ L

√
a(x);

• if limk→+∞ vk = v in X, then

lim
k→+∞

b(t, x; vk)√
a(x)

=
b(t, x; v)√

a(x)
, a.e.,

and
lim

k→+∞
c(t, x; vk) = c(t, x; v), a.e.

Here
X := C(0, T ;L2(0, 1)) ∩ L2(0, T ;H1

a(0, 1))
or

X := C(0, T ;L2
1/a(0, 1)) ∩ L2(0, T ;H1

1/a(0, 1)),

and L is the same constant of (4.10).

Theorem 4.12. Assume that Hypotheses 4.9 and 4.10 are satisfied. Then, for all
h ∈ L2(QT ), the problem

ut − (aux)x + f(t, x, u, ux) = h(t, x), (t, x) ∈ (0, T )× (0, 1),

u(t, 1) = u(t, 0) = 0, t ∈ (0, T ),

u(0, x) = u0(x) ∈ H1
a(0, 1), x ∈ (0, 1),

(4.13)

has a solution u ∈ H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2
a(0, 1)).

Proof. Let X := C(0, T ;L2(0, 1)) ∩ L2(0, T ;H1
a(0, 1)) and, for any (t, x) ∈ (0, T )×

(0, 1), set bv(t, x) := b(t, x, v(t, x)) and cv(t, x) := c(t, x, v(t, x)) for any v ∈ X.
Then, consider the function

T : v ∈ X 7→ uv ∈ X,
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where uv is the unique solution of

ut − (a(x)ux)x + bv(t, x)ux + cv(t, x)u = h(t, x),

u(t, 1) = u(t, 0) = 0,

u(0, x) = u0(x) ∈ H1
a(0, 1).

(4.14)

By Theorem 4.1, problem (4.14) has a unique weak solution u ∈ X. Hence, if we
prove that T has a fixed point uv, i.e. T (uv) = uv, then uv is solution of (4.13).

To prove that T has a fixed point, by the Schauder’s Theorem, it is sufficient to
prove that

(1) T : BX → BX ,
(2) T is a compact function,
(3) T is a continuous function.

Here BX := {v ∈ X : ‖v‖X ≤ R}, R := CT (‖u0‖2
L2(0,1) + ‖h‖2

L2((0,T )×(0,1))) (CT

is the same constant of Theorem 4.1) and ‖v‖X := supt∈[0,T ]

(
‖u(t)‖2

L2(0,1)

)
+∫ T

0
‖
√

aux‖2
L2(0,1)dt.

The first item is a consequence of Theorem 4.1. Indeed, one has that T : X →
BX and in particular T : BX → BX . Moreover, it is easy to see that item (2) is
a simple consequence of the compactness Theorem 5.4 below. This theorem is also
useful for the proof of item (3). Indeed, let vk ∈ X be such that vk → v in X,
as k → +∞. We want to prove that uk := uvk → uv in X, as k → +∞. Here uk

and uv are the solutions of (4.13) associated to vk and v, respectively. By Remark
4.2, uk ∈ BY , where Y := H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2

a(0, 1)). Proceeding as
in Theorem 5.2 below, one has that, up to subsequence, uk converges weakly to
some ū in Y and, thanks to Theorem 5.4 below, strongly in X. Now, we prove that
ū = uv. Multiplying the equation

uk
t −

(
a(x)uk

x

)
x

+ bvk

(t, x)uk
x + cvk

(t, x)uk = h(t, x),

by a test function ϕ ∈ H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H1
a(0, 1)) and integrating over

QT (we recall that QT := (0, T )× (0, 1)), we have:∫ 1

0

uk(T, x)ϕ(T, x)dx−
∫ 1

0

u0(x)ϕ(0, x)dx−
∫ T

0

∫ 1

0

ϕt(t, x)uk(t, x) dx dt

= −
∫ T

0

∫ 1

0

a(x)uk
x(t, x)ϕx(t, x) dx dt−

∫ T

0

∫ 1

0

bvk

(t, x)uk
x(t, x)ϕ(t, x) dx dt

−
∫ T

0

∫ 1

0

cvk

(t, x)uk(t, x)ϕ(t, x) dx dt +
∫ T

0

∫ 1

0

h(t, x)ϕ(t, x) dx dt.

Since uk converges strongly to ū in X, it is immediate to prove

lim
k→+∞

∫ 1

0

uk(T, x)ϕ(T, x)dx =
∫ 1

0

ū(T, x)ϕ(T, x)dx,

lim
k→+∞

∫ T

0

∫ 1

0

ϕt(t, x)uk(t, x) dx dt =
∫ T

0

∫ 1

0

ϕt(t, x)ū(t, x) dx dt

lim
k→+∞

∫ T

0

∫ 1

0

auk
xϕx dx dt =

∫ T

0

∫ 1

0

aūxϕx dx dt
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for all ϕ ∈ H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H1
a(0, 1)). Moreover

lim
k→+∞

∫ T

0

∫ 1

0

cvk

(t, x)uk(t, x)ϕ(t, x) dx dt =
∫ T

0

∫ 1

0

cv(t, x)ū(t, x)ϕ(t, x) dx dt.

(4.15)
Indeed,∣∣ ∫ T

0

∫ 1

0

(cvk

(t, x)uk(t, x)− cv(t, x)ū(t, x))ϕ(t, x) dx dt
∣∣

≤
∫ T

0

∫ 1

0

∣∣(uk(t, x)− ū(t, x))cvk

(t, x)ϕ(t, x)
∣∣ dx dt

+
∫ T

0

∫ 1

0

∣∣cvk

(t, x)− cv(t, x)
∣∣|ū(t, x)ϕ(t, x)| dx dt

≤ C‖uk − ū‖X‖ϕ‖L2(0,1) +
∫ T

0

∫ 1

0

∣∣cvk

(t, x)− cv(t, x)
∣∣|ū(t, x)ϕ(t, x)| dx dt,

where C is the constant of (4.11). By the Lebesgue Theorem and by Proposition
4.11, it follows

lim
k→+∞

∫ T

0

∫ 1

0

∣∣cvk

(t, x)− cv(t, x)
∣∣|ū(t, x)ϕ(t, x)| dx dt = 0.

Thus, since uk converges strongly to ū in X, (4.15) holds.
Finally,

lim
k→+∞

∫ T

0

∫ 1

0

bvk

(t, x)uk
x(t, x)ϕ(t, x) dx dt =

∫ T

0

∫ 1

0

bv(t, x)ūx(t, x)ϕ(t, x) dx dt.

(4.16)
Indeed, ∣∣ ∫ T

0

∫ 1

0

(bvk

(t, x)uk
x(t, x)− bv(t, x)ūx(t, x))ϕ(t, x) dx dt

∣∣
≤

∫ T

0

∫ 1

0

∣∣(uk
x(t, x)− ūx(t, x))bvk

(t, x)ϕ(t, x)
∣∣ dx dt

+
∫ T

0

∫ 1

0

∣∣bvk

(t, x)− bv(t, x)
∣∣|ūx(t, x)ϕ(t, x)| dx dt

≤ L‖uk − ū‖X‖ϕ‖L2(0,1)

+
∫ T

0

∫ 1

0

∣∣∣bvk

(t, x)− bv(t, x)
∣∣∣√

a(x)
|
√

a(x)ūx(t, x)ϕ(t, x)| dx dt,

(4.17)

where L is the constant of (4.10). The strongly convergence of uk to ū in X,
Proposition 4.11, the Lebesgue Theorem and (4.17) imply that (4.16) holds. Thus
uv = ū, that is ū ∈ Y is the solution of (4.13) associated to v.

Hence, T has a fixed point uv ∈ Y and, in particular, uv solves (4.13). �

To prove that the existence result holds also if the initial data u0 is in L2(0, 1), we
observe that (4.10) implies for a.e. (t, x) ∈ (0, T )× (0, 1) and for all (u, p, q) ∈ R3,

|f(t, x, u, p)− f(t, x, u, q)| ≤ L
√

a(x)|p− q|. (4.18)
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Moreover, by (4.11) and (4.18), it follows that for a.e. (t, x) ∈ (0, T ) × (0, 1) and
for all (u, v, p, q) ∈ R4,

|(f(t, x, u, p)− f(t, x, v, q))(u− v)| ≤ M [|u− v|2 +
√

a(x)|p− q||u− v|], (4.19)

for some positive constant M .
Hence, using the previous estimates and Theorem 4.12, one can prove, as in [8],

the following result.

Theorem 4.13. Assume that Hypotheses 4.9 and 4.10 are satisfied. Then, for all
h ∈ L2(QT ), the problem

ut − (aux)x + f(t, x, u, ux) = h(t, x), (t, x) ∈ (0, T )× (0, 1),

u(t, 0) = 0, t ∈ (0, T ),

u(0, x) = u0(x) ∈ L2(0, 1), x ∈ (0, 1),

(4.20)

has a solution u ∈ C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1
a(0, 1)).

Proof. Let (uj
0)j ∈ H1

a(0, 1) be such that limj→+∞ ‖uj
0 − u0‖L2(0,1) = 0. De-

note by uj the solutions of (4.20) with respect to uj
0. By Theorem 4.12, uj ∈

H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2
a(0, 1)). Then (uj)j is a Cauchy sequence in X :=

C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1
a(0, 1)). In fact uj − ui solves the system

(uj − ui)t − (a(uj − ui)x)x + f(t, x, uj , uj
x)− f(t, x, ui, ui

x) = 0,

(uj − ui)(t, 1) = (uj − ui)(t, 0) = 0,

(uj − ui)(0, x) = (uj
0 − ui

0)(x),

where (t, x) ∈ (0, T )× (0, 1). Multiplying

(uj − ui)t − (a(uj − ui)x)x + f(t, x, uj , uj
x)− f(t, x, ui, ui

x) = 0

by uj − ui and integrating over (0, 1), one has, using (4.19),

1
2

d

dt

∫ 1

0

|uj−ui|2dx+
∫ 1

0

a|uj
x−ui

x|2dx ≤
∫ 1

0

M [|uj−ui|2+
√

a|uj
x−ui

x||uj−ui|]dx.

Integrating over (0, t):

1
2
‖(uj − ui)(t)‖2

L2(0,1) +
∫ t

0

∫ 1

0

a|(uj − ui)x|2 dx ds

≤ 1
2
‖uj

0 − ui
0‖2

L2(0,1) + M

∫ t

0

∫ 1

0

|uj − ui|2 dx ds +
εM

2

∫ t

0

∫ 1

0

a|uj
x − ui

x|2 dx ds

+
M

2ε

∫ t

0

∫ 1

0

|uj − ui|2 dx ds.

Thus
1
2
‖(uj − ui)(t)‖2

L2(0,1) +
(
1− εM

2
) ∫ t

0

∫ 1

0

a|uj
x − ui

x|2 dx ds

≤ 1
2
‖uj

0 − ui
0‖2

L2(0,1) + Mε

∫ t

0

∫ 1

0

|uj − ui|2 dx ds,

(4.21)

where Mε := M(1+2ε)
2ε . By Gronwall’s Lemma

‖(uj − ui)(t)‖2
L2(0,1) ≤ eMεt‖uj

0 − ui
0‖2

L2(0,1),



EJDE-2012/189 GENERATORS WITH INTERIOR DEGENERACY 25

and

sup
t∈[0,T ]

‖(uj − ui)(t)‖2
L2(0,1) ≤ eMεT ‖uj

0 − ui
0‖2

L2(0,1). (4.22)

This implies that (uj)j is a Cauchy sequence in C(0, T ;L2(0, 1)). Moreover, by
(4.21), one has

(
1− εM

2
) ∫ t

0

∫ 1

0

a|uj
x−ui

x|2 dx ds ≤ 1
2
‖uj

0−ui
0‖2

L2(0,1) +Mε

∫ t

0

∫ 1

0

|uj −ui|2 dx ds.

Using (4.22), it follows∫ t

0

‖
√

a(uj
x − ui

x)‖2
L2(0,1)ds ≤ Mε,T (‖uj

0 − ui
0‖2

L2(0,1) + sup
t∈[0,T ]

‖uj − ui‖2
L2(0,1))

≤ Mε,T ‖uj
0 − ui

0‖2
L2(0,1).

Thus (uj)j is a Cauchy sequence also in L2(0, T ;H1
a(0, 1)). Then there exists ū ∈ X

such that

lim
j→+∞

‖uj − ū‖X = 0.

Proceeding as in the proof of Theorem 4.12, one can prove that ū is a solution of
(4.20). �

Analogously, recalling Definition 4.8, one can prove the following results:

Theorem 4.14. Assume that Hypotheses 4.9 and 4.10 are satisfied. Then, for all
h ∈ L2

1/a(QT ), the problem

ut − auxx + f(t, x, u, ux) = h(t, x), (t, x) ∈ (0, T )× (0, 1),

u(t, 0) = 0, t ∈ (0, T ),

u(0, x) = u0(x) ∈ H1
1/a(0, 1), x ∈ (0, 1),

has a solution u ∈ H1(0, T ;L2
1/a(0, 1)) ∩ L2(0, T ;H2

1/a(0, 1)).

Theorem 4.15. Assume that Hypotheses 4.9 and 4.10 are satisfied. Then, for all
h ∈ L2

1/a(QT ), the problem

ut − auxx + f(t, x, u, ux) = h(t, x), (t, x) ∈ (0, T )× (0, 1),

u(t, 0) = 0, t ∈ (0, T ),

u(0, x) = u0(x) ∈ L2
1/a(0, 1), x ∈ (0, 1),

has a solution u ∈ C([0, T ];L2
1/a(0, 1)) ∩ L2(0, T ;H1

1/a(0, 1)).

We recall that Theorems 4.14 and 4.15 still hold if we substitute (4.10) with
(4.12). In this case (4.18) becomes for a.e. (t, x) ∈ (0, T ) × (0, 1) and for all
(u, p, q) ∈ R3,

|f(t, x, u, p)− f(t, x, u, q)| ≤ L|p− q|.
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5. Appendix

In this section we will give some compactness theorems that we have used in the
previous section.

Theorem 5.1. Assume that the function a satisfies Hypothesis 4.9. Then, the
space H1

a(0, 1) is compactly imbedded in L2(0, 1).

Proof. Clearly, H1
a(0, 1) is continuously imbedded in L2(0, 1). Now, let ε > 0 and

M > 0. We want to prove that there exists δ > 0 such that for all u ∈ H1
a(0, 1)

with ‖u‖2
H1

a(0,1) ≤ M and for all |h| < δ it results∫ 1−δ

δ

|u(x + h)− u(x)|2dx < ε, (5.1)∫ 1

1−δ

|u(x)|2dx +
∫ δ

0

|u(x)|2dx < ε. (5.2)

Hence, let u ∈ H1
a(0, 1) such that ‖u‖2

H1
a(0,1) ≤ M and take δ > 0 such that

δ < g(ε) := min
{x0

2
,
1 + x0

2
,

√
ε

2M max[0,
x0
2 ]

1
a

,

√
ε

2M max
[
1+x0

2 ,1]
1
a

}
. (5.3)

Then,∫ δ

0

|u(x)|2dx ≤
∫ δ

0

∣∣∣ ∫ x

0

1√
a(y)

√
a(y)u′(y)dy

∣∣∣2dx ≤ M

∫ δ

0

δ max
[0,

x0
2 ]

1
a
dx

< Mδ2 max
[0,

x0
2 ]

1
a

<
ε

2
.

Analogously, ∫ 1

1−δ

|u(x)|2dx <
ε

2
.

Now, let h be such that |h| < δ and, for simplicity, assume h > 0 (the case h < 0
can be treated in the same way). Then

|u(x + h)− u(x)|2 ≤ ‖u‖2
H1

a(0,1)

∫ x+h

x

dy

a(y)
.

Integrating over (δ, 1− δ), it results∫ 1−δ

δ

|u(x + h)− u(x)|2dx ≤ ‖u‖2
H1

a(0,1)

∫ 1−δ

δ

dx

∫ x+δ

x

dy

a(y)

≤ M

∫ 1

δ

dy

a(y)

∫ y

y−δ

dx ≤ Mδ

∥∥∥∥1
a

∥∥∥∥
L1(0,1)

.

Moreover, since limδ→0 Mδ‖ 1
a‖L1(0,1) = 0, there exists η(ε) > 0 such that if δ <

η(ε), then Mδ
∥∥ 1

a

∥∥
L1(0,1)

< ε. Thus, taking δ < min{g(ε), η(ε)}, (5.1) and (5.2) are
verified and the thesis follows (see, e.g., [5, Chapter IV]). �

Using Theorem 5.1 one can prove the next theorem.

Theorem 5.2. Assume that the function a satisfies Hypothesis 4.9. Then, the
space H2

a(0, 1) is compactly imbedded in H1
a(0, 1).
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Proof. Take (un)n ∈ BH2
a(0,1). Here BH2

a(0,1) denotes the unit ball of H2
a(0, 1).

Since H2
a(0, 1) is reflexive, then, up to subsequence, there exists u ∈ H2

a(0, 1) such
that un converges weakly to u in H2

a(0, 1). In particular, un converges weakly
to u in H1

a(0, 1) and in L2(0, 1). But, since by the previous Theorem H1
a(0, 1) is

compactly imbedded in L2(0, 1), then, up to subsequence, there exists v ∈ L2(0, 1)
such that un converges strongly to v in L2(0, 1). Thus un converges weakly to v
in L2(0, 1). By uniqueness v ≡ u. Then we can conclude that the sequence un

converges strongly to u in L2(0, 1).
Moreover, one has

‖
√

au′n −
√

au′‖L2(0,1) → 0, as n → +∞.

Indeed, using the Hölder inequality, one has

‖
√

a(un − u)′‖2
L2(0,1) =

∫ 1

0

a(un − u)′(un − u)′dx

= −
∫ 1

0

(a(un − u)′)′(un − u)dx

≤ ‖(a(un − u)′)′‖L2(0,1)‖un − u‖L2(0,1) → 0,

as n → +∞. Hence the sequence un converges strongly to u in H1
a(0, 1). �

For the proof of Theorem 5.4 below we will use Aubin’s Theorem, that we give
here for the reader’s convenience.

Theorem 5.3 ([2, Chapter 5] or [21, Theorem 5.1]). Let X0, X1 and X2 be three
Banach spaces such that X0 ⊂ X1 ⊂ X2, X0, X2 are reflexive spaces and the
injection of X0 into X1 is compact. Let r0, r1 ∈ (1,+∞) and a, b ∈ R, a < b. Then
the space

Lr0(a, b;X0) ∩W 1,r1(a, b;X2)

is compactly imbedded in Lr0(a, b;X1).

Now we are ready to prove the next compactness Theorem.

Theorem 5.4. Assume that function a satisfies Hypothesis 4.9. Then, the space
H1(0, T ;L2(0, 1))∩L2(0, T ;H2

a(0, 1)) is compactly imbedded in L2(0, T ;H1
a(0, 1)) ∩

C(0, T ;L2(0, 1)).

Proof. Using Aubin’s Theorem 5.3 with r0 = r1 = 2, X0 = H2
a(0, 1), X1 = H1

a(0, 1),
X2 = L2(0, 1), a = 0 and b = T , one has

H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2
a(0, 1)) ↪→↪→ L2(0, T ;H1

a(0, 1)).

Moreover, since H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2
a(0, 1))) ↪→ H1(0, T ;L2(0, 1)) and

H1(0, T ;L2(0, 1)) ↪→↪→ C(0, T ;L2(0, 1)), then

H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2
a(0, 1)) ↪→↪→ C(0, T ;L2(0, 1)).

Thus

H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2
a(0, 1)) ↪→↪→ L2(0, T ;H1

a(0, 1)) ∩ C(0, T ;L2(0, 1)).

�

Analogously to Theorem 5.4, one can obtain the following compactness result.
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Theorem 5.5. Assume that the function a satisfies Hypothesis 4.9. Then, the
space H1(0, T ;L2

1/a(0, 1)) ∩ L2(0, T ;H2
1/a(0, 1)) is compactly imbedded in the space

L2(0, T ;H1
1/a(0, 1)) ∩ C(0, T ;L2

1/a(0, 1)).

To prove Theorem 5.5, it is sufficient to prove the analogous results of Theorems
5.1 and 5.2. In particular, we have:

Theorem 5.6. Assume that the function a satisfies Hypothesis 4.9. Then, the
space H1

1/a(0, 1) is compactly imbedded in L2
1/a(0, 1).

Proof. Clearly, H1
1/a(0, 1) is continuously imbedded in L2

1/a(0, 1). Now, let ε > 0
and M > 0. We want to prove that there exists δ > 0 such that for all u ∈ H1

1/a(0, 1)
with ‖u‖2

H1
1/a

(0,1)
≤ M and for all |h| < δ it holds that∫ 1−δ

δ

|u(x + h)− u(x)|2

a(x)
dx < ε, (5.4)∫ 1

1−δ

|u(x)|2

a(x)
dx +

∫ δ

0

|u(x)|2

a(x)
dx < ε. (5.5)

Hence, let u ∈ H1
1/a(0, 1) such that ‖u‖2

H1
1/a

(0,1)
≤ M and take δ > 0 such that

δ < g(ε), where g(ε) is defined in (5.3). Then,∫ δ

0

|u(x)|2

a(x)
dx ≤ max

[0,
x0
2 ]

1
a

∫ δ

0

∣∣∣ ∫ x

0

u′(y)dy
∣∣∣2dx < Mδ2 max

[0,
x0
2 ]

1
a

<
ε

2
.

Analogously, ∫ 1

1−δ

|u(x)|2

a(x)
dx <

ε

2
.

Now, let h be such that |h| < δ and, for simplicity, assume h > 0 (the case h < 0
can be treated in the same way). Then∫ 1−δ

δ

|u(x + h)− u(x)|2

a(x)
dx =

∫ 1−δ

δ

1
a(x)

Big|
∫ x+h

x

u′(y)dy
∣∣∣2dx ≤ Mδ‖1

a
‖L1(0,1).

Moreover, since limδ→0 Mδ‖ 1
a‖L1(0,1) = 0, there exists η(ε) > 0 such that if δ <

η(ε), then Mδ
∥∥ 1

a

∥∥
L1(0,1)

< ε. Thus, taking δ < min{g(ε), η(ε)}, (5.4) and (5.5) are
verified and the thesis follows (see, e.g., [5, Chapter IV]). �

Using Theorem 5.6 one can prove the next theorem.

Theorem 5.7. Assume that the function a satisfies Hypothesis 4.9. Then, the
space H2

1/a(0, 1) is compactly imbedded in H1
1/a(0, 1).

Proof. Take (un)n ∈ BH2
1/a

(0,1). Here BH2
1/a

(0,1) denotes the unit ball of H2
1/a(0, 1).

As before, we can prove that, up to subsequence, there exists u ∈ H2
1/a(0, 1) such

that un converges strongly to u in L2
1/a(0, 1).

Moreover, one has

‖u′n − u′‖L2(0,1) → 0, as n → +∞.

Indeed, using the Hölder inequality, one has

‖(un − u)′‖2
L2(0,1) =

∫ 1

0

(un − u)′(un − u)′dx
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= −
∫ 1

0

(un − u)′′(un − u)dx = −
∫ 1

0

√
a(un − u)′′

un − u√
a

dx

≤ ‖a(un − u)′′‖L2(0,1)‖un − u‖L2
1/a

(0,1) → 0,

as n → +∞. Hence the sequence un converges strongly to u in H1
1/a(0, 1). �
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Dipartimento di Matematica, Università di Bari “Aldo Moro”, Via E. Orabona 4, 70125
Bari, Italy

E-mail address: silvia.romanelli@uniba.it


	1. Introduction
	2. Divergence form
	2.1. Weakly degenerate operator
	2.2. Strongly degenerate operator

	3. Non divergence form
	3.1. Weakly degenerate operator
	3.2. Strongly degenerate operator
	3.3. The operator in non divergence form in the space L2(0,1)
	3.4. The operator in divergence form in the space L21/a(0,1)

	4. Applications
	4.1. Linear problems
	4.2. Semilinear problems

	5. Appendix
	References

