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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
NONLINEAR DISCRETE INCLUSIONS

NICU MARCU, GIOVANNI MOLICA BISCI

Abstract. A non-smooth abstract result is used for proving the existence of
at least one nontrivial solution of an algebraic discrete inclusion. Successively,
a multiplicity theorem for the same class of discrete problems is also established
by using a locally Lipschitz continuous version of the famous Brézis-Nirenberg
theoretical result in presence of splitting. Some applications to tridiagonal,
fourth-order and partial difference inclusions are pointed out.

1. Introduction

A considerable number of problems, which are strictly connected both with
boundary value differential problems and numerical simulations of some mathe-
matical models arising from many research areas (biological, physical and computer
science) can be formulated as special cases of nonlinear algebraic systems (see, for
instance [28]).

In this article, motivated by this large interest, we investigate the existence of
solutions for discrete algebraic inclusions. More precisely, let T > 1 be a positive
integer and let gk : R → R be a locally essentially bounded function, for every
k ∈ Z[1, T ] := {1, 2, . . . , T}. We are interested either on the existence or in multiple
solutions for the discrete inclusion

T∑
l=1

aklul ∈ [g−k (uk), g+
k (uk)], (∀ k ∈ Z[1, T ]), (1.1)

where A := (aij)T×T is a real symmetric positive definite matrix and

g−k (t) := lim
δ→0+

ess inf |ξ−t|<δ gk(ξ), g+
k (t) := lim

δ→0+
ess sup|ξ−t|<δ gk(ξ),

for every k ∈ Z[1, T ].
It is clear that if the functions gk are continuous (instead of locally essentially

bounded) problem (1.1) becomes a more familiar nonlinear algebraic system

Au = g(u),

in which u = (u1, . . . , uT )t ∈ RT and g(u) := (g1(u1), . . . , gT (uT ))t.
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However, to the best of our knowledge, for discrete difference inclusions there are
only few papers involving the second-order difference operator. For instance, in [1],
the existence of at least one solution was obtained via the set-valued mapping the-
ory, while in [31], existence results for suitable second-order discrete discontinuous
equations have been investigated by variational methods. The aim of this paper is
to establish existence and multiplicity results for algebraic discrete inclusions like
problem (1.1).

The main existence result contained here (see Theorem 3.1) is obtained using a
non-smooth critical points theorem contained in [3, Theorem 2.1; part (a)]. This
theoretical argument represents a non-smooth refinement of the quoted variational
principle of Ricceri (see [21]).

Through this variational approach, we are able to prove the existence of one
solution for problem (1.1) just requiring that there is a real constant γ̄ > 0 such
that

γ̄2∑T
k=1 max|ξ|≤γ̄

∫ ξ

0
gk(t)dt

>
2
λ1

,

where λ1 is the 1-th eigenvalue of the symmetric and positive definite matrix A (see
Theorem 3.1 as well as Remarks 3.2 and 3.3).

Successively, a two solutions result for the algebraic inclusion (1.1) is proved (see
Theorem 4.1 and Corollary 4.2). Our proof in this case is based on an extension of
the famous Brézis-Nirenberg result [4, Theorem 4] obtained by Wu in [26, Theorem
2.3] for locally Lipschitz continuous functionals.

Due to the generality of (1.1), remarkable applications are easily achieved. In-
deed, Theorem 4.1 can be used proving either existence or multiplicity of solutions
for discrete inclusions involving certain tridiagonal matrices, fourth-order discrete
problems and partial difference inclusions (see Example 3.4 and Section 5).

A special case of Theorem 3.1 reads as follows.

Theorem 1.1. Let gk : R → R be a locally essentially bounded and nonnegative
function, for every k ∈ Z[1, T ]. Assume that

lim sup
γ→+∞

γ2∑T
k=1

∫ γ

0
gk(t)dt

= +∞,

and g−k (0) > 0, for some k ∈ Z[1, T ]. Then problem (1.1) admits at least one
nontrivial solution.

Moreover, denoting by λ
(4)
` and λ

(4)
`+1 respectively the `-th and (` + 1)-th eigen-

value of the discrete problem

∆4uk−2 = λuk, (∀ k ∈ Z[1, T ])
u−2 = u−1 = u0 = 0

uT+1 = uT+2 = uT+3 = 0,

one has the following multiplicity property.

Theorem 1.2. Let h : R → R be locally essentially bounded positive function and
consider the usual forward difference operator ∆uk−1 := uk − uk−1. Assume that

(H1) lim sup|t|→∞
h(t)

t = 0;
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(H2) There exists an integer ` ∈ Z[1, T − 1] such that

λ
(4)
`

T
≤ lim

t→0

h(t)
t

≤
λ

(4)
`+1

T
, (∀ k ∈ Z[1, T ])

Then the forth-order discrete inclusion

∆4uk−2 ∈ [h−(uk), h+(uk)], (∀ k ∈ Z[1, T ])
u−2 = u−1 = u0 = 0

uT+1 = uT+2 = uT+3 = 0.

(1.2)

admits at least two nontrivial solutions.

We emphasize that our results are also new in the continuous setting. In this
case, the existence and multiplicity of solutions was investigated in a large number
of other papers under various assumptions (see for instance [27, 28, 29, 30, 31] and
references therein). See also the recent papers [5, 13, 14, 16] for related topics.

The plan of the paper is as follows. In the next section we introduce our abstract
framework. Successively, in sections 3 and 4, we show our existence and multiplicity
results. A concrete example of an application of our abstract results to discrete
partial inclusions is presented in the last section.

2. Basic definitions and preliminary results

Let (X, ‖ · ‖) be a real Banach space. We denote by X∗ the dual space of X,
while 〈·, ·〉 stands for the duality pairing between X∗ and X.

A function J : X → R is called locally Lipschitz continuous if to every x ∈ X
there corresponds a neighborhood Vx of x and a constant Lx ≥ 0 such that

|J(z)− J(w)| ≤ Lx‖z − w‖, (∀ z, w ∈ Vx) .

If x, z ∈ X, we write J0(x; z) for the generalized directional derivative of J at the
point x along the direction z; i.e.,

J0(x; z) := lim sup
w→x, t→0+

J(w + tz)− J(w)
t

.

The generalized gradient of the function J in x, denoted by ∂J(x), is the set

∂J(x) := {x∗ ∈ X∗ : 〈x∗, z〉 ≤ J0(x; z), ∀ z ∈ X}.

The basic properties of generalized directional derivative and generalized gradient
were studied in [7, 9].

We recall that if J is continuously Gâteaux differentiable at u, then J is locally
Lipschitz at u and ∂J(u) = {J ′(u)}, where J ′(u) stands for the first derivative
of J at u. Further, a point u is called a (generalized) critical point of the locally
Lipschitz continuous function J if 0X∗ ∈ ∂J(u); i.e.,

J0(u; z) ≥ 0,

for every z ∈ X. Clearly, if J is a continuously Gâteaux differentiable at u, then u
becomes a (classical) critical point of J , that is J ′(u) = 0X∗ .

A locally Lipschitz functional J : X → R is said to fulfill the Palais-Smale
condition if
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(PS) Every sequence {xn} ⊂ X such that {J(xn)} is bounded and

J0(xn;x− xn) ≥ −εn‖x− xn‖, (∀x ∈ X)

where εn → 0+, possesses a convergent subsequence.
For an complete overview on the non-smooth calculus we mention the monograph
[19]. Further, we cite a very recent book [15] as a general reference on this subject.

Our main tool will be the following two abstract critical point theorems, for
locally Lipschitz continuous functions.

Theorem 2.1 ([3, Theorem 2.1; part (a)]). Let X be a reflexive real Banach space,
and let Φ,Ψ : X → R be two locally Lipschitz continuous functionals such that Φ is
sequentially weakly lower semicontinuous and coercive and Ψ is sequentially weakly
upper semicontinuous. For every ρ > infX Φ, put

ϕ(ρ) := inf
u∈Φ−1(]−∞,ρ[)

supv∈Φ−1(]−∞,ρ[) Ψ(v)−Ψ(u)
ρ− Φ(u)

.

Then, for every ρ > infX Φ and every λ ∈]0, 1/ϕ(ρ)[, the restriction of the func-
tional Jλ := Φ−λΨ to Φ−1(]−∞, ρ[) admits a global minimum, which is a critical
point (local minimum) of Jλ in X.

Theorem 2.2. [26, Theorem 2.3] Suppose that X := X1 ⊕X2 with dim(X1) > 0
and 0 < dim(X2) < ∞. Let J be a locally Lipschitz continuous functional satisfying
the (PS) condition and such that

J(u) ≤ 0, (∀u ∈ B̄(0, ρ) ∩X2),

J(u) ≥ 0, (∀u ∈ B̄(0, ρ) ∩X1)

for some ρ > 0. Assume also that J is bounded from below and infu∈X J(u) < 0.
Then J has at least two nonzero critical points.

Remark 2.3. As pointed out in Introduction Theorem 2.1 can be view as a non-
smooth version of the quoted variational principle of Ricceri; see the paper [21].
Further, Theorem 2.2 represents an extension, to the case of locally Lipschitz con-
tinuous functionals, of the celebrated critical point theorem in presence of splitting
established by Brézis and Nirenberg [4, Theorem 4]. See for completeness the work
[26, Theorem 2.3].

Here, as the ambient space X, we consider the T -dimensional Banach space RT

endowed with the norm

‖u‖ :=
( T∑

k=1

u2
k

)1/2

,

induced by the standard Euclidean inner product 〈u, v〉X :=
∑T

k=1 ukvk.
Set XT to be the class of all symmetric and positive definite matrices of order T .

Further, we denote by λ1, . . . , λT the eigenvalues of A (ordered as 0 < λ1 ≤ · · · ≤
λT ) and by ξ1, . . . , ξT the corresponding orthonormal eigenvectors. It is well-known
that if A ∈ XT , for every u ∈ X, then one has

λ1‖u‖2 ≤ utAu ≤ λT ‖u‖2, (2.1)

‖u‖∞ ≤ 1√
λ1

(utAu)1/2, (2.2)

where ‖u‖∞ := maxk∈Z[1,T ] |uk|.
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For the rest of this article, we assume that A ∈ XT . For every u ∈ X, we put

Φ(u) :=
utAu

2
, Ψ(u) :=

T∑
k=1

Gk(uk), J(u) := Φ(u)−Ψ(u),

where Gk(t) :=
∫ t

0
gk(ξ)dξ, for every (k, t) ∈ Z[1, T ]×R. It is easy to verify that Φ

is continuously Gâteaux differentiable, while Ψ is locally Lipschitz continuous.

Proposition 2.1. Assume that u ∈ X is a critical point of the functional J . Then
u is a solution of problem (1.1).

Proof. If u is a critical point of J , bearing in mind of [9, Propositions 2.3.1 and
2.3.3], it follows that

Φ′(u)(z) ≤ Ψ0(u; z) ≤
( T∑

k=1

G0
k(uk; zk)

)
, (2.3)

for every z ∈ X. Moreover,

Φ′(u)(z) =
〈∇(utAu), z〉X

2
, (2.4)

for every z ∈ X.
For every ξ ∈ R and k ∈ Z[1, T ], by putting in (2.3) the vector z = ξek, where

ek are the canonical unit vectors of X, and taking in mind (2.4), we obtain

〈
T∑

l=1

aklul, ξ〉R = Φ′(u)(z) ≤ G0
k(uk; ξ),

namely
T∑

l=1

aklul ∈ ∂Gk(uk).

Finally, since it is well-known that

∂Gk(uk) = [g−k (uk), g+
k (uk)],

for every k ∈ Z[1, T ] (see for instance [9, Example 2.2.5]) it follows that
T∑

l=1

aklul ∈ [g−k (uk), g+
k (uk)], (∀ k ∈ Z[1, T ]).

Therefore our assertion is proved. �

3. A nontrivial solution

The main result of this section reads as follows.

Theorem 3.1. Let gk : R → R be a locally essentially bounded function, for every
k ∈ Z[1, T ]. Assume that

sup
γ>0

γ2∑T
k=1 max|ξ|≤γ Gk(ξ)

>
2
λ1

. (3.1)

Then problem (1.1) admits at least one solution. Moreover if, in addition to the
above condition, one has g−k (0) > 0, for some k ∈ Z[1, T ], the obtained solution is
nontrivial.
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Proof. Since condition (3.1) holds, there exists γ̄ > 0 such that

γ̄2∑T
k=1 max|ξ|≤γ̄ Gk(ξ)

>
2
λ1

. (3.2)

Hence, take ρ̄ := λ1γ̄2

2 and apply Theorem 2.1. Clearly, infu∈X Φ(u) < ρ̄ and

ϕ(ρ̄) := inf
u∈Φ−1(]−∞,ρ̄[)

supv∈Φ−1(]−∞,ρ̄[) Ψ(v)−Ψ(u)
ρ̄− Φ(u)

≤
supv∈Φ−1(]−∞,ρ̄[) Ψ(v)

ρ̄
,

taking into account that 0X ∈ Φ−1(]−∞, ρ̄[) and Φ(0X) = Ψ(0X) = 0.
Now, using condition (2.2), it follows that

Φ−1(]−∞, ρ̄[) ⊆ {u ∈ X : ‖u‖∞ ≤ γ}.
Thus, the above remarks imply that

ϕ(ρ̄) ≤ 2
λ1

∑T
k=1 max|ξ|≤γ̄ Gk(ξ)

γ̄2
. (3.3)

Consequently, by (3.2) and (3.3) one has ϕ(ρ̄) < 1. Hence, since 1 ∈ ]0, 1/ϕ(ρ̄)[,
Theorem 2.1 ensures that the functional J admits at least one critical point (local
minima) ũ ∈ Φ−1(]−∞, ρ̄[).

Due to Proposition 2.1, ũ ∈ X is a solution of (1.1). Under the additional
assumption g−k (0) > 0 (for some k ∈ Z[1, T ]) the obtained solution is clearly non-
trivial. �

Remark 3.2. If in Theorem 3.1 the functions gk are nonnegative, condition (3.1)
assumes the more simple and significative form

sup
γ>0

γ2∑T
k=1 Gk(γ)

>
2
λ1

. (3.4)

Moreover, if

lim sup
γ→+∞

γ2∑T
k=1 Gk(γ)

>
2
λ1

,

condition (3.4) automatically holds. Hence, Theorem 1.1 in Introduction is an im-
mediate consequence of Theorem 3.1 taking into account the considerations above.

Remark 3.3. Let γ̄ > 0 be a real constant such that

γ̄2∑T
k=1 max|ξ|≤γ̄ Gk(ξ)

>
2
λ1

,

and said ũ ∈ X be the solution of problem (1.1) obtained by using Theorem 3.1.
Hence, since ũ ∈ Φ−1(]−∞, ρ̄[), it follows that ‖ũ‖∞ ≤ γ̄.

Example 3.4. Let T ≥ 3 and (a, b) ∈ R− × R+ be such that

cos
( π

T + 1
)

< − b

2a
.

Set

TridT (a, b, a) =


b a 0 . . . 0
a b a . . . 0

. . .
0 . . . a b a
0 . . . 0 a b


T×T

,
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and consider the discrete problem

LTrid(u) ∈ [j−k (uk), j+
k (uk)], (∀ k ∈ Z[1, T ]) (3.5)

where

LTrid(u) :=


bu1 + au2

auk−1 + buk + auk+1, (∀ k ∈ {2, . . . , T − 1})
auT−1 + buT ,

and the functions jk : R → R are assumed to be locally essentially bounded. Hence,
Theorem 3.1 ensures that if

sup
γ>0

γ2∑T
k=1 max|ξ|≤γ

∫ ξ

0
jk(t)dt

>
2

b + 2a cos
(

π
T+1

) ,

problem (3.5) admits one solution (see [22, Example 9; p.179] for details). Moreover
if, in addition to our algebraic inequality, one also have j−k (0) > 0, for some k ∈
Z[1, T ], the obtained solution is nontrivial. The above result can be applied to
second-order difference inclusions. Indeed, it is well-know that the T × T matrix

TridT (−1, 2,−1) :=


2 −1 0 . . . 0
−1 2 −1 . . . 0

. . .
0 . . . −1 2 −1
0 . . . 0 −1 2


in XT , is associated to the second-order discrete boundary value problem

−∆2uk−1 ∈ [j−k (uk), j+
k (uk)], ∀k ∈ Z[1, T ]

u0 = uT+1 = 0,
(3.6)

where ∆2uk−1 := ∆(∆uk−1), and, as usual, ∆uk−1 := uk − uk−1 denotes the
forward difference operator.

4. Two nontrivial solutions

With the above notation and assumptions, the main result reads as follows.

Theorem 4.1. Assume that
(G1) lim sup|ξ|→∞

Gk(ξ)
ξ2 < λ1

2 , for all k ∈ Z[1, T ],

and that there exists an integer ` ∈ Z[1, T − 1] such that

(G2) lim infξ→0
Gk(ξ)

ξ2 ≥ λ`

2 , for all k ∈ Z[1, T ].

Further, suppose that

(G3) lim supξ→0
Gk(ξ)

ξ2 ≤ λ`+1
2 , for all k ∈ Z[1, T ].

Then problem (1.1) possesses at least two nontrivial solutions.

Proof. Our aim is to apply Theorem 2.2. From (G1), since X is a finite dimensional
space, it is easy to see that J satisfies condition (PS).

Indeed, using condition (G1), there are constants ε ∈]0, λ1/2[ and σ > 0 such
that

Gk(ξ)
ξ2

<
λ1

2
− ε,
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for every |t| ≥ σ and k ∈ Z[1, T ]. Let us put

M1 := max
(k,ξ)∈Z[1,T ]×[−σ,σ]

Gk(ξ).

Therefore, for every ξ ∈ R and k ∈ Z[1, T ], one has

Gk(ξ) ≤ M1 + M2ξ
2,

where
M2 :=

λ1

2
− ε.

Moreover, the following inequality holds

J(u) ≥ utAu

2
−

T∑
k=1

[
M1 + M2u

2
k

]
, (∀u ∈ X).

Hence

J(u) ≥ utAu

2
−M2‖u‖2 − TM1, (∀u ∈ X).

Thus, by using (2.1), one has

J(u) ≥ ε‖u‖2 − TM1, (∀u ∈ X) (4.1)

which clearly shows that
lim

‖u‖→∞
J(u) = +∞.

From this, and taking into account that X is a finite T -dimensional Hilbert space,
it follows that the functional J satisfies the (PS) condition.

We will prove now that, for some ρ1 > 0, J(u) ≤ 0 for every u ∈ X2 ∩ B̄(0, ρ1),
where X2 = Span{ξ1, . . . , ξ`}. Thus, by condition (G2), there exists δ > 0 such
that

Gk(ξ) ≥ λ`

2
ξ2, (∀ k ∈ Z[1, T ]),

provided 0 < |ξ| ≤ δ. Now, taking into account the discrete Cauchy-Schwarz
inequality, one has

|uk| ≤
T∑

k=1

|uk| ≤ T 1/2
( T∑

k=1

|uk|2
)1/2

,

for every k ∈ Z[1, T ]. Then

‖u‖∞ ≤ T 1/2‖u‖, (∀u ∈ X).

Hence, for every u ∈ B̄(0, ρ1) ∩X2, it follows that

‖u‖∞ ≤ T 1/2ρ1.

Consequently, if we take ρ1 ≤ δ/T 1/2, we obtain

Gk(uk) ≥ λ`

2
u2

k, (4.2)

for every k ∈ Z[1, T ]. Moreover, if u ∈ X2, there exists ak ∈ R for every k ∈ Z[1, T ],
such that

u =
∑̀
k=1

akξk and utAu =
∑̀
k=1

λka2
k ≤ λ`

∑̀
k=1

a2
k.

Hence,
utAu ≤ λ`‖u‖2, (∀u ∈ X2). (4.3)
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Putting together (4.2) and (4.3), we have

J(u) ≤ λ`

2
(‖u‖2 − ‖u‖2) = 0, (∀u ∈ B̄(0, ρ1) ∩X2);

that is,
J(u) ≤ 0, (∀u ∈ B̄(0, ρ1) ∩X2).

At this point, it remains to show that there exists ρ2 > 0 such that

J(u) ≥ 0, (∀u ∈ B̄(0, ρ2) ∩X1)

where X1 := Span{ξ`+1, . . . , ξT }.
Fix u ∈ X1, for suitable bk ∈ R and for every k ∈ Z[` + 1, T ], one has that

u =
∑T

k=`+1 bkξk and

J(u) ≥
T∑

k=`+1

λk

2
b2
k −

T∑
k=1

Gk(uk).

Thus

J(u) ≥ λ`+1

2
‖u‖2 −

T∑
k=1

Gk(uk).

Further, from (G3), there exists σ > 0 such that

Gk(ξ) ≤ λ`+1

2
ξ2, (∀ k ∈ Z[1, T ])

provided 0 < |ξ| ≤ σ. Then, taking ρ2 ≤ σ/N1/2, for every u ∈ B̄(0, ρ2) ∩X1, we
have

J(u) ≥ λ`+1

2
(‖u‖2 − ‖u‖2) = 0.

Therefore, choosing ρ ≤ min{ρ1, ρ2}, if infu∈X J(u) < 0 = J(0) our claim is proved.
On the other hand, if infu∈X J(u) = 0, we argue as above; that is, every u ∈ X2

with ‖u‖2 ≤ ρ is solution of problem (1.1). So, our goal is achieved. �

The following result is a direct consequence of Theorem 4.1.

Corollary 4.2. Let α : Z[1, T ] → R be a nonnegative (not identically zero) function
and let h : R → R be a locally essentially bounded map. Assume that there exists
an integer ` ∈ Z[1, T − 1] such that

(G0) λ`PT
k=1 αk

≤ limt→0
h(t)

t ≤ λ`+1PT
k=1 αk

, for all k ∈ Z[1, T ];

(G4) lim sup|t|→∞
h(t)

t < λ1PT
k=1 αk

.

Then the discrete problem
T∑

l=1

aklul ∈ αk[h−(uk), h+(uk)], (∀ k ∈ Z[1, T ]) (4.4)

admits at least two nontrivial solutions.

Proof. It is elementary to observe that from condition (G0) immediately (G2) and
(G3) hold. We proceed by proving that condition (G4) implies (G1). Indeed, by
(G4), there are constants ε′ ∈

]
0, λ1/

( ∑T
k=1 αk

)[
and σ > 0 such that

h(t)
t

<
λ1∑T

k=1 αk

− ε′,



10 N. MARCU, G. MOLICA BISCI EJDE-2012/192

for every |t| ≥ σ. Since h is a locally essentially bounded function, we also have

M := ess supt∈[−σ,σ] |h(t)| < +∞.

Therefore, if ξ ≥ σ, it follows that∫ ξ

0

h(t)dt =
∫ σ

0

h(t)dt +
∫ ξ

σ

h(t)dt ≤ Mσ +
1
2

(
λ1/

( T∑
k=1

αk

)
− ε′

)
ξ2,

while, for ξ ≤ −σ, one has∫ ξ

0

h(t)dt = −
[ ∫ −σ

ξ

h(t)dt +
∫ 0

−σ

h(t)dt
]
≤ Mσ +

1
2

(
λ1/

( T∑
k=1

αk

)
− ε′

)
ξ2.

Consequently,∫ ξ

0

h(t)dt ≤ Mσ +
1
2

(
λ1/

( T∑
k=1

αk

)
− ε′

)
ξ2, (∀ ξ ∈ R). (4.5)

Hence, by using the above inequality, we can write

lim sup
|ξ|→∞

∫ ξ

0
αkh(t)dt

ξ2
= αk lim sup

|ξ|→∞

H(ξ)
ξ2

≤ 1
2

( T∑
k=1

αk

)(
λ1/

( T∑
k=1

αk

)
− ε′

)
<

λ1

2
,

for every k ∈ Z[1, T ]. So, it is clear that condition (G2) holds. In conclusion, our
claim is verified and the proof is complete. �

Remark 4.3. Boundary value problems involving fourth-order difference inclusions
such as

∆4uk−2 ∈ [g−k (uk), g+
k (uk)], (∀ k ∈ Z[1, T ])

u−2 = u−1 = u0 = 0
uT+1 = uT+2 = uT+3 = 0,

(4.6)

can also be expressed as problem (1.1), where A is the real symmetric and positive
definite matrix of the form

A :=



6 −4 1 0 . . . 0 0 0 0
−4 6 −4 1 . . . 0 0 0 0
1 −4 6 −4 . . . 0 0 0 0
0 1 −4 6 . . . 0 0 0 0

. . .
0 0 0 0 . . . 6 −4 1 0
0 0 0 0 . . . −4 6 −4 1
0 0 0 0 . . . 1 −4 6 −4
0 0 0 0 . . . 0 1 −4 6


in XT . Then, it is easily seen that Theorem 1.2 in the introduction is a direct
consequence of Corollary 4.2.
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5. Partial algebraic inclusions

Nonlinear inclusions of the form (1.1) arise in many applications such as bound-
ary value problems involving partial difference equations. For instance, we just
point out that our results can be applied to the following problem

4u(i, j)− u(i + 1, j)− u(i− 1, j)− u(i, j + 1)− u(i, j − 1)

∈ [f−(i,j)(u(i, j)), f+
(i,j)(u(i, j))]

(5.1)

for every (i, j) ∈ Z[1,m]× Z[1, n], with boundary conditions

u(i, 0) = u(i, n + 1) = 0, (∀ i ∈ Z[1,m]),

u(0, j) = u(m + 1, j) = 0, (∀ j ∈ Z[1, n])

where every f(i,j) : R → R denotes a locally essentially bounded function.
Let z : Z[1,m] × Z[1, n] → Z[1,mn] be the bijection defined by z(i, j) := i +

m(j − 1), for every (i, j) ∈ Z[1,m] × Z[1, n]. Let us denote wk := u(z−1(k)) and
gk(wk) := fz−1(k)(wk), for every k ∈ Z[1,mn].

With the above notation, problem (5.1) can be written as a nonlinear algebraic
inclusion of the form

T∑
l=1

bklwl ∈ [g−k (wk), g+
k (wk)], (∀ k ∈ Z[1,mn]), (5.2)

where

B := (bij) =



L −Im 0 0 . . . 0 0 0 0
−Im L −Im 0 . . . 0 0 0 0

0 −Im L −Im . . . 0 0 0 0
0 0 −Im L . . . 0 0 0 0

. . .
0 0 0 0 . . . L −Im 0 0
0 0 0 0 . . . −Im L −Im 0
0 0 0 0 . . . 0 −Im L −Im

0 0 0 0 . . . 0 0 −Im L


in Xmn, in which L is the m×m matrix

L :=



4 −1 0 0 . . . 0 0 0 0
−1 4 −1 0 . . . 0 0 0 0
0 −1 4 −1 . . . 0 0 0 0
0 0 −1 4 . . . 0 0 0 0

. . .
0 0 0 0 . . . 4 −1 0 0
0 0 0 0 . . . −1 4 −1 0
0 0 0 0 . . . 0 −1 4 −1
0 0 0 0 . . . 0 0 −1 4


and Im is the m×m identity matrix.

Finally for completeness, we observe that the existence of multiple solutions for
the nonlinear discrete problems can be used in the study of numerical methods
applied to some mathematical models; see for instance the recent article [20].
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[15] A. Kristály, V. Rădulescu and Cs. Varga; Variational Principles in Mathematical Physics, Ge-
ometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Prob-
lems, Encyclopedia of Mathematics and its Applications, No. 136, Cambridge University
Press, Cambridge, 2010.
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