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EXISTENCE OF POSITIVE SOLUTIONS FOR SYSTEMS OF
BENDING ELASTIC BEAM EQUATIONS

PING KANG, ZHONGLI WEI

ABSTRACT. This article discusses the existence of positive solutions for systems
of bending elastic beam equations. In mechanics, the problem describes the
deformations of two elastic beams in equilibrium state, whose two ends are
simply supported.

1. INTRODUCTION

The deformations of two elastic beams in equilibrium state, whose two ends
are simply supported, can be described by the systems of bending elastic beam
equations:

v (t

(
I/(

), 0<t<1,
t), 0<t<l,

w0 (1.1)

)
v(0) = v(1) =2"(0) =2"(1) =0,

where fi, fo : I x Rt x Rt x R~ x R~ — R* are continuous functions, and the
u”,v" in f1 and fy are the bending moment terms which represent bending effect,
I=10,1,R" =[0,+00), R~ = (—00,0].

In recent years, due to its importance in physics, some authors (see [3], 4} 6] [7])
have studied the existence of solutions to the equation

W@ (t) = Fltu(), (1), 0<t<1,

u(0) = u(1) = u”(0) = u"(1) = 0. (1.2)

Naturally, further study in this specific field is on the system of fourth-order or-
dinary differential equations. However, to our knowledge, results for systems of
fourth-order ordinary differential equations are rarely seen (see [5, §]). For exam-
ple, In [5], by applying the fixed-point theorem of cone expansion and compression
type due to Krasnosel’skii, the authors show the existence of single and multiple
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positive solutions of the singular boundary value problems for systems of nonlinear
fourth-order differential equations of the form

u () = ar (1) fut ult), v(t), u” (£),0" () + ba (g (¢, ult), v(t), w" (1), 0" (1)),
V(1) = az(t) fat, ult), v(t), u” (), 0" (8)) + ba(t)g2(t, u(t), v(t), u” (1), 0" (1)),
0<t<l,
u(0) = u(l) =v(0) =v(1) =0, (1.3)
aju”(0) — B (0) =0, ~yu” (1) + 614" (1) =0,
av”(0) — B0 (0) =0, 0" (1) + 620" (1) = 0,

where f;, g; satisfied some weaker conditions and are continuous; a;(t) and b;(t) are
allowed to be singular at t =0ort=1,7=1,2.

In the above articles, it is always supposed that the nonlinear terms satisfy the
superlinear and sublinear conditions, or some weaker conditions which are similar
to them (see [5l [§]). Therefore, the purpose of this paper is to improve these
results. We shall employ the theory of the fixed point index in cones to present
some precise conditions on f; and fo guaranteeing the existence of positive solutions
of the system .

Moreover, in this paper, we study the existence of positive solutions for system
in the case that the nonlinear terms have the different features. However, it
is difficult to directly construct proper open sets in a single cone in product space.
Therefore, we will construct a cone K1 x K5 which is the Cartesian product of two
cones in space C?[0,1] and choose the proper open sets O = 07 x Oy C K| x Ko.
Applying the product formula for the fixed point index on product cone and the
fixed point index theory, we obtain the existence of positive solutions for system
().

This paper is organized as follows. In Section 2, we present some preliminaries
and main result. In Section 3, we present some basic lemmas that will be used to
prove our main result. In Section 4, we will prove the main result in Section 2.

2. PRELIMINARIES AND MAIN RESULT

In this Section, we will give some useful preliminary results and change the
system into the fixed point problem in a cone which is the Cartesian product
of two cones.

We shall consider the Banach space C?[0, 1] equipped with the norm

Julle =l + 1)) = o [u(e) + gmass, o0,
and the Banach space C?[0,1] x C?[0,1] equipped with the norm
[(u, v)ll2 = [lull2 + [[v]|2-
Let G(t, s) be the Green function to the linear boundary value problem
—u” =0, u(0)=u(l)=0.
which is explicitly expressed by

CJra-s) <s<
G(t’s)_{s(lt), 0<s<t<l.
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It is clear that
G(t,s) >0, 0<t,s<1,
G(t,t)G(s,s) < G(t,s) < G(s,s) =s(l—s), t,sel.

For convenience, we now introduce the notation, for r > 0,
K={ueK:luls<r}, 0K, = {ueK:|uls=rkK = {ue K uls <r},
and

K = {u e C0,1] s ult) = 0,u"(t) < 0, u(t) = q(t)ull,
d() < —qO)llu”], ¢ € I},

where ¢(t) = t(1 —t). It is easy to prove that K is a cone in C?[0,1] x C?[0,1].
Let us list the following assumptions:

(H1) f1,fo: I xRt x R* x R™ x R~ — R are continuous functions;
(H2) there exist hy € C(I x RT x R™,R™), such that

[tz y,r,8) > hy(t,x,r), Vtel, z,ycRT, rscR™,

where

L. . ha(t,z,r) d
liminf min ;
|z|+[r|—+oo tel |z| + |7] 1+ 72

(H3) there exist hy € C(I x RT x R™,R™), such that
fQ(t,.T,y,T',S) < hQ(tayas)a vt e I,I,y € R+7 TS5 € Ria
where

hao(t 4
limsup max 2(t,, 5) il 5
lyl+lsl—+oo (€1 [yl +1s| "1+

(H4) there exist oy, 81 > 0, with &+ + % < 1, and rg > 0, such that
filt,z,y,r8) <agx — Bir, Vtel, x€[0,r], r € [~70,0], yERT, s€R™;
(H5) there exist ap >0, 32 >0, 2% + % > 1, and 7§ > 0, such that
fo(t,z,y,m,8) > gy — PBas, Vtel, ye|0,ry], s€[-r5,0,, zeRT, reR™.

We obtain the following results concerned with positive solutions for system

().

Theorem 2.1. Assume that (H1)—(H5) hold. Then (1.1) has at least one positive
solution.

It is easy to see that conditions (H4) and (H5) are weaker than the superlinear
and sublinear conditions.
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3. BASIC LEMMAS

For A € I, u,v € C?[0, 1], we define two operators Ay, By : C?[0,1] x C?[0,1] —
C?[0,1] by

/ / G(t,5)G(s,T)[Af1(T,u(T),v(T),u" (7),v" (1))
— Nhi(r,u(r),u”(7))]drds,

/L/Gts (5, N alryu(r). () " (1), (1)
— Nha(1,v(7),v"(7))]drds.
Then we define an operator T : C?[0,1] x C?[0,1] — C?[0,1] x C?[0, 1] by
T)\(U, 'U) = (AA(Ua U)v B)\(ua ’U)), (uv U) € C2 [Oa 1] X C2 [Oa 1] (32)

Lemma 3.1. Assume that (H1) holds. Then

(1) Ty : C?[0,1] x C?[0,1] — C?[0,1] x C?[0,1] is completely continuous.

(2) T : K x K — K x K is completely continuous.

(3) If (u,v) € K x K is a nontrivial fized point of Ty, then (u,v) is a positive

solution of system (|L.1)).

Proof. (1) The proof is similar to that of [5, Lemma 2.1], and we omit it. (2) By
(1), we only need to prove that operator T\ : K x K — K x K. In fact, for any
(u,v) € K x K, it follows from (3.1)) that

(3.1)

Ax(u,v)(t) >0, A,\(u v)'(t) <0, telo,1],
thvn</’/ (1= )G (s, 7)Mu (7, u(r), v(r), (1), " (7))
— ANhi(r,u(r),u”(7))]drds, (3.3)

1
[AX (u, v)[| < /O G(s,8)[M1(s, u(s),v(s),u"(s),v"(s))
+ (1 = N)hy(s,u(s),u”(s))]ds.
On the other hand, for any (u,v) € K x K and any 0 < t < 1, It follows from (2.2)),
, and . that
/L/Gts (5, DN (ru(r), (), (1), ()
Nha (7, u(r), v (7))]drds

/L/ (1= $)G(s, )M (), o), u(7), 0" (7))
— N (7, u(r), 0 (7))]drds
z«nmxmww
and
MWM@=—ACWﬁWh@M$M$M%MWW
+ (1= Nhi(s,u(s),u”’(s))lds
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< —a(t) [ Glo. )M (s u(s).o5). 0 (3).0 (1)
+ (1 = N)hi(s,u(s),u”(s))]ds
< —q()[|AX (u, v)|-
In a similar way, it follows that
Bx(u,v)(t) >0, Bx(u,v)"(t) <0, tel,
and
Bi(u,v)(t) = q)|Ba(w,v)[|,  BY(u,0)(t) < —q()[|BX(u,v)[l, Yitel

From the above, we assert that Th(u,v) = (Ax(u,v), Bx(u,v)) € K x K; that is,
T:KxK—-KxK.
(3) Let (u,v) € K x K is a fixed point of T7, Then

u(t) = A (u, v)(t)
- / [/01 G(t,$)G(s,7) (7, ulr), v(r), 0" (7), 0" ())dr [ ds, teET,
v(t) = Bi(u,v)(t)
1 1
_ /0 [ /0 G(t, )G (s,7) falryu(r), v(m), (7)o" (r))dr|ds, € 1.

After direct computations, we obtain
1
u'(t) =~ [ G(t,5)fi(s,u(s),v(s),u"(s),v"(s))ds,
0
t
u'(t) :/ sfi(s,u(s),v(s),u”(s),v"(s))ds
0

- / (1= 5) (s, u(s), v(s), u" (s), o"(5))ds,
uD(t) = fit, ult), v(t),u" (), 0" (t)),

U”(t) = 0 G(t7s)f2(s,u(s),v(s),u"(s),v"(s))ds,

v"’(t):/ sfa(s,u(s),v(s),u”(s),v"(s))ds

0
- / (1 - 5) a5, u(s), v(s), u” (), o"(5))ds,

U(4) (t) = f2(t7 ’U,(t), ’U(t)7 ul/(t)7 v/l(t))'
Moreover, since G(0, s) = G(1,s) = 0, we see that u(0) = u(1) = v”(0) = " (1) =
v(0) = v(1) =" (0) =v"(1) = 0.
Therefore, (u,v) is a solution of (1.1). Moreover, since the graphs of u € K and

v € K are concave down on I, we assert that (u,v) is a positive solution of system
(1.1). This completes the proof. O

Remark 3.2. Denoting T'(\, uw, v)(t) = Ta(u,v)(t), we see that T(A x K x K) is a
compact set by the Arzela-Ascoli theorem.
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Lemma 3.3 ([2,9]). Let E be a real Banach space and let P be a closed convex
cone in E. Q be a bounded open set of E, § € Q, A: PNQ — P be completely
continuous. Then the following conclusions are valid:
(i) if pAu # u for every u € PNOQ and u € (0,1], then i(A,PNQ, P)=1;
(ii) if mapping A satisfies the following two conditions:
(a) inf,ec proq ||Aul| > 0,
(b) pAu # u for every u € PNOQ and p > 1, then i(A,PNQ, P) =0.

Lemma 3.4 ([I]). Let E be a Banach space and let K; C E(i = 1,2) be a closed
convez cone in E. Forr; > 0 (i = 1,2), denote K., = {u € K; : ||u| < r;},
0K, = {u € K; : |Ju|| = ri}. Let 4; : K; — K; be completely continuous. If
Aju; # uy, for all w € OK,,, then

’i(A,KTl X KTQ,Kl X KQ) = i(AlyKrngl) X i(AQ,KT2,K2),
where A(u,v) = (Aju, Agv), for all (u,v) € Ky x K.

4. PROOF OF MAIN RESULT

We separate the proof of Theorem into five steps.
Step 1. For each m € (0,7(), we will prove that

pAx(u,v) #u, Yu e (0,1], (u,v) € 0K,, x K. (4.1)

In fact, if there exist po € (0, 1] and (ug,vg) € 0K, x K, such that pgAx(ug,vo) =
ug, then wug(t) satisfies the differential equation

u§? () = po[ M1 (8, uo (), vo(£), uf (1), 0§ (1)) + (1 — Ay (¢, uo (£), uy (£))],
Since 0 < ug(t), —ug (t) < |luoll2 = r1 < 1o, from (H2) and (H4), we obtain
uS? () < A (8 uo(t), vo(t), uf (1), 04 (1)) + (1 — Ao (t, uo(t), uf (1))
< aqug(t) — Prug (t),

Multiplying both sides of this inequality by sin(rt) and integrating on I, then using
integrating by parts, we obtain

1 1
7r4/ uo(t) sin(wt)dt < (aq + ﬂlﬂz)/ ug(t) sin(wt)de. (4.2)
0 0
By [, Lemma 1],
4 [t .
: / wo(t) sin(mt)dt > Juoll + [l = lluolls = r1 > 0. (4.3)
0

Hence, fol up(t) sin(mt)dt > 0. From (4.2) and (4.3)), we obtain that 7% < (a; +
B17?2), which is a contradiction.
Step 2. From (H2), there exist € > 0, m > 0, C' > 0, such that

It ) > (—— + ) (jul + [W')), VEeT, [ul+ "] >m,  (4.4)
1+ 72
and A
" ™ 1" +
> (—— — . 4.
hl(t7u,u)_(1+W2+e)(\u|+|u N—-C, Vtel,ueR (4.5)
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We will prove that there exist Ry > r1, such that
wAN(u,v) # u, inf ||Ax(u,v)|l2 >0, Vu>1, (u,v) € 0Kg, x K. (4.6)
u€IOK R,

In fact, if there exist u; > 1 and (uy,v1) € 0Kg, x K, such that i Ay (uy,v1) = ug,
then uy (t) satisfies the differential equation

uy (1) = [ Mf( wn (8), 01 (), 0 (), 07 (8)) 4 (1= Ma (8, ua (8), 4 ()
u1(0) = uq (1) = uf(0) = uf (1) = 0.
In combination with and the condition (H2), we obtain that
™ (8) > Afu(t ua (), 1 (8, wf (8), 07 (8) + (1= Mo (1w (8), u{ (£)
= A(fl (t7 U1 (t)v U1 (t)v ulll(t)v vll/(t)) —h (tv Ui (t)a ulll(t))) +h (t’ U1 (t)v ulll(t))
> ha(t,ua (1), uf ()
> (1

Multiplying the both sides of this inequality by sin(nt) and integrating on I, then
using integrating by parts, we obtain

+e)(ug —uy)—C, Vtel.

1 4 1
2
71'4/ up () sin(mt)dt > (—— +€)(1 + 7r2)/ 1(t) sin(rt)dt — —O
Hence
! 1 20
. <1 2C
/0 uq (t) sin(mt)dt < 159 =

In combination with (4.3)), we obtain

4+ 2C  72C

lurlle € 7o — =
414+ m2)e w 2¢

So, as Ry > R*, We have pAy(u,v) # u, for all (u,v) € 0Kgr, x K and ;x> 1. In

addition, if Ry > %€, by (4.5), we know that for all (u,v) € 0Kp, x K,

*

Ax(u, v><1>

//Gfs (5. 7)1 (T u(r), o(r), u” (7), 0"(7))
Nhi (7, u(r), v (1))]drds
_4/ / G(s, )G (s, 7N (ryulr), o(r), " (), 0"(7))
— N (7 u(r), o ()))drds
/ G(s, ) / (8)G(7, YA (. u(r), v(m) (1), 0" ()
— Nhi(r,u(r),u”(7))]drds

/Gss ds/aw YA (7 u(r), o(r), w (7), 07(7))
— N (7 u(r), u
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1 /! d 1 1t
> v o o i
> 120/0 G(T’T)[(lJrWQ +e)(u(t) — " (7))]dr 120/0 G(r,7)dr - C
e o e
= 120 € o T,T q T u u T 720

1 € 1
= 030102~ 75¢ > 0

which follows that inf,cor,, |[Ax(u,v)[]2 > 0. Hence, we choose

5C
Ry > max{R", ?,rl}. (4.7
Step 3. For each 75 € (0,7(), we will prove that
1B (u,v) # v, ei{gllg IBa(u,v)|l2 >0, Vu>1, (u,v) € K x 0K,,. (4.8)

From (H3) and (H5),
Aa(t,u,v,u” 0") 4+ (1 = AN)ha(t,v,0") > agv — Bov”
Vtel, ve(0,r], v €[-r,0], ueRT, v’ cR™.
By and a proof similar to Step 1 and 2, we deduce that holds.
Step 4. We will prove that
uBx(u,v) #v, VYue (0,1], (u,v) € K x 0Kpg,. (4.10)
From (H3),we know that there exist € > 0, m > 0, C' > 0, such that
Moty u,v,u”,0") + (1 — Nha(t,v,0") < (1 i —
vtel, [v]+ " >m, ue R, ' €R™;

a4

[ e)(Jv] + [v"]) + C,

Viel, ue RT, veR"T, v eR™, v eR™.

=)ol + [v"]),

Aa(t,u,v,u”,0") 4+ (1 = Nha(t,v,0") < (

Then the proof similar to Step 2. If we choose Ry > max{R*,r2}, we deduce that

holds.

Step 5. We choose an open set D = (Kg,\K,,) x (Kg,\K,,). By (&), (£6),
, and , it is easy to verify that {Th}xer satisfy the sufficient conditions
for the homotopy invariance of fixed point index on dD; on the other hand, in
combination with the classical fixed point index results (see Lemma, we have

i(Ag, Ky, K) =i(Bo,Kp,, K) =1,
(Ao, KR,, K) =i(By, K,,, K) = 0.

Applying the homotopy invariance of fixed point index and the product formula for
the fixed point index (see Lemma , we obtain

i(Tv, D, K x K) = i(Tp, D, K x K)

= i(Ao, Kp,\Ky,, K) % i(Bo, Kp,\Kr,, K)

= [i(Ao, Kr,, K) = i(Ao, Ky, , K)] X [i(Bo, Kr,, K) —i(Bo, Kp,, K)| = —1.
Thus, Ty has at least a fixed point(u*,v*) € (Kg,\K,,) x (Kr,\K,,). Hence, by

Lemma system ([1.1)) has at least one positive solution (u*,v*). The proof of
Theorem is complete.
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