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STABILIZATION OF A LINEAR TIMOSHENKO SYSTEM WITH
INFINITE HISTORY AND APPLICATIONS TO THE

TIMOSHENKO-HEAT SYSTEMS

AISSA GUESMIA, SALIM A. MESSAOUDI, ABDELAZIZ SOUFYANE

Abstract. In this article, we, first, consider a vibrating system of Timoshenko
type in a one-dimensional bounded domain with an infinite history acting in
the equation of the rotation angle. We establish a general decay of the solution
for the case of equal-speed wave propagation as well as for the nonequal-speed
case. We, also, discuss the well-posedness and smoothness of solutions using
the semigroup theory. Then, we give applications to the coupled Timoshenko-
heat systems (under Fourier’s, Cattaneo’s and Green and Naghdi’s theories).
To establish our results, we adopt the method introduced, in [13] with some
necessary modifications imposed by the nature of our problems since they do
not fall directly in the abstract frame of the problem treated in [13]. Our
results allow a larger class of kernels than those considered in [28, 29, 30], and
in some particular cases, our decay estimates improve the results of [28, 29].
Our approach can be applied to many other systems with an infinite history.

1. Introduction

In the present work, we are concerned with the well-posedness, smoothness and
asymptotic behavior of the solution of the Timoshenko system

ρ1ϕtt − k1(ϕx + ψ)x = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) +
∫ ∞

0

g(s)ψxx(t− s)ds = 0,

ϕ(0, t) = ψ(0, t) = ϕ(L, t) = ψ(L, t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x),

(1.1)

where (x, t) ∈]0, L[×R+, R+ = [0,+∞[, g : R+ → R+ is a given function (which
will be specified later on), L, ρi, ki (i = 1, 2) are positive constants, ϕ0, ϕ1, ψ0

and ψ1 are given initial data, and (ϕ,ψ) is the state of (1.1). The infinite integral
in (1.1) represents the infinite history. The derivative of a generic function f with
respect to a variable y is denoted by fy or ∂yf . When f has only one variable y,
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the derivative of f is noted by f ′. To simplify the notation, we omit, in general, the
space and time variables (or we note only the time variable when it is necessary).

In 1921, Timoshenko [41] introduced the system (1.1) with g = 0 to describe the
transverse vibration of a thick beam, where t denotes the time variable, x is the
space variable along the beam of length L, in its equilibrium configuration, ϕ is the
transverse displacement of the beam, and −ψ is the rotation angle of the filament
of the beam. The positive constants ρ1, ρ2, k1 and k2 denote, respectively, the
density (the mass per unit length), the polar moment of inertia of a cross section,
the shear modulus and Young’s modulus of elasticity times the moment of inertia
of a cross section.

During the last few years, an important amount of research has been devoted to
the issue of the stabilization of the Timoshenko system and search for the minimum
dissipation by which the solutions decay uniformly to the stable state as time goes
to infinity. To achieve this goal, diverse types of dissipative mechanisms have been
introduced and several stability results have been obtained. Let us mention some
of these results (for further results, we refer the reader to the list of references of
this paper, which is not exhaustive, and the references therein).

In the presence of controls on both the rotation angle and the transverse displace-
ment, studies show that the Timoshenko system is stable for any weak solution and
without any restriction on the constants ρ1, ρ2, k1 and k2. Many decay estimates
were obtained in this case; see for example [17, 24, 38, 42, 43, 44].

In the case of only one control on the rotation angle, the rate of decay depends
heavily on the constants ρ1, ρ2, k1 and k2. Precisely, if

k1

ρ1
=
k2

ρ2
, (1.2)

holds (that is, the speeds of wave propagation are equal), the results show that we
obtain similar decay rates as in the presence of two controls. We quote in this regard
[1, 3, 14, 15, 25, 26, 29, 33, 34, 35, 40]. However, if (1.2) does not hold, a situation
which is more interesting from the physics point of view, then it has been shown that
the Timoshenko system is not exponentially stable even for exponentially decaying
relaxation functions. Whereas, some polynomial decay estimates can be obtained
for the strong solution in the presence of dissipation. This has been demonstrated
in [1] for the case of an internal feedback, and in [29, 30] for the case of an infinite
history.

For Timoshenko system coupled with the heat equation, we mention the pioneer
work of Muñoz and Racke [32], where they considered the system

ρ1ϕtt − σ(ϕx, ψ)x = 0, in ]0, L[×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) + γθx = 0, in ]0, L[×R+,

ρ3θt − kθxx + γψtx = 0, in ]0, L[×R+.

Under appropriate conditions on σ, ρi, b, k and γ they established well posedness
and exponential decay results for the linearized system with several boundary con-
ditions. They also proved a non exponential stability result for the case of different
wave speeds. In addition, the nonlinear case was discussed and an exponential de-
cay was established. These results were later pushed by Messaoudi et al. [23] to the
situation, where the heat propagation is given by Cattaneo’s law, and by Messaoudi
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and Said-Houari [28] to the situation, where the heat propagation is given by Green
and Naghdi’s theory [9, 10, 11].

The main problem concerning the stability in the presence of infinite history is
determining the largest class of kernels g which guarantee the stability and the best
relation between the decay rates of g and the solutions of the considered system.

When g satisfies

∃δ1, δ2 > 0 : −δ1g(s) ≤ g′(s) ≤ −δ2g(s), ∀s ∈ R+, (1.3)

Muñoz and Fernández Sare [30] proved that (1.1) is exponentially stable if and only
if (1.2) holds, and it is polynomially stable in general. In addition, the decay rate
depends on the smoothness of the initial data. When g satisfies

∃δ > 0, ∃p ∈ [1,
3
2
[ : g′(s) ≤ −δ gp(s), ∀s ∈ R+, (1.4)

it was proved in [20] that (1.1) is exponentially stable when p = 1 and (1.2) holds,
and it is polynomially stable otherwise, where the decay rate is better in the case
(1.2) than in that of opposite case. No relationship between the decay rate and
the smoothness of the initial data was given in [20]. Similar results were proved for
(6.1) (see Section 6) and (7.1) (see Section 7), respectively, in [8] under (1.3) and
[28] under (1.4). Recently Ma et al. [20] proved the exponential stability of (7.1)
under (1.2) and (1.3) using the semigroup method. On the other hand, Fernández
Sare and Racke [8] proved that (6.4) (see Section 6) is not exponentially stable even
if (1.2) holds and g satisfies (1.3).

The infinite history was also used to stabilize the semigroup associated to a
general abstract linear equation in [5, 13, 31, 36] (see also the references therein for
more details on the existing results in this direction). In [31], some decay estimates
were proved depending on the considered operators provided that g satisfies (1.3),
while in [36], it was proved that the exponential stability still holds even if g has
horizontal inflection points or even flat zones provided that g is equal to a negative
exponential except on a sufficiently small set where g is flat. In [13], the weak
stability was proved for the (much) larger class of g satisfying (H2) below. The
author of [5] proved that the exponential stability does not hold if the following
condition is not satisfied:

∃δ1 ≥ 1, ∃δ2 > 0 : g(t+ s) ≤ δ1e
−δ2tg(s), ∀t ∈ R+, for a.e. s ∈ R+. (1.5)

The stability of Timoshenko systems with a finite history (that is the infinite in-
tegral

∫ +∞
0

in (1.1) is replaced with the finite one
∫ t

0
) have attracted a considerable

attention in the recent years and many authors have proved different decay esti-
mates depending on the relation (1.2) and the growth of the kernel g at infinity (see
for example [11] and the references therein for more details). Using an approach
introduced in [21] for a viscoelastic equation, a general estimate of stability of (1.1)
with finite history and under (1.2) was obtained in [15] for kernels satisfying

g′(s) ≤ −ξ(s)g(s), ∀s ∈ R+, (1.6)

where ξ is a positive and non-increasing function. The decay result in [15] improves
earlier ones in the literature in which only the exponential and polynomial decay
rates are obtained (see [15]). The case where (1.2) does not hold was studied in
[16] for kernels satisfying

g′(s) ≤ −ξ(s)gp(s), ∀s ∈ R+, (1.7)
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where ξ is a positive and non-increasing function and p ≥ 1.
Concerning the stability of abstract equations with a finite history, we mention

the results in [2] (see the references therein for more results), where a general and
sufficient condition under which the energy converges to zero at least as fast as the
kernel at infinity was given by assuming the following condition:

g′(s) ≤ −H(g(s)), ∀s ∈ R+, (1.8)

where H is a non-negative function satisfying some hypotheses. Recently, the as-
ymptotic stability of Timoshenko system with a finite history was considered in [27]
under (1.8) with weaker conditions on H than those imposed in [2]. The general
relation between the decay rate for the energy and that of g obtained in [27] holds
without imposing restrictive assumptions on the behavior of g at infinity.

Condition (1.4) implies that g converges to zero at infinity faster than t−2. For
Timoshenko system with an infinite history, (1.4) is, to our best knowledge, the
weakest condition considered in the literature [28, 29] on the growth of g at infinity.

Our aim in this work is to establish a general decay estimate for the solutions of
systems (1.1) in the case (1.2) as well as in the opposite one, and give applications
to coupled Timoshenko-heat systems (6.1)-(6.4) (see Section 6) and Timoshenko-
thermoelasticity systems of type III (7.1)-(7.2) (see Section 7). We prove that the
stability of these systems holds for kernels g having more general decay (which
can be arbitrary close to t−1), and we obtain general decay results from which the
exponential and polynomial decay results of [8, 28, 29, 30] are only special cases.
In addition, we improve the results of [28, 29] by getting, in some particular cases,
a better decay rate of solutions. The proof is based on the multipliers method
and a new approach introduced by the first author in [13] for a class of abstract
hyperbolic systems with an infinite history.

The paper is organized as follows. In Section 2, we state some hypotheses and
present our stability results for (1.1). The proofs of these stability results for (1.1)
will be given in Sections 3 when (1.2) holds, and in Section 4 when (1.2) does not
hold. In Section 5, we discuss the well-posedness and smoothness of the solution
of (1.1). Our stability results of (6.1) − (6.4) and (7.1) − (7.2) will be given and
proved in Sections 6 and 7, respectively. Finally, we conclude our paper by giving
some general comments in Section 8.

2. Preliminaries

In this section, we state our stability results for problem (1.1). For this purpose,
we start with the following hypotheses:

(H1) g : R+ → R+ is a non-increasing differentiable function such that g(0) > 0
and

l = k2 −
∫ +∞

0

g(s)ds > 0. (2.1)

(H2) There exists an increasing strictly convex function G : R+ → R+ of class
C1(R+) ∩ C2(]0,+∞[) satisfying

G(0) = G′(0) = 0 and lim
t→+∞

G′(t) = +∞

such that∫ +∞

0

g(s)
G−1(−g′(s))

ds+ sup
s∈R+

g(s)
G−1(−g′(s))

< +∞. (2.2)
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Remark 2.1. Hypothesis (H2), which was introduced by the first author in [13],
is weaker than the classical one (1.4) considered in [28, 29]. Indeed, (1.4) implies
(H2) with G(t) = t2p (because (1.4) implies that

∫ +∞
0

√
g(t)dt < +∞; see [29]).

On the other hand, for example, for g(t) = q0(1 + t)−q with q0 > 0 and q ∈]1, 2],
(H2) is satisfied with G(t) = tr for all r > q+1

q−1 , but (1.4) is not satisfied.
In general, any positive function g of class C1(R+) with g′ < 0 satisfies (H2) if

it is integrable on R+. However, it does not satisfy (1.4) if it does not converge to
zero at infinity faster than t−2. Because the integrability of g on R+ is necessary
for the well-posedness of (1.1), then (H2) seems to be very realistic. In addition,
(H2) allows us to improve the results of [28, 29] by getting, in some particular cases,
stronger decay rates (see Examples 2.6–8.5 below).

We consider, as in [28, 29], the classical energy functional associated with (1.1)
as follows:

E(t) =
1
2

∫ L

0

(
ρ1ϕ

2
t +ρ2ψ

2
t +k1(ϕx+ψ)2+

(
k2−

∫ +∞

0

g(s)ds
)
ψ2

x

)
dx+

1
2
g◦ψx, (2.3)

where, for v : R → L2(]0, L[) and φ : R+ → R+,

φ ◦ v =
∫ L

0

∫ +∞

0

φ(s)(v(t)− v(t− s))2 ds dx. (2.4)

Thanks to (2.1), the expression
∫ L

0

(
k1(ϕx +ψ)2 +

(
k2−

∫ +∞
0

g(s)ds
)
ψ2

x

)
dx defines

a norm on
(
H1

0 (]0, L[)
)2, for (ϕ,ψ), equivalent to the one induced by

(
H1(]0, L[)

)2,
where H1

0 (]0, L[) = {v ∈ H1(]0, L[), v(0) = v(L) = 0}.
Here, we define the energy space H (for more details see Section 5) by:

H :=
(
H1

0 (]0, L[)
)2 ×

(
L2(]0, L[)

)2 × Lg

with

Lg = {v : R+ → H1
0 (]0, L[),

∫ L

0

∫ +∞

0

g(s)v2
x(s) ds dx < +∞}.

Now, we give our first main stability result, which concerns the case (1.2).

Theorem 2.2. Assume that (1.2), (H1) and (H2) are satisfied, and let U0 ∈ H
(see Section 5) such that

∃M0 ≥ 0 : ‖η0x(s)‖L2(]0,L[) ≤M0, ∀s > 0. (2.5)

Then there exist positive constants c′, c′′ and ε0 (depending continuously on E(0))
for which E satisfies

E(t) ≤ c′′G−1
1 (c′t), ∀t ∈ R+, (2.6)

where

G1(s) =
∫ 1

s

1
τG′(ε0τ)

dτ (s ∈]0, 1]). (2.7)

Remark 2.3. 1. Because limt→0+ G1(t) = +∞, we have the strong stability of
(1.1); that is,

lim
t→+∞

E(t) = 0. (2.8)

2. The decay rate given by (2.6) is weaker than the exponential decay

E(t) ≤ c′′e−c′t, ∀t ∈ R+. (2.9)

The estimate (2.6) coincides with (2.9) when G = Id.
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Now, we treat the case when (1.2) does not hold.

Theorem 2.4. Assume that (H1) and (H2) are satisfied, and let U0 ∈ D(A) (see
Section 5) such that

∃M0 ≥ 0 : max{‖η0x(s)‖L2(]0,L[), ‖∂sη0x(s)‖L2(]0,L[)} ≤M0, ∀s > 0. (2.10)

Then there exist positive constants C and ε0 (depending continuously on ‖U0‖D(A))
such that

E(t) ≤ G−1
0 (

C

t
), ∀t > 0, (2.11)

where
G0(s) = sG′(ε0s) (s ∈ R+). (2.12)

Remark 2.5. Estimate (2.11) implies (2.8) but it is weaker than

E(t) ≤ C

t
, ∀t > 0, (2.13)

which, in turn, coincides with (2.11) when G = Id. When g satisfies the classical
condition (1.4) with p = 1 (that is g converges exponentially to zero at infinity), it
is well known (see [30]) that (2.9) and (2.13) are satisfied (without the restrictions
(2.5) and (2.10)).

Example 2.6. Let us give two examples to illustrate our general decay estimates
and show how they generalize and improve the ones known in the literature. For
other examples, see [13].

Let g(t) = d
(2+t)(ln(2+t))q for q > 1, and d > 0 small enough so that (2.1) is

satisfied. The classical condition (1.4) is not satisfied, while (H2) holds with

G(t) =
∫ t

0

s1/pe−s−1/p

ds for any p ∈]0, q − 1[.

Indeed, here (2.2) depends only on the growth of G near zero. Using the fact that
G(t) ≤ t

1
p +1e−t−1/p

, we can see that G(t(ln t)rg(t)) ≤ −g′(t), for t near infinity and
for any r ∈]1, q − p[, which implies (2.2). Then (2.6) takes the form

E(t) ≤ C

(ln(t+ 2))p
, ∀t ∈ R+, ∀p ∈]0, q − 1[. (2.14)

Because G0(s) ≥ e−cs−1/p

, for some positive constant c and for s near zero, then
also (2.11) implies (2.14).

2. Let g(t) = de−(ln(2+t))q

, for q > 1, and d > 0 small enough so that (2.1) is
satisfied. Hypothesis (H2) holds with

G(t) =
∫ t

0

(− ln s)1−
1
p e−(− ln s)1/p

ds for t near zero and for any p ∈]1, q[,

since condition (2.2) depends only on the growth of G at zero, and when t goes to
infinity and p ∈]1, q[, G(trg(t)) ≤ −g′(t), for any r > 1. Then (2.6) becomes

E(t) ≤ ce−C(ln(1+t))p

, ∀t ∈ R+, ∀p ∈]1, q[. (2.15)

Condition (2.3) holds also with G(s) = sp, for any p > 1. Then (2.11) gives

E(t) ≤ C

(t+ 1)
1
p

, ∀t ∈ R+, ∀p > 1. (2.16)
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Here, the decay rates of E in (2.15) and (2.16) are arbitrary close to the one of g
and t−1, respectively. This improves the results of [28, 29] in case (1.2), where only
the polynomial decay was obtained.

3. Proof of Theorem 2.2

We will use c (sometimes cτ , which depends on some parameter τ), throughout
this paper, to denote a generic positive constant, which depends continuously on
the initial data and can be different from step to step.

Following the classical energy method (see [1, 3, 8, 15, 28, 29, 30, 31] for example),
we will construct a Lyapunov function F , equivalent to E and satisfying (3.23)
below. For this purpose we establish several lemmas, for all U0 ∈ D(A) satisfying
(2.5), so all the calculations are justified. By a simple density argument (D(A) is
dense in H; see Section 5), (2.6) remains valid, for any U0 ∈ H satisfying (2.5). On
the other hand, if E(t0) = 0, for some t0 ∈ R+, then E(t) = 0, for all t ≥ t0 (E
is non-increasing thanks to (3.1) below) and thus the stability estimates (2.6) and
(2.11) are satisfied. Therefore, without loss of generality, we assume that E(t) > 0,
for all t ∈ R+.

To obtain estimate (3.18) below, we prove Lemmas 3.1-3.10, where the proofs
are inspired from the classical multipliers method used in [1, 3, 7, 8, 15, 18, 19,
20, 21, 28, 29, 30, 31]. Our main contribution in this section is the use of the new
approach of [13] to prove (3.19) below under assumption (H2).

Lemma 3.1. The energy functional E defined by (2.3) satisfies

E′(t) =
1
2
g′ ◦ ψx ≤ 0. (3.1)

Proof. By multiplying the first two equations in (1.1), respectively, by ϕt and ψt,
integrating over ]0, L[, and using the boundary conditions, we obtain (3.1) (note
that g is non-increasing). The estimate (3.1) shows that (1.1) is dissipative, where
the entire dissipation is given by the infinite history. �

Lemma 3.2 ([14]). The following inequalities hold, where g0 =
∫ +∞
0

g(s)ds:(∫ +∞

0

g(s)(ψx(t)− ψx(t− s))ds
)2

≤ g0

∫ +∞

0

g(s)(ψx(t)− ψx(t− s))2ds, (3.2)(∫ +∞

0

g′(s)(ψx(t)− ψx(t− s))ds
)2

≤ −g(0)
∫ +∞

0

g′(s)(ψx(t)− ψx(t− s))2ds.

(3.3)

As in [15, 29], we consider the following case.

Lemma 3.3 ([26, 29]). The functional

I1(t) = −ρ2

∫ L

0

ψt

∫ +∞

0

g(s)(ψ(t)− ψ(t− s)) ds dx (3.4)

satisfies, for any δ > 0,

I ′1(t) ≤ −ρ2

(∫ +∞

0

g(s)ds− δ
) ∫ L

0

ψ2
t dx

+ δ

∫ L

0

(ψ2
x + (ϕx + ψ)2)dx+ cδg ◦ ψx − cδg

′ ◦ ψx.

(3.5)
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As in [29, 30], we consider the following result.

Lemma 3.4 ([3, 26, 29]). The functional

I2(t) = −
∫ L

0

(ρ1ϕϕt + ρ2ψψt)dx

satisfies

I ′2(t) ≤ −
∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx+

∫ L

0

(k1(ϕx + ψ)2 + cψ2
x)dx+ cg ◦ ψx. (3.6)

Similarly to [3], we consider the following result.

Lemma 3.5. The functional

I3(t) = ρ2

∫ L

0

ψt(ϕx+ψ)dx+
k2ρ1

k1

∫ L

0

ψxϕtdx−
ρ1

k1

∫ L

0

ϕt

∫ +∞

0

g(s)ψx(t−s) ds dx

satisfies, for any ε > 0,

I ′3(t) ≤
1
2ε

(
k2ψx(L, t)−

∫ +∞

0

g(s)ψx(L, t− s)ds
)2

+
1
2ε

(
k2ψx(0, t)−

∫ +∞

0

g(s)ψx(0, t− s)ds
)2

+
ε

2
(ϕ2

x(L, t) + ϕ2
x(0, t))− k1

∫ L

0

(ϕx + ψ)2dx+ ρ2

∫ L

0

ψ2
t dx

+ ε

∫ L

0

ϕ2
tdx− cεg

′ ◦ ψx + (
k2ρ1

k1
− ρ2)

∫ L

0

ϕtψxtdx.

(3.7)

Proof. Using the equations in (1.1) and arguing as before, we have

I ′3(t) = ρ2

∫ L

0

(ϕxt + ψt)ψtdx+
k2ρ1

k1

∫ L

0

ψxtϕtdx

+
∫ L

0

(ϕx + ψ)
(
k2ψxx −

∫ +∞

0

g(s)ψxx(t− s)ds− k1(ϕx + ψ)
)
dx

+ k2

∫ L

0

ψx(ϕx + ψ)xdx−
∫ L

0

(ϕx + ψ)x

(∫ +∞

0

g(s)ψx(t− s)ds
)
dx

− ρ1

k1

∫ L

0

ϕt

(
g(0)ψx +

∫ +∞

0

g′(s)ψx(t− s)ds
)
dx

= −k1

∫ L

0

(ϕx + ψ)2dx+ ρ2

∫ L

0

ψ2
t dx+ (

k2ρ1

k1
− ρ2)

∫ L

0

ϕtψxtdx

+
[(
k2ψx −

∫ +∞

0

g(s)ψx(t− s)ds
)
(ϕx + ψ)

]x=L

x=0

+
ρ1

k1

∫ L

0

ϕt

∫ +∞

0

g′(s)(ψx(t)− ψx(t− s)) ds dx.

By using (3.3) and Young’s inequality (for the last three terms of this equality),
(3.7) is established. �

To estimate the boundary terms in (3.7), we proceed as in [3].
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Lemma 3.6 ([3]). Let m(x) = 2− 4
Lx. Then, for any ε > 0, the functionals

I4 = ρ2

∫ L

0

m(x)ψt

(
k2ψx −

∫ +∞

0

g(s)ψx(t− s)ds
)
dx,

I5 = ρ1

∫ L

0

m(x)ϕtϕxdx

satisfy

I ′4(t) ≤ −
(
k2ψx(L, t)−

∫ +∞

0

g(s)ψx(L, t− s)ds
)2

−
(
k2ψx(0, t)−

∫ +∞

0

g(s)ψx(0, t− s)ds
)2

+ εk1

∫ L

0

(ϕx + ψ)2dx

+ c(1 +
1
ε
)
∫ L

0

ψ2
xdx+ cεg ◦ ψx + c

∫ L

0

ψ2
t dx− cg′ ◦ ψx

(3.8)

and

I ′5(t) ≤ −k1(ϕ2
x(L, t) + ϕ2

x(0, t)) + c

∫ L

0

(ϕ2
t + ϕ2

x + ψ2
x)dx. (3.9)

Lemma 3.7. For any ε ∈]0, 1[, the functional

I6(t) = I3(t) +
1
2ε
I4(t) +

ε

2k1
I5(t)

satisfies

I ′6(t) ≤ −(
k1

2
− cε)

∫ L

0

(ϕx + ψ)2dx+ cε

∫ L

0

ϕ2
tdx+

c

ε

∫ L

0

ψ2
t dx

+
c

ε2

∫ L

0

ψ2
xdx+ cε(g ◦ ψx − g′ ◦ ψx) + (

ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx.

(3.10)

Proof. By using Poincaré’s inequality for ψ, we have∫ L

0

ϕ2
xdx ≤ 2

∫ L

0

(ϕx + ψ)2dx+ 2
∫ L

0

ψ2dx.

Then (3.7)-(3.9) imply (3.10). �

Lemma 3.8. The functional I7(t) = I6(t) + 1
8I2(t) satisfies

I ′7(t) ≤ −k1

4

∫ L

0

(ϕx + ψ)2dx− ρ1

16

∫ L

0

ϕ2
tdx+ c

∫ L

0

(ψ2
t + ψ2

x)dx

+ c(g ◦ ψx − g′ ◦ ψx) + (
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx.

(3.11)

Proof. Inequalities (3.10) (with ε ∈]0, 1[ small enough) and (3.6) imply (3.11). �

Now, as in [3], we use a function w to get a crucial estimate.

Lemma 3.9. The function

w(x, t) = −
∫ x

0

ψ(y, t)dy +
1
L

(∫ L

0

ψ(y, t)dy
)
x (3.12)
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satisfies the estimates ∫ L

0

w2
xdx ≤ c

∫ L

0

ψ2dx, ∀t ≥ 0, (3.13)∫ L

0

w2
t dx ≤ c

∫ L

0

ψ2
t dx, ∀t ≥ 0. (3.14)

Proof. We just have to calculate wx and use Hölder’s inequality to get (3.13).
Applying (3.13) to wt, we obtain∫ L

0

w2
xtdx ≤ c

∫ L

0

ψ2
t dx, ∀t ≥ 0.

Then, using Poincaré’s inequality for wt (note that wt(0, t) = wt(L, t) = 0), we
arrive at (3.14). �

Lemma 3.10 ([3, 29]). For any ε ∈]0, 1[, the functional

I8(t) =
∫ L

0

(ρ2ψψt + ρ1wϕt)dx

satisfies

I ′8(t) ≤ − l

2

∫ L

0

ψ2
xdx+

c

ε

∫ L

0

ψ2
t dx+ ε

∫ L

0

ϕ2
tdx+ cg ◦ ψx, (3.15)

where l is defined by (2.1).

Now, for N1, N2, N3 > 0, let

I9(t) = N1E(t) +N2I1(t) +N3I8(t) + I7(t). (3.16)

By combining (3.1), (3.5), (3.11) and (3.15), taking δ = k1
8N2

in (3.5) and noting

that g0 =
∫ +∞
0

g(s)ds < +∞ (thanks to (H1)), we obtain

I ′9(t) ≤ −(
lN3

2
− c)

∫ L

0

ψ2
xdx− (

ρ1

16
− εN3)

∫ L

0

ϕ2
tdx

−
∫ L

0

(
N2ρ2g0 −

cN3

ε
− c

)
ψ2

t dx−
k1

8

∫ L

0

(ϕx + ψ)2dx

+ cN2,N3g ◦ ψx + (
N1

2
− cN2)g

′ ◦ ψx + (
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx.

(3.17)

At this point, we choose N3 large enough so that lN3
2 −c > 0, then ε ∈]0, 1[ small

enough so that ρ1
16 − εN3 > 0. Next, we pick N2 large enough so that N2ρ2g0 −

cN3
ε − c > 0.
On the other hand, by definition of the functionals I1 − I8 and E, there exists a

positive constant β satisfying |N2I1 +N3I8 + I7| ≤ βE, which implies that

(N1 − β)E ≤ I9 ≤ (N1 + β)E,

then we choose N1 large enough so that N1
2 − cN2 ≥ 0 and N1 > β (that is I9 ∼ E).

Consequently, using the definition (2.3) of E, from (3.17) we obtain

I ′9(t) ≤ −cE(t) + cg ◦ ψx + (
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx. (3.18)

Now, we estimate the term g ◦ψx in (3.18) in function of E′ by exploiting (H2).
This is the main difficulty in treating the infinite history term.
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Lemma 3.11. For any ε0 > 0, the following inequality holds:

G′(ε0E(t))g ◦ ψx ≤ −cE′(t) + cε0E(t)G′(ε0E(t)). (3.19)

Proof. This lemma was proved by the first author (see [13, Lemma 3.4]) for an
abstract system with infinite history. The proof is based on some classical proper-
ties of convex functions (see [4, 7] for example), in particular, the general Young
inequality. Let us give a short proof of (3.19) in the particular case (1.1) (see [13]
for details).

Because E is non-increasing, then (η0 is defined in Section 5)∫ L

0

(ψx(t)− ψx(t− s))2dx ≤ 4 sup
τ∈R

∫ L

0

ψ2
x(τ)dx

≤ 4 sup
τ>0

∫ L

0

ψ2
0x(τ)dx+ cE(0)

≤ c sup
τ>0

∫ L

0

η2
0x(τ)dx+ cE(0).

Thus, thanks to (2.5), there exists a positive constant m1 = c(M2
0 + E(0)) (where

M0 is defined in (2.5)) such that∫ L

0

(ψx(t)− ψx(t− s))2dx ≤ m1, ∀t, s ∈ R+.

Let ε0, τ1, τ2 > 0 and K(s) = s/G−1(s) which is non-decreasing. Then,

K
(
−τ2g′(s)

∫ L

0

(ψx(t)− ψx(t− s))2dx
)
≤ K(−m1τ2g

′(s)).

Using this inequality, we arrive at

g ◦ ψx =
1

τ1G′(ε0E(t))

∫ +∞

0

G−1
(
−τ2g′(s)

∫ L

0

(ψx(t)− ψx(t− s))2dx
)

× τ1G
′(ε0E(t))g(s)
−τ2g′(s)

K
(
−τ2g′(s)

∫ L

0

(ψx(t)− ψx(t− s))2dx
)
ds

≤ 1
τ1G′(ε0E(t))

∫ +∞

0

G−1
(
−τ2g′(s)

∫ L

0

(ψx(t)− ψx(t− s))2dx
)

× τ1G
′(ε0E(t))g(s)
−τ2g′(s)

K(−m1τ2g
′(s))ds

≤ 1
τ1G′(ε0E(t))

∫ +∞

0

G−1
(
−τ2g′(s)

∫ L

0

(ψx(t)− ψx(t− s))2dx
)

× m1τ1G
′(ε0E(t))g(s)

G−1(−m1τ2g′(s))
ds.

We denote by G∗ the dual function of G defined by

G∗(t) = sup
s∈R+

{ts−G(s)} = tG′
−1(t)−G(G′−1(t)), ∀t ∈ R+.

Using Young’s inequality: t1t2 ≤ G(t1) +G∗(t2), for

t1 = G−1
(
−τ2g′(s)

∫ L

0

(ψx(t)− ψx(t− s))2dx
)
, t2 =

m1τ1G
′(ε0E(t))g(s)

G−1(−m1τ2g′(s))
,
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we obtain

g ◦ ψx ≤
−τ2

τ1G′(ε0E(t))
g′ ◦ ψx +

1
τ1G′(ε0E(t))

∫ +∞

0

G∗
(m1τ1G

′(ε0E(t))g(s)
G−1(−m1τ2g′(s))

)
ds.

Using (3.1) and the fact that G∗(t) ≤ tG′
−1(t), we obtain

g ◦ ψx ≤
−2τ2

τ1G′(ε0E(t))
E′(t)

+m1

∫ +∞

0

g(s)
G−1(−m1τ2g′(s))

G′
−1

(m1τ1G
′(ε0E(t))g(s)

G−1(−m1τ2g′(s))

)
ds.

Thanks to (2.2), sups∈R+

g(s)
G−1(−g′(s)) = m2 < +∞. Then, using the fact that G′−1

is non-decreasing (thanks to (H2)) and choosing τ2 = 1/m1, we obtain

g◦ψx ≤
−2

m1τ1G′(ε0E(t))
E′(t)+m1G

′−1
(
m1m2τ1G

′(ε0E(t))
) ∫ ∞

0

g(s)
G−1(−g′(s))

ds.

Now, choosing τ1 = 1
m1m2

and using the fact that
∫ +∞
0

g(s)
G−1(−g′(s))ds = m3 < +∞

(thanks to (2.2)), we obtain

g ◦ ψx ≤
−c

G′(ε0E(t))
E′(t) + cε0E(t),

which implies (3.19) with c = max{2m2,m1m3}. �

Now, going back to the proof of Theorem 2.2, multiplying (3.18) by G′(ε0E(t))
and using (3.19), we obtain

G′(ε0E(t))I ′9(t) ≤ −(c− cε0)E(t)G′(ε0E(t))− cE′(t)

+ (
ρ1k2

k1
− ρ2)G′(ε0E(t))

∫ L

0

ϕtψxtdx.

Choosing ε0 small enough, we obtain

G′(ε0E(t))I ′9(t) + cE′(t) ≤ −cE(t)G′(ε0E(t))

+ (
ρ1k2

k1
− ρ2)G′(ε0E(t))

∫ L

0

ϕtψxtdx.
(3.20)

Let
F = τ

(
G′(ε0E)I9 + cE

)
,

where τ > 0. We have F ∼ E (because I9 ∼ E and G′(ε0E) is non-increasing) and,
using (3.20),

F ′(t) ≤ −cτE(t)G′(ε0E(t)) + τ(
ρ1k2

k1
− ρ2)G′(ε0E(t))

∫ L

0

ϕtψxtdx. (3.21)

Now, thanks to (1.2), the last term of (3.21) vanishes. Then, for τ > 0 small enough
such that

F ≤ E and F (0) ≤ 1, (3.22)
we obtain, for c′ = cτ > 0,

F ′ ≤ −c′FG′(ε0F ). (3.23)
This implies that (G1(F ))′ ≥ c′, where G1 is defined by (2.7). Then, by integrating
over [0, t], we obtain

G1(F (t)) ≥ c′t+G1(F (0)).



EJDE-2012/193 STABILIZATION OF A LINEAR TIMOSHENKO SYSTEM 13

Because F (0) ≤ 1, G1(1) = 0 and G1 is decreasing, we obtain G1(F (t)) ≥ c′t, which
implies that F (t) ≤ G−1

1 (c′t). The fact that F ∼ E gives (2.6). This completes the
proof of Theorem 2.2.

4. Proof of Theorem 2.4

In this section, we treat the case when (1.2) does not hold, which is more realistic
from the physics point of view. We will estimate the last term of (3.21) using the
following system resulting from differentiating (1.1) with respect to time,

ρ1ϕttt − k1(ϕxt + ψt)x = 0,

ρ2ψttt − k2ψxxt + k1(ϕxt + ψt) +
∫ +∞

0

g(s)ψxxt(t− s)ds = 0,

ϕt(0, t) = ψt(0, t) = ϕt(L, t) = ψt(L, t) = 0.

(4.1)

System (4.1) is well posed for initial data U0 ∈ D(A) (see Section 5). Let Ẽ be
the second-order energy (the energy of (4.1)) defined by Ẽ(t) = E(Ut(t)), where
E(U(t)) = E(t) and E is defined by (2.3). A simple calculation (as in (3.1)) implies
that

Ẽ′(t) =
1
2
g′ ◦ ψxt ≤ 0. (4.2)

The energy of high order is widely used in the literature to estimate some terms
(see [1, 12, 30, 31] for example). Our main contribution in this section is obtaining
estimate (4.6) below under (H2). Now, we proceed as in [30] to establish the
following lemma.

Lemma 4.1. For any ε > 0, we have

(
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx ≤ εE(t) + cε(g ◦ ψxt − g′ ◦ ψx). (4.3)

Proof. By recalling that g0 =
∫ +∞
0

g(s)ds, we have

(
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx =
ρ1k2
k1

− ρ2

g0

∫ L

0

ϕt

∫ +∞

0

g(s)(ψxt(t)− ψxt(t− s)) ds dx

+
ρ1k2
k1

− ρ2

g0

∫ L

0

ϕt

∫ +∞

0

g(s)ψxt(t− s) ds dx.

(4.4)
Using Young’s inequality and (3.2) (for ψxt instead of ψx), we obtain, for all ε > 0,

ρ1k2
k1

− ρ2

g0

∫ L

0

ϕt

∫ +∞

0

g(s)(ψxt(t)− ψxt(t− s)) ds dx

≤ c

∫ L

0

|ϕt|
∫ +∞

0

g(s)|ψxt(t)− ψxt(t− s)| ds dx

≤ ε

2
E(t) + cεg ◦ ψxt.

On the other hand, by integrating by parts and using (3.3), we obtain
ρ1k2
k1

− ρ2

g0

∫ L

0

ϕt

∫ +∞

0

g(s)ψxt(t− s) ds dx



14 A. GUESMIA, S. A. MESSAOUDI, A. SOUFYANE EJDE-2012/193

=
ρ1k2
k1

− ρ2

g0

∫ L

0

ϕt

(
g(0)ψx +

∫ +∞

0

g′(s)ψx(t− s)ds
)
dx

=
ρ1k2
k1

− ρ2

g0

∫ L

0

ϕt

∫ +∞

0

(−g′(s))(ψx(t)− ψx(t− s)) ds dx

≤ ε

2
E(t)− cεg

′ ◦ ψx.

Inserting these last two inequalities into (4.4), we obtain (4.3). �

Now, going back to the proof of Theorem 2.4, choosing τ = 1 in (3), using (3.21)
and (4.3) and choosing ε small enough, we obtain

F ′(t) ≤ −cE(t)G′(ε0E(t)) + cG′(ε0E(t))(g ◦ ψxt − g′ ◦ ψx),

which implies, using (3.1) and the fact that G′(ε0E) is non-increasing,

E(t)G′(ε0E(t)) ≤ −cG′(ε0E(0))E′(t)− cF ′(t) + cG′(ε0E(t))g ◦ ψxt. (4.5)

Now, we estimate the last term in (4.5). Similarly to the case of g ◦ ψx in Lemma
3.11 (for g ◦ ψxt instead of g ◦ ψx), we obtain, using (2.10) and (4.2),

G′(ε0E(t))g ◦ ψxt ≤ −cẼ′(t) + cε0E(t)G′(ε0E(t)), ∀ε0 > 0. (4.6)

Then (4.5) and (4.6) with ε0 chosen small enough imply that

E(t)G′(ε0E(t)) ≤ −cG′(ε0E(0))E′(t)− cF ′(t)− cẼ′(t). (4.7)

Using the fact that F ∼ E and EG′(ε0E) is non-increasing, we deduce that, for all
T ∈ R+ (G0 is defined by (2.12)),

G0(E(T ))T ≤
∫ T

0

G0(E(t))dt ≤ c(G′(ε0E(0)) + 1)E(0) + cẼ(0), (4.8)

which gives (2.11) with C = c(G′(ε0E(0)) + 1)E(0) + cẼ(0). This completes the
proof of Theorem 2.4.

5. Well-Posedness and Smoothness

In this section, we discuss the existence, uniqueness and smoothness of solution
of (1.1) under hypothesis (H1). We use the semigroup theory and some arguments
of [6] (see also [29, 30]). Following the idea of [6], let

η(x, t, s) = ψ(x, t)− ψ(x, t− s) for (x, t, s) ∈]0, L[×R+ × R+ (5.1)

(η is the relative history of ψ, and it was introduced first in [6]). This function
satisfies the initial conditions

η(0, t, s) = η(L, t, s) = 0, in R+ × R+, η(x, t, 0) = 0, in ]0, L[×R+ (5.2)

and the equation
ηt + ηs − ψt = 0, in ]0, L[×R+ × R+. (5.3)

Then the second equation of (1.1) can be formulated as

ρ2ψtt − k2ψxx +
(∫ +∞

0

g(s)ds
)
ψxx −

∫ +∞

0

g(s)ηxxds+ k1(ϕx + ψ) = 0.

Let η0(x, s) = η(x, 0, s) = ψ0(x, 0) − ψ0(x, s) for (x, s) ∈]0, L[×R+. This means
that the history is considered as an initial data for η. Let

H =
(
H1

0 (]0, L[)
)2 ×

(
L2(]0, L[)

)2 × Lg (5.4)
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with

Lg = {v : R+ → H1
0 (]0, L[),

∫ L

0

∫ +∞

0

g(s)v2
x(s) ds dx < +∞}. (5.5)

The set Lg is a Hilbert space endowed with the inner product

〈v, w〉Lg =
∫ L

0

∫ +∞

0

g(s)vx(s)wx(s) ds dx. (5.6)

Then H is also a Hilbert space endowed with the inner product defined, for V =
(v1, v2, v3, v4, v5)T , W = (w1, w2, w3, w4, w5)T ∈ H, by

〈V,W 〉H =
∫ L

0

((
k2 −

∫ +∞

0

g(s)ds
)
∂xv2∂xw2 + ρ1v3w3 + ρ2v4w4

)
dx

+ 〈v5, w5〉Lg
+ k1

∫ L

0

(∂xv1 + v2)(∂xw1 + w2)dx.

(5.7)

Now, for U = (ϕ,ψ, ϕt, ψt, η)T and U0 = (ϕ0, ψ0(·, 0), ϕ1, ψ1, η0)T , (1.1) is equiva-
lent to the abstract linear first order Cauchy problem

Ut(t) +AU(t) = 0 on R+,

U(0) = U0,
(5.8)

where A is the linear operator defined by AV = (f1, f2, f3, f4, f5), for any V =
(v1, v2, v3, v4, v5)T ∈ D(A), where

f1 = −v3, f2 = −v4, f3 = −k1

ρ1
∂x(∂xv1 + v2),

f4 = − 1
ρ2

(
k2 −

∫ +∞

0

g(s)ds
)
∂xxv2 −

1
ρ2

∫ +∞

0

g(s)∂xxv5(s)ds+
k1

ρ2
(∂xv1 + v2),

f5 = −v4 + ∂sv5.

The domain D(A) of A given by D(A) = {V ∈ H, AV ∈ H and v5(0) = 0} and
endowed with the graph norm

‖V ‖D(A) = ‖V ‖H + ‖AV ‖H (5.9)

can be characterized by

D(A) =
{
V = (v1, v2, v3, v4, v5)T ∈

(
H2(]0, L[) ∩H1

0 (]0, L[)
)
×

(
H1

0 (]0, L[)
)3 × Lg,(

k2 −
∫ +∞

0

g(s)ds
)
∂xxv2 +

∫ +∞

0

g(s)∂xxv5(s)ds ∈ L2(]0, L[)
}

and it is dense in H (see also [30, 31] and the reference therein), where

Lg = {v ∈ Lg, ∂sv ∈ Lg, v(x, 0) = 0}. (5.10)

Now, we prove that A : D(A) → H is a maximal monotone operator; that is −A is
dissipative and Id + A is surjective. Indeed, a simple calculation implies that, for
any V = (v1, v2, v3, v4, v5)T ∈ D(A),

〈AV, V 〉H = −1
2

∫ L

0

∫ +∞

0

g′(s)(∂xv5(s))2 ds dx ≥ 0, (5.11)

since g is non-increasing. This implies that −A is dissipative.
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On the other hand, we prove that Id + A is surjective; that is, for any F =
(f1, f2, f3, f4, f5)T ∈ H, there exists V = (v1, v2, v3, v4, v5)T ∈ D(A) satisfying

(Id+A)V = F. (5.12)

The first two equations of system (5.12) are equivalent to

v1 = v3 + f1 and v2 = v4 + f2. (5.13)

The last equation of system (5.12) is equivalent to

v5 + ∂sv5 = v4 + f5,

then, by integrating with respect to s and noting that v5(0) = 0, we obtain

v5(s) =
(∫ s

0

(v4 + f5(τ))eτdτ
)
e−s. (5.14)

Now, we look for (v3, v4) ∈
(
H1

0 (]0, L[)
)2. To simplify the formulations, we put

H1 =
(
H1

0 (]0, L[)
)2 and H2 =

(
L2(]0, L[)

)2 endowed with the inner products

〈(z1, z2)T , (w1, w2)T 〉H1 =
∫ L

0

(
k2 −

∫ +∞

0

e−sg(s)ds
)
∂xz2∂xw2dx

+ k1

∫ L

0

(∂xz1 + z2)(∂xw1 + w2)dx

(5.15)

and

〈(z1, z2)T , (w1, w2)T 〉H2 =
∫ L

0

(ρ1z1w1 + ρ2z2w2)dx. (5.16)

Thanks to (2.1) and Poincaré’s inequality, 〈, 〉H1 defines a norm on H1 equivalent

to the norm induced by
(
H1(]0, L[)

)2

. On the other hand, the inclusion H1 ⊂ H2

is dense and compact.
Now, inserting (5.13) and (5.14) into the third and the fourth equations of system

(5.12), multiplying them, respectively, by ρ1w3 and ρ2w4, where (w3, w4)T ∈ H1,
and then integrating their sum over ]0, L[, we obtain, for all (w3, w4)T ∈ H1,

〈(v3, v4)T , (w3, w4)T 〉H2 + 〈(v3, v4)T , (w3, w4)T 〉H1

= 〈(f3, f4)T , (w3, w4)T 〉H2 − 〈(f1, f2)T , (w3, w4)T 〉H1

+
(∫ +∞

0

(1− e−s)g(s)ds
) ∫ L

0

∂xf2∂xw4dx

−
∫ L

0

∂x

(∫ +∞

0

e−sg(s)
(∫ s

0

f5(τ)eτdτ
)
ds

)
∂xw4dx.

(5.17)

We have just to prove that (5.17) has a solution (v3, v4)T ∈ H1, and then, using
(5.13), (5.14) and regularity arguments, we find (5.12). Following the method in
[18, page 95], let H′

1 be the dual space of H1 and A1 : H1 → H′
1 be the duality

mapping. We consider the map B1 : H1 → H′
1 defined by

〈B1(z1, z2)T , (w1, w2)T 〉H′
1,H1 =

∫ L

0

∂xz2∂xw2dx.

We identify H2 with its dual space H′
2 and we set

f̃5 =
(∫ +∞

0

(1− e−s)g(s)ds
)
f2 −

∫ +∞

0

e−sg(s)
(∫ s

0

f5(τ)eτdτ
)
ds.
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We have B1(0, f̃5)T ∈ H′
1 and (5.17) becomes

〈(Id+A1)(v3, v4)T , (w3, w4)T 〉H′
1,H1

= 〈(f3, f4)T −A1(f1, f2)T +B1(0, f̃5)T , (w3, w4)T 〉H′
1,H1 ,

(5.18)

for all (w3, w4)T ∈ H1. Let

(f̃1, f̃2)T = (f3, f4)T −A1(f1, f2)T +B1(0, f̃5)T .

Because H2 = H′
2 ⊂ H′

1, then (f̃1, f̃2)T ∈ H′
1. Therefore, (5.18) is well-defined and

equivalent to

(Id+A1)(v3, v4)T = (f̃1, f̃2)T . (5.19)

It is sufficient to show that (5.19) has a solution (v3, v4)T ∈ H1. Let Γ : H1 → R
defined by

Γ((z1, z2)T ) =
1
2
‖(z1, z2)T ‖2

H2
+

1
2
‖(z1, z2)T ‖2

H1
−〈(f̃1, f̃2)T , (z1, z2)T 〉H′

1,H1 . (5.20)

The map Γ is well-defined and differentiable such that

Γ′((z1, z2)T )(w1, w2)T

= 〈(Id+A1)(z1, z2)T − (f̃1, f̃2)T , (w1, w2)T 〉H′
1,H1 ,

(5.21)

for all (z1, z2)T , (w1, w2)T ∈ H1.
On the other hand, using Cauchy-Schwarz inequality to minimize the last term

in (5.20), we have

Γ((z1, z2)T ) ≥
(1

2
‖(z1, z2)T ‖H1 − ‖(f̃1, f̃2)T ‖H′

1

)
‖(z1, z2)T ‖H1 . (5.22)

This implies that Γ goes to infinity when ‖(z1, z2)T ‖H1 goes to infinity, and there-
fore, Γ reaches its minimum at some point (v3, v4)T ∈ H1. This point satisfies
Γ′((v3, v4)T ) = 0, which solves (5.19) thanks to (5.21) with the choice (z1, z2)T =
(v3, v4)T .

Finally, using Lummer-Phillips theorem (see [37]), we deduce that A is an in-
finitesimal generator of a contraction semigroup in H, which implies the following
results of existence, uniqueness and smoothness of the solution of (1.1) (see [18, 37]).

Theorem 5.1. Assume that (H1) is satisfied.
1. For any U0 ∈ H, (1.1) has a unique weak solution

U ∈ C(R+;H). (5.23)

2. If U0 ∈ D(An) for n ∈ N∗, then the solution U has the regularity

U ∈ ∩n
j=0C

n−j(R+;D(Aj)), (5.24)

where D(Aj) is endowed with the graph norm ‖V ‖D(Aj) =
∑j

m=0 ‖AmV ‖H.
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6. Timoshenko-heat: Fourier’s and Cattaneo’s laws

In this section, we give applications of our results of Section 2 to the case of
coupled Timoshenko-heat systems on ]0, L[ under Fourier’s law of heat conduction
and with an infinite history acting on the second equation:

ρ1ϕtt − k1(ϕx + ψ)x = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) + k4θx +
∫ +∞

0

g(s)ψxx(x, t− s)ds = 0,

ρ3θt − k3θxx + k4ψxt = 0,

ϕ(0, t) = ψ(0, t) = θ(0, t) = ϕ(L, t) = ψ(L, t) = θ(L, t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x), θ(x, 0) = θ0(x)

(6.1)

and with an infinite history acting on the first equation:

ρ1ϕtt − k1(ϕx + ψ)x +
∫ +∞

0

g(s)ϕxx(x, t− s)ds = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) + k4θx = 0,
ρ3θt − k3θxx + k4ψxt = 0,

ϕ(0, t) = ψ(0, t) = θx(0, t) = ϕ(L, t) = ψ(L, t) = θx(L, t) = 0,

ϕ(x,−t) = ϕ0(x, t), ϕt(x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), θ(x, 0) = θ0(x).

(6.2)

We also consider systems under Cattaneo’s law and with an infinite history acting
on the first equation:

ρ1ϕtt − k1(ϕx + ψ)x +
∫ +∞

0

g(s)ϕxx(x, t− s)ds = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) + k4θx = 0,
ρ3θt + k3qx + k4ψxt = 0,
ρ4qt + k5q + k3θx = 0,

ϕ(0, t) = ψ(0, t) = q(0, t) = ϕ(L, t) = ψ(L, t) = q(L, t) = 0,

ϕ(x,−t) = ϕ0(x, t), ϕt(x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), θ(x, 0) = θ0(x), q(x, 0) = q0(x),

(6.3)

and with an infinite history acting on the second equation:

ρ1ϕtt − k1(ϕx + ψ)x = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) + k4θx +
∫ +∞

0

g(s)ψxx(x, t− s)ds = 0,

ρ3θt + k3qx + k4ψxt = 0,
ρ4qt + k5q + k3θx = 0,

ϕ(0, t) = ψ(0, t) = q(0, t) = ϕ(L, t) = ψ(L, t) = q(L, t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x), θ(x, 0) = θ0(x), q(x, 0) = q0(x),

(6.4)
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where ρi and ki are also positive constants, and θ and q denote, respectively, the
temperature difference and the heat flux vector. Systems (6.3) and (6.4) (Cattaneo
law), with ρ4 = 0, implies, respectively, (6.2) and (6.1) (Fourier’s law).

6.1. Well-posedness. We start our analysis by showing without details, using
the semigroup theory (as for (1.1) in Section 5), how to prove that (6.1)–(6.4) are
well-posed under the following hypothesis:

(H3) g : R+ → R+ is a non-increasing differentiable function satisfying g(0) > 0
such that (2.1) holds in case (6.1) and (6.4), and∫ +∞

0

g(s)ds <
k1k2

k2 + k0k1
(6.5)

in case (6.2) and (6.3), where k0 is the smallest positive constant satisfying,
for all v ∈ H1

0 (]0, L[) (Poincaré’s inequality),∫ L

0

v2dx ≤ k0

∫ L

0

v2
xdx. (6.6)

Remark 6.1. Thanks to Poincaré’s inequality (applied for ψ), we have

k1

∫ L

0

(ϕx + ψ)2dx ≥ k1(1− ε)
∫ L

0

ϕ2
xdx+ k0k1(1−

1
ε
)
∫ L

0

ψ2
xdx,

for any 0 < ε < 1. Then, thanks to (6.5), we can choose

k0k1

k2 + k0k1
< ε <

1
k1

(
k1 −

∫ +∞

0

g(s)ds
)

and we obtain

ĉ

∫ L

0

(ϕ2
x + ψ2

x)dx ≤
∫ L

0

(
−

(∫ +∞

0

g(s)ds
)
ϕ2

x + k2ψ
2
x + k1(ϕx + ψ)2

)
dx,

where ĉ = min{k1(1− ε)−
∫ +∞
0

g(s)ds, k2 + k0k1(1− 1
ε )} > 0. Thus,∫ L

0

(
−

(∫ +∞

0

g(s)ds
)
ϕ2

x + k2ψ
2
x + k1(ϕx + ψ)2

)
dx

defines a norm on
(
H1

0 (]0, L[)
)2, for (ϕ,ψ), equivalent to the one induced by(

H1(]0, L[)
)2.

Now, following the idea of [6], let, as in Section 5, η be the relative history of ψ
in cases of (6.1) and (6.4), and of ϕ in cases of (6.2) and (6.3), defined by

η(x, t, s) =

{
ψ(x, t)− ψ(x, t− s), in cases (6.1) and (6.4)
ϕ(x, t)− ϕ(x, t− s), in cases (6.2) and (6.3),

for (x, t, s) ∈]0, L[×R+ × R+. This function satisfies (5.2) and (5.3) in case (6.1)
and (6.4), and satisfies (5.2) and

ηt + ηs − ϕt = 0, in ]0, L[×R+ × R+

in case (6.2) and (6.3). Then the second equation of (6.1) and (6.4), and the first
one of (6.2) and (6.3) can be formulated, respectively, as

ρ2ψtt −
(
k2 −

∫ +∞

0

g(s)ds
)
ψxx −

∫ +∞

0

g(s)ηxxds+ k1(ϕx + ψ) + k4θx = 0
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and

ρ1ϕtt − k1(ϕx + ψ)x +
(∫ +∞

0

g(s)ds
)
ϕxx −

∫ +∞

0

g(s)ηxxds = 0.

Let

H =


(
H1

0 (]0, L[)
)2 ×

(
L2(]0, L[)

)3 × Lg, for (6.1)(
H1

0 (]0, L[)
)2 ×

(
L2(]0, L[)

)2 × L2
∗(]0, L[)× Lg, for (6.2)(

H1
0 (]0, L[)

)2 ×
(
L2(]0, L[)

)2 × L2
∗(]0, L[)× L2(]0, L[)× Lg, for (6.3)-(6.4),

where L2
∗(]0, L[) = {v ∈ L2(]0, L[),

∫ L

0
v(x)dx = 0} and Lg is defined by (5.5)

and endowed with the inner product (5.6). Then, thanks to (2.1) and (6.5) (see
Remark 6.1), H is also a Hilbert space endowed with the inner product defined, for
V,W ∈ H, by

〈V,W 〉H = 〈v6, w6〉Lg
+ k1

∫ L

0

(∂xv1 + v2)(∂xw1 + w2)dx

+
∫ L

0

((
k2 −

∫ +∞

0

g(s)ds
)
∂xv2∂xw2 + ρ1v3w3 + ρ2v4w4 + ρ3v5w5

)
dx

in case (6.1),

〈V,W 〉H = 〈v6, w6〉Lg +
∫ L

0

(
k1(∂xv1 + v2)(∂xw1 + w2) + k2∂xv2∂xw2

)
dx

+
∫ L

0

(
−

(∫ +∞

0

g(s)ds
)
∂xv1∂xw1 + ρ1v3w3 + ρ2v4w4 + ρ3v5w5

)
dx

in case (6.2),

〈V,W 〉H

= 〈v7, w7〉Lg
+

∫ L

0

(
k1(∂xv1 + v2)(∂xw1 + w2) + k2∂xv2∂xw2

)
dx

+
∫ L

0

(
−

(∫ +∞

0

g(s)ds
)
∂xv1∂xw1 + ρ1v3w3 + ρ2v4w4 + ρ3v5w5 + ρ4v6w6

)
dx

in case (6.3), and

〈V,W 〉H = 〈v7, w7〉Lg + k1

∫ L

0

(∂xv1 + v2)(∂xw1 + w2)dx

+
∫ L

0

((
k2 −

∫ +∞

0

g(s)ds
)
∂xv2∂xw2 + ρ1v3w3

+ ρ2v4w4 + ρ3v5w5 + ρ4v6w6

)
dx

in case (6.4). Now, let η0(x, s) = η(x, 0, s),

U0 =


(ϕ0, ψ0(·, 0), ϕ1, ψ1, θ0, η0)T , in case (6.1)
(ϕ0(·, 0), ψ0, ϕ1, ψ1, θ0, η0)T , in case (6.2)
(ϕ0(·, 0), ψ0, ϕ1, ψ1, θ0, q0, η0)T , in case (6.3)
(ϕ0, ψ0(·, 0), ϕ1, ψ1, θ0, q0, η0)T , in case (6.4)
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and

U =

{
(ϕ,ψ, ϕt, ψt, θ, η)T , in cases (6.1) and (6.2)
(ϕ,ψ, ϕt, ψt, θ, q, η)T , in cases (6.3) and (6.4)

Systems (6.1)–(6.4) can be rewritten as the abstract problem (5.8), where A is the
linear operator defined, for any V ∈ D(A), by AV = F and

f1 = −v3, f2 = −v4, f3 = −k1

ρ1
∂x(∂xv1 + v2),

f4 = − 1
ρ2

(
k2 −

∫ +∞

0

g(s)ds
)
∂xxv2 +

k1

ρ2
(∂xv1 + v2)

+
k4

ρ2
∂xv5 −

1
ρ2

∫ +∞

0

g(s)∂xxv6(s)ds,

f5 = −k3

ρ3
∂xxv5 +

k4

ρ3
∂xv4, f6 = −v4 + ∂sv6,

in case (6.1),

f1 = −v3, f2 = −v4,

f3 = −k1

ρ1
∂x(∂xv1 + v2) +

1
ρ1

(∫ +∞

0

g(s)ds
)
∂xxv1 −

1
ρ1

∫ +∞

0

g(s)∂xxv6(s)ds,

f4 = −k2

ρ2
∂xxv2 +

k1

ρ2
(∂xv1 + v2) +

k4

ρ2
∂xv5,

f5 = −k3

ρ3
∂xxv5 +

k4

ρ3
∂xv4, f6 = −v3 + ∂sv6,

in case (6.2),

f1 = −v3, f2 = −v4,

f3 = −k1

ρ1
∂x(∂xv1 + v2) +

1
ρ1

(∫ +∞

0

g(s)ds
)
∂xxv1 −

1
ρ1

∫ +∞

0

g(s)∂xxv7(s)ds,

f4 = −k2

ρ2
∂xxv2 +

k1

ρ2
(∂xv1 + v2) +

k5

ρ2
∂xv5, f5 =

k3

ρ3
∂xv6 +

k5

ρ3
∂xv4,

f6 =
k4

ρ4
v6 +

k3

ρ4
∂xv5, f7 = −v3 + ∂sv7,

in case (6.3), and

f1 = −v3, f2 = −v4, f3 = −k1

ρ1
∂x(∂xv1 + v2)

f4 = − 1
ρ2

(
k2 −

∫ +∞

0

g(s)ds
)
∂xxv2 +

k1

ρ2
(∂xv1 + v2)

+
k4

ρ2
∂xv5 −

1
ρ2

∫ +∞

0

g(s)∂xxv7(s)ds,

f5 =
k3

ρ3
∂xv6 +

k4

ρ3
∂xv4, f6 =

k5

ρ4
v6 +

k3

ρ4
∂xv5, f7 = −v4 + ∂sv7,

in case (6.4).
The domain D(A) of A is endowed with the norm (5.9) and it is given by D(A) =

{V ∈ H, AV ∈ H and v6(0) = 0} in case (6.1) and (6.2), and D(A) = {V ∈
H, AV ∈ H and v7(0) = 0} in case (6.3) and (6.4). The operator A is maximal
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monotone (the proof is similar to the one of Section 5), and then A is an infinitesimal
generator of a contraction semigroup in H, which implies the well-posedness results
of Theorem 5.1 for (6.1)-(6.4).

6.2. Stability. Similarly to (1.1) and under the hypotheses (H2) and (H3), we
prove that (2.6) (when (1.2) holds) and (2.11) (when (1.2) does not hold) remain
valid for (6.1). For (6.2) and (6.3), we prove that (2.6) holds independently of (1.2).
Finally, for (6.4), we prove only (2.11) even if (1.2) holds.

We start by the system (6.1) and we consider its energy functional defined by
(we recall (2.4))

E1(t) =
1
2

∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ3θ

2 + k1(ϕx + ψ)2

+
(
k2 −

∫ +∞

0

g(s)ds
)
ψ2

x

)
dx+

1
2
g ◦ ψx.

(6.7)

Theorem 6.2 ((1.2) holds). Assume that (1.2), (H2), (H3) are satisfied, and let
U0 ∈ H satisfying (2.5). Then there exist positive constants c′, c′′, ε0 (depending
continuously on E1(0)) for which E1 satisfies (2.6).

Theorem 6.3 ((1.2) does not hold). Assume that (H2) and (H3) are satisfied,
and let U0 ∈ D(A) satisfying (2.10). Then there exist positive constants C and ε0
(depending continuously on ‖U0‖D(A)) such that E1 satisfies (2.11).

The energy functionals of (6.2), (6.3) and (6.4) are, respectively, defined by

E2(t) =
1
2

∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ3θ̃

2 + k1(ϕx + ψ)2 + k2ψ
2
x

−
(∫ +∞

0

g(s)ds
)
ϕ2

x

)
dx+

1
2
g ◦ ϕx,

(6.8)

E3(t) =
1
2

∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ3θ̃

2 + ρ4q
2 + k1(ϕx + ψ)2 + k2ψ

2
x

−
(∫ +∞

0

g(s)ds
)
ϕ2

x

)
dx+

1
2
g ◦ ϕx,

(6.9)

E4(t) =
1
2

∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ3θ̃

2 + ρ4q
2 + k1(ϕx + ψ)2

+
(
k2 −

∫ +∞

0

g(s)ds
)
ψ2

x

)
dx+

1
2
g ◦ ψx,

(6.10)

where

θ̃(x, t) = θ(x, t)− 1
L

∫ L

0

θ0(y)dy. (6.11)

Theorem 6.4. Assume that (H2) and (H3) are satisfied, and let U0 ∈ H satisfying
(2.5). Then there exist positive constants c′, c′′, ε0 (depending continuously on E2(0)
in case (6.2), and on E3(0) in case (6.3)) for which E2 and E3 satisfy (2.6).

Theorem 6.5. Assume that (H2) and (H3) are satisfied, and let U0 ∈ D(A) satis-
fying (2.10). Then there exist positive constants C and ε0 (depending continuously
on ‖U0‖D(A)) such that E4 satisfies (2.11).
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6.3. Proof of Theorems 6.2 and 6.3. The proofs are very similar to the ones of
Theorems 2.2 and 2.4, respectively.

Lemma 6.6. The energy functional E1 defined by (6.7) satisfies

E′1(t) =
1
2
g′ ◦ ψx − k3

∫ L

0

θ2xdx ≤ 0. (6.12)

Proof. By multiplying the first three equations of (6.1) by ϕt, ψt and θ, respectively,
integrating over ]0, L[, and using the boundary conditions, we obtain (6.12) (which
implies that (6.1) is dissipative). �

Now, we consider the functionals I1 − I8 defined in Section 3 and

I10(t) = N1E1(t) +N2I1(t) +N3I8(t) + I7(t), (6.13)

where N1, N2, N3 > 0. Using (6.12) and the same computations as in Section 3
(where we keep the terms depending on θ), we obtain (instead of (3.17) and with
g0 =

∫ +∞
0

g(s)ds and δ = k1
8N2

in (3.5))

I ′10(t) ≤ −(
lN3

2
− c)

∫ L

0

ψ2
xdx− (

ρ1

16
− εN3)

∫ L

0

ϕ2
tdx

−
(
N2ρ2g0 −

cN3

ε
− c

) ∫ L

0

ψ2
t dx−

k1

8

∫ L

0

(ϕx + ψ)2dx+ cN2,N3g ◦ ψx

+ (
N1

2
− cN2)g

′ ◦ ψx −N1k3

∫ L

0

θ2xdx+ (
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx

+ k4

∫ L

0

θx

(
(
1
8
−N3)ψ − (ϕx + ψ) +N2

∫ +∞

0

g(s)(ψ(t)− ψ(t− s))ds

− 1
2ε
m(x)

(
k2ψx −

∫ +∞

0

g(s)ψx(t− s)ds
))
dx.

(6.14)

Using Young’s inequality, (3.2), (6.6) (for ψ) and (6.7), for any ε1 > 0, we have

k4

∫ L

0

θx

(
(
1
8
−N3)ψ − (ϕx + ψ) +N2

∫ +∞

0

g(s)(ψ(t)− ψ(t− s))ds

− 1
2ε
m(x)

(
k2ψx −

∫ +∞

0

g(s)ψx(t− s)ds
))
dx

≤ ε1E1(t) + cN2,N3,ε,ε1

∫ L

0

θ2xdx.

Then, with the same choice of N3, ε and N2 as for (3.17), from (6.14), we obtain

I ′10(t) ≤ −c
(
g ◦ ψx +

∫ L

0

(
ϕ2

t + ψ2
t + θ2 + (ϕx + ψ)2 + ψ2

x

)
dx

)
+ ε1E1(t) + cg ◦ ψx + (

ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx

+ c

∫ L

0

θ2dx− (N1k3 − cε1)
∫ L

0

θ2xdx+ (
N1

2
− c)g′ ◦ ψx.
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Therefore, using the definition of E1 and Poincaré’s inequality (6.6) for θ,

I ′10(t) ≤ −(c− ε1)E1(t) + cg ◦ ψx + (
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx

− (N1k3 − cε1)
∫ L

0

θ2xdx+ (
N1

2
− c)g′ ◦ ψx.

(6.15)

On the other hand, there exists a positive constant α (which does not depend on
N1) satisfying |N2I1 +N3I8 + I7| ≤ αE1, which implies

(N1 − α)E1 ≤ I10 ≤ (N1 + α)E1.

Then, by choosing ε1 small enough so that c− ε1 > 0, and N1 large enough so that
N1
2 − c ≥ 0, N1k3 − cε1 ≥ 0 and N1 > α, we deduce that I10 ∼ E1 and

I ′10(t) ≤ −cE1(t) + cg ◦ ψx + (
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx, (6.16)

which is similar to (3.18). Then the proof of Theorems 6.2 and 6.3 can be completed
as in Sections 3 and 4, respectively.

6.4. Proof of Theorem 6.4. First, we consider the case (6.2).

Lemma 6.7. The energy functional E2 defined by (6.8) satisfies

E′2(t) =
1
2
g′ ◦ ϕx − k3

∫ L

0

θ2xdx ≤ 0. (6.17)

Proof. Note that, thanks to the fact that θ̃x = θx and θ̃t = θt, (6.2) is also satisfied
with θ̃ (defined by (6.11)) and θ0 − 1

L

∫ L

0
θ0(y)dy instead of θ and θ0, respectively.

Then, as in case (6.12), by multiplying the first three equations of (6.2), respectively,
by ϕt, ψt and θ̃, integrating over ]0, L[, and using the boundary conditions, we
obtain (6.17). �

Lemma 6.8. The functional

J1(t) = −ρ1

∫ L

0

ϕt

∫ +∞

0

g(s)(ϕ(t)− ϕ(t− s)) ds dx

satisfies, for any δ > 0,

J ′1(t) ≤ −ρ1

(∫ +∞

0

g(s)ds− δ
) ∫ L

0

ϕ2
t dx

+ δ

∫ L

0

(ψ2
x + (ϕx + ψ)2)dx+ cδg ◦ ϕx − cδg

′ ◦ ϕx.

(6.18)

The proof of the above lemma is similar to the proof of Lemma 3.3, and is
omitted.

Lemma 6.9. The functional

J2(t) =
∫ L

0

(ρ1ϕϕt + ρ2ψψt)dx
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satisfies, for some positive constants c and c̃,

J ′2(t) ≤
∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx− c

∫ L

0

((ϕx + ψ)2 + ψ2
x)dx

+ c̃
(∫ L

0

θ̃2dx+ g ◦ ϕx

)
.

(6.19)

Proof. Because system (6.2) is still satisfied with θ̃ and θ0 − 1
L

∫ L

0
θ0(y)dy instead

of θ and θ0, respectively, then, by exploiting the first two equations of (6.2) and
integrating over ]0, L[, we obtain

J ′2(t) =
∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx− k1

∫ L

0

(ϕx + ψ)2dx

− k2

∫ L

0

ψ2
xdx+

∫ L

0

ϕx

∫ +∞

0

g(s)ϕx(t− s) ds dx+ k4

∫ L

0

ψxθ̃dx.

Let l1 = k1 −
∫ +∞
0

g(s)ds (l1 > 0 thanks to (6.5)). Using (3.2) for ϕ and Young’s
inequality, for any ε > 0, we obtain∫ L

0

ϕx

∫ +∞

0

g(s)ϕx(t− s) ds dx

=
∫ L

0

ϕx

∫ +∞

0

g(s)(ϕx(t− s)− ϕx(t) + ϕx(t)) ds dx

=
∫ +∞

0

g(s)ds
∫ L

0

ϕ2
xdx−

∫ L

0

ϕx(t)
∫ +∞

0

g(s)(ϕx(t)− ϕx(t− s))dsdx

≤ (k1 − l1 + ε)
∫ L

0

ϕ2
xdx+ cεg ◦ ϕx.

Similarly, for any ε′ > 0, we have

k4

∫ L

0

ψxθ̃dx ≤ ε′
∫ L

0

ψ2
xdx+ cε′

∫ L

0

θ̃2dx.

On the other hand, using (6.6) for ψ, for any ε′′ > 0, we have∫ L

0

ϕ2
xdx =

∫ L

0

(ϕx +ψ−ψ)2dx ≤ (1 + ε′′)
∫ L

0

(ϕx +ψ)2dx+ (1 +
1
ε′′

)k0

∫ L

0

ψ2
xdx.

Inserting these three estimates into the previous equality, we obtain

J ′2(t) ≤
∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx−

(
l1 − ε− ε′′(k1 − l1 + ε)

) ∫ L

0

(ϕx + ψ)2dx

−
(
k2 − ε′ − k0(1 +

1
ε′′

)(k1 − l1 + ε)
) ∫ L

0

ψ2
xdx+ cε′

∫ L

0

θ̃2dx+ cεg ◦ ϕx.

Thanks to (6.5), we can choose k0(k1−l1)
k2−k0(k1−l1)

< ε′′ < l1
k1−l1

and ε, ε′ > 0 small enough
such that

min{l1 − ε− ε′′(k1 − l1 + ε), k2 − ε′ − k0(1 +
1
ε′′

)(k1 − l1 + ε)} > 0,

therefore, we obtain (6.19). �
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The Neumann boundary conditions considered on θ in (6.2) do not allow the use
of Poincaré’s inequality (6.6) for θ. To overcome this difficulty we use the following
classical argument (see [32]): by integrating the third equation of (6.2) and using
the boundary conditions, we obtain

∂t

(∫ L

0

θ(x, t)dx
)

=
∫ L

0

θt(x, t)dx =
1
ρ3

∫ L

0

(k3θxx(x, t)− k4ψxt(x, t))dx

=
1
ρ3

[
k3θx(x, t)− k4ψt(x, t)

]x=L

x=0
= 0, ∀t ∈ R+.

Then ∫ L

0

θ(x, t)dx =
∫ L

0

θ(x, 0)dx =
∫ L

0

θ0(x)dx, ∀t ∈ R+.

Therefore, the functional θ̃ defined by (6.11) satisfies
∫ L

0
θ̃(x, t)dx = 0, and then

(6.6) is also applicable for θ̃. Now, as in [32], we have the following lemma.

Lemma 6.10. The functional

J3(t) = ρ2ρ3

∫ L

0

ψt

(∫ x

0

θ̃(y, t)dy
)
dx

satisfies, for any ε > 0,

J ′3(t) ≤ −(ρ2k4 − ε)
∫ L

0

ψ2
t + ε

∫ L

0

(ψ2
x + (ϕx + ψ)2)dx+ cε

∫ L

0

θ2xdx. (6.20)

Following the same arguments as in [32] one can prove easily our lemma 6.10.
Now, we go back to the proof of Theorem 6.4 in case (6.2). LetN1, N2, N3, N4 > 0

and, as before, g0 =
∫ +∞
0

g(s)ds. We put

J4(t) = N1E2(t) +N2J1(t) +N3J2(t) +N4J3(t). (6.21)

Then, using Poincaré’s inequality (6.6) for θ̃, combining (6.17)-(6.20) and choosing
δ = 1

N2
and ε = 1

N4
in (6.18) and (6.20), respectively, we find

J ′4(t) ≤ −(cN3 − 2)
∫ L

0

(ψ2
x + (ϕx + ψ)2)dx− (N4ρ2k4 − ρ2N3 − 1)

∫ L

0

ψ2
t dx

− (N2ρ1g0 − ρ1N3 − ρ1)
∫ L

0

ϕ2
tdx− (N1k3 − cN3,N4)

∫ L

0

θ2xdx

+ (
N1

2
− cN2)g

′ ◦ ϕx + cN2,N3g ◦ ϕx.

(6.22)

So, we choose N3 large enough so that cN3 − 2 > 0, then N4 large enough so that
N4k4ρ2 − ρ2N3 − 1 > 0. Next, we choose N2 large enough so that

N2ρ1g0 − ρ1N3 − ρ1 > 0.

Consequently, using again Poincaré’s inequality (6.6) for θ̃, from (6.22), we obtain

J ′4(t) ≤ −c
(
g ◦ ϕx +

∫ L

0

(
ϕ2

t + ψ2
t + θ̃2 + (ϕx + ψ)2 + ψ2

x

)
dx

)
+ cg ◦ ϕx − (N1k3 − c)

∫ L

0

θ2xdx+ (
N1

2
− c)g′ ◦ ϕx.
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Therefore, using the definition of E2,

J ′4(t) ≤ −cE2(t) + cg ◦ ϕx − (N1k3 − c)
∫ L

0

θ2xdx+ (
N1

2
− c)g′ ◦ ϕx.

Now, as in Section 3, choosing N1 large enough so that N1
2 − c ≥ 0, N1k3 − c ≥ 0

and J4 ∼ E2, we deduce that

J ′4(t) ≤ −cE2(t) + cg ◦ ϕx. (6.23)

To estimate the term g ◦ ϕx in (6.23), we apply Lemma 3.11 for ϕ and E2 instead
of ψ and E, respectively, and we obtain (similarly to (3.19))

G′(ε0E2(t))g ◦ ϕx ≤ −cE′2(t) + cε0E2(t)G′(ε0E2(t)), ∀t ∈ R+, ∀ε0 > 0. (6.24)

By multiplying (6.23) by G′(ε0E2(t)), inserting (6.24) and choosing ε0 small enough,
we obtain

G′(ε0E2(t))J ′4(t) + cE′2(t) ≤ −cE2(t)G′(ε0E2(t)), (6.25)
and then the proof can be finalized exactly as for (3.20) in Section 3, which shows
(2.6) for E2.

Now, we consider the case (6.3) and we prove (2.6) for E3.

Lemma 6.11. The energy functional E3 defined by (6.9) satisfies

E′3(t) =
1
2
g′ ◦ ϕx − k5

∫ L

0

q2dx ≤ 0. (6.26)

Proof. Because (6.3) holds with θ̃ and θ0 − 1
L

∫ L

0
θ0(y)dy instead of θ and θ0, re-

spectively, then by multiplying the first–fourth equations of (6.3) by ϕt, ψt, θ̃ and
q, respectively, and integrating over ]0, L[, we obtain (6.26). �

As in [32] and similarly to (6.20), we prove the following estimate.

Lemma 6.12. The functional

Q1(t) = ρ2ρ3

∫ L

0

ψt

(∫ x

0

θ̃(y, t)dy
)
dx

satisfies, for any ε1 > 0,

Q′1(t) ≤ −(ρ2k4 − ε1)
∫ L

0

ψ2
t dx+ ε1

∫ L

0

(ψ2
x + (ϕx + ψ)2)dx

+ (
c

ε1
+ ρ3k4)

∫ L

0

θ̃2dx+ cε1

∫ L

0

q2dx.

(6.27)

Proof. By exploiting the second and the third equations of (6.3) and integrating
over ]0, L[ (note also that

∫ L

0
θ̃(x, t)dx = 0, θ̃x = θx and θ̃t = θt), we obtain

Q′1(t) = ρ3

∫ L

0

(k2ψxx − k1(ϕx + ψ)− k4θ̃x)
(∫ x

0

θ̃(y, t)dy
)
dx

+ ρ2

∫ L

0

ψt

(∫ x

0

(−k3qx(y, t)− k4ψxt(y, t))dy
)
dx

= −ρ2k4

∫ L

0

ψ2
t dx+ ρ3k4

∫ L

0

θ̃2dx− ρ3k2

∫ L

0

ψxθ̃dx
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− ρ3k1

∫ L

0

(ϕx + ψ)
(∫ x

0

θ̃(y, t)dy
)
dx− ρ2k3

∫ L

0

ψtqdx.

Using Young’s and Hölder’s inequalities to estimate the last three integrals, we
obtain (6.27). �

As in [23], we consider the following functional.

Lemma 6.13. The functional

Q2(t) = −ρ3ρ4

∫ L

0

q
(∫ x

0

θ̃(y, t)dy
)
dx

satisfies, for any ε2 > 0,

Q′2(t) ≤ −(ρ3k3 − ε2)
∫ L

0

θ̃2dx+ ε2

∫ L

0

ψ2
t dx+ cε2

∫ L

0

q2dx. (6.28)

Proof. By using the third and the fourth equations of (6.3) and integrating over
]0, L[ (note also that

∫ L

0
θ̃(x, t)dx = 0, θ̃x = θx and θ̃t = θt), we obtain

Q′2(t) = ρ3

∫ L

0

(k5q + k3θx)
(∫ x

0

θ̃(y, t)dy
)
dx

+ ρ4

∫ L

0

q
(∫ x

0

(k3qx(y, t) + k4ψxt(y, t))dy
)
dx

= −ρ3k3

∫ L

0

θ̃2dx+ ρ3k5

∫ L

0

q
(∫ x

0

θ̃(y, t)dy
)
dx+ ρ4

∫ L

0

q(k3q + k4ψt)dx.

Using Young’s and Hölder’s inequalities to estimate the last two integrals, we obtain
(6.28). �

Now, we complete the proof of Theorem 6.4 in case (6.3). Let N1, N2, N3, N4, N5

be positive, g0 =
∫ +∞
0

g(s)ds and

Q3(t) = N1E3(t) +N2J1(t) +N3J2(t) +N4Q1(t) +N5Q2, (6.29)

where J1 and J2 are defined in Lemmas 6.8 and 6.9, respectively. The estimates
(6.18) and (6.19) hold also for (6.3) because we used only the first two equations
of (6.2) and the boundary conditions on ϕ and ψ, which are the same as in (6.3).
Then, by combining (6.26)-(6.28), (6.18) and (6.19), choosing δ = 1/N2, ε1 = 1/N4

and ε2 = 1/N5 in (6.18), (6.27) and (6.28), respectively, we obtain

Q′3(t) ≤ −(cN3 − 2)
∫ L

0

(ψ2
x + (ϕx + ψ)2)dx− (N4k4ρ2 − ρ2N3 − 2)

∫ L

0

ψ2
t dx

− (N2ρ1g0 − ρ1N3 − ρ1)
∫ L

0

ϕ2
tdx

− (N5ρ3k3 − c̃N3 − cN2
4 − ρ3k4N4 − 1)

∫ L

0

θ̃2dx

− (N1k5 − cN4,N5)
∫ L

0

q2dx+ (
N1

2
− cN2)g

′ ◦ ϕx + cN2,N3g ◦ ϕx.

(6.30)
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We choose N3 large enough so that cN3 − 2 > 0, then N4 large enough so that
N4k4ρ2 − ρ2N3 − 2 > 0. After, we choose N2 large enough so that

N2ρ1g0 − ρ1N3 − ρ1 > 0.

Next, we pick N5 large enough so that N5k3ρ3− c̃N3−cN2
4 −ρ3k4N4−1 > 0. Then

(6.30) implies

Q′3(t) ≤ −c
(
g ◦ ϕx +

∫ L

0

(
ϕ2

t + ψ2
t + θ̃2 + q2 + (ϕx + ψ)2 + ψ2

x

)
dx

)
+ cg ◦ ϕx − (N1k5 − c)

∫ L

0

q2dx+ (
N1

2
− c)g′ ◦ ϕx.

Now, as before, choosing N1 large enough so that N1
2 − c ≥ 0, N1k5 − c ≥ 0 and

Q3 ∼ E3, and using the definition of E3, we conclude that

Q′3(t) ≤ −cE3(t) + cg ◦ ϕx. (6.31)

The estimate (6.31) is similar to (6.23), and then we complete the proof exactly as
for (6.2) to get (2.6) for E3. This completes the proof of Theorem 6.4.

Proof of Theorem 6.5. As in Section 4, we will show that E4 satisfies the in-
equality (6.45) below, which implies (2.11) for E4. As for (6.26), we can see that
the energy functional E4 defined by (6.10) satisfies

E′4(t) =
1
2
g′ ◦ ψx − k5

∫ L

0

q2dx ≤ 0. (6.32)

As in Section 4, we consider the second-order energy Ẽ4 of the system resulting
from differentiating (6.4) with respect to time (which is well posed for initial data
U0 ∈ D(A)); that is, Ẽ4(t) = E4(Ut(t)), where E4(U(t)) = E4(t) and E4 is defined
by (6.10). A simple calculation (as for (6.32)) implies that

Ẽ′4(t) =
1
2
g′ ◦ ψxt − k5

∫ L

0

q2t dx ≤ 0. (6.33)

Now, let N1, N2, N3 > 0 and

I11(t) = N1(E4(t) + Ẽ4(t)) +N2I1(t) +N3I8(t) + I7(t), (6.34)

where I1, I7 and I8 are defined in Lemmas 3.3, 3.8 and 3.10, respectively. Then (as
for I10 in (6.14)), by combining (6.32) and (6.33), and using the same computations
as in Section 3 (we keep the terms depending on θx), we obtain (instead of (3.17)
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and with g0 =
∫ +∞
0

g(s)ds and δ = k1
8N2

in (3.5))

I ′11(t)n ≤ −(
lN3

2
− c)

∫ L

0

ψ2
xdx− (

ρ1

16
− εN3)

∫ L

0

ϕ2
tdx

− (N2ρ2g0 −
cN3

ε
− c)

∫ L

0

ψ2
t dx−

k1

8

∫ L

0

(ϕx + ψ)2dx

+ (
N1

2
− cN2)g

′ ◦ ψx +
N1

2
g′ ◦ ψxt + cN2,N3g ◦ ψx

+ (
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx− k5N1

∫ L

0

(q2 + q2t )dx

+ k4

∫ L

0

θx

(
(
1
8
−N3)ψ − (ϕx + ψ)

+N2

∫ +∞

0

g(s)(ψ(t)− ψ(t− s))ds

− 1
2ε
m(x)

(
k2ψx −

∫ +∞

0

g(s)ψx(t− s)ds
))
dx.

(6.35)

Using Young’s inequality, (3.2), (6.6) (for ψ) and (6.10), for any ε1 > 0, we have

k4

∫ L

0

θx

(
(
1
8
−N3)ψ − (ϕx + ψ) +N2

∫ +∞

0

g(s)(ψ(t)− ψ(t− s))ds

− 1
2ε
m(x)

(
k2ψx −

∫ +∞

0

g(s)ψx(t− s)ds
))
dx

≤ ε1E4(t) + cN2,N3,ε,ε1

∫ L

0

θ2xdx.

We choose N3, ε and N2 as for (3.17) (to get negative coefficients of the first three
integrals of (6.35)) and using (6.6) for θ̃ (note also that θ̃x = θx), we obtain

I ′11(t) ≤ −c
(
g ◦ ψx +

∫ L

0

(
ϕ2

t + ψ2
t + θ̃2 + q2 + (ϕx + ψ)2 + ψ2

x

)
dx

)
+ ε1E4(t) + cg ◦ ψx + (

ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx

+ cε1

∫ L

0

θ2xdx+ (
N1

2
− c)g′ ◦ ψx +

N1

2
g′ ◦ ψxt

− (k5N1 − c)
∫ L

0

q2dx− k5N1

∫ L

0

q2t dx.

(6.36)

On the other hand, the fourth equation of (6.4) implies that

∫ L

0

θ2xdx ≤ c

∫ L

0

(q2 + q2t )dx. (6.37)
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Therefore, by combining (6.36) and (6.37), using (6.10) and choosing ε1 small
enough,

I ′11(t) ≤ −cE4(t) + cg ◦ ψx + (
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx

− (N1k5 − c)
∫ L

0

(q2 + q2t )dx+ (
N1

2
− c)g′ ◦ ψx +

N1

2
g′ ◦ ψxt.

(6.38)

Now, exactly as in Lemma 4.1, we have, for any ε > 0,

(
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx ≤ εE4(t) + cε(g ◦ ψxt − g′ ◦ ψx). (6.39)

Then, by combining (6.38) and (6.39), and choosing ε small enough,

I ′11(t) ≤ −cE4(t) + c(g ◦ ψx + g ◦ ψxt) +
N1

2
g′ ◦ ψxt

− (N1k5 − c)
∫ L

0

(q2 + q2t )dx+ (
N1

2
− c)g′ ◦ ψx.

(6.40)

Then, choosing N1 large enough so that N1k5 − c ≥ 0 and N1
2 − c ≥ 0, we find

I ′11(t) ≤ −cE4(t) + c(g ◦ ψx + g ◦ ψxt). (6.41)

Now, similarly to the case g◦ψx and g◦ψxt in Sections 3 and 4 (estimates (3.19) and
(4.6)) and using (2.10), (6.32) and (6.33), we obtain the following two estimates:

G′(ε0E4(t))g ◦ ψx ≤ −cE′4(t) + cε0E4(t)G′(ε0E4(t)), ∀ε0 > 0, (6.42)

G′(ε0E4(t))g ◦ ψxt ≤ −cẼ′4(t) + cε0E4(t)G′(ε0E4(t)), ∀ε0 > 0. (6.43)

Multiplying (6.41) by G′(ε0E4(t)), inserting (6.42) and (6.43), and choosing ε0 small
enough, we deduce that

E4(t)G′(ε0E4(t)) ≤ −c
(
G′(ε0E4(t))I11(t) + cε0E

′
4(t)G

′′(ε0E4(t))I11(t)

− c(E′4(t) + Ẽ′4(t))
)′
.

(6.44)

Then, by integrating (6.44) over [0, T ] and using the fact that I11 ≤ c(E4 + Ẽ4)
(thanks to (6.34)) and E′4(t)G

′′(ε0E4(t)) ≤ 0 (thanks to (6.32) and (H3)),∫ T

0

G0(E4(t))dt ≤ c(G′(ε0E4(0)) + 1)(E4(0) + Ẽ4(0)), ∀T ∈ R+, (6.45)

where G0 is defined by (2.12). The fact that G0(E4) is non-increasing and (6.45)
imply (2.11) for E4 with C = c(G′(ε0E4(0)) + 1)(E4(0) + Ẽ4(0)). This completes
the proof of Theorem 6.5.
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7. Timoshenko-heat: Green and Naghdi’s theory

In this section, we consider coupled Timoshenko-thermoelasticity systems of type
III on ]0, L[ with an infinite history acting on the second equation:

ρ1ϕtt − k1(ϕx + ψ)x = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) + k4θxt +
∫ +∞

0

g(s)ψxx(x, t− s)ds = 0,

ρ3θtt − k3θxx + k4ψxt − k5θxxt = 0,

ϕ(0, t) = ψ(0, t) = θx(0, t) = ϕ(L, t) = ψ(L, t) = θx(L, t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x),

(7.1)

and with an infinite history acting on the first equation:

ρ1ϕtt − k1(ϕx + ψ)x +
∫ +∞

0

g(s)ϕxx(x, t− s)ds = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) + k4θxt = 0,
ρ3θtt − k3θxx + k4ψxt − k5θxxt = 0,

ϕ(0, t) = ψ(0, t) = θx(0, t) = ϕ(L, t) = ψ(L, t) = θx(L, t) = 0,

ϕ(x,−t) = ϕ0(x, t), ϕt(x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x).

(7.2)

Systems (7.1) and (7.2) model the transverse vibration of a thick beam, taking in
account the heat conduction given by Green and Naghdi’s theory [9, 9, 11].

We prove the stability of (7.1) and (7.2) under (H2) and the following hypothesis:
(H4) g : R+ → R+ is a non-increasing differentiable function satisfying g(0) > 0

such that (2.1) and (6.5) hold in cases of (7.1) and (7.2), respectively.

7.1. Well-posedness. We discuss briefly here the well-posedness of (7.1) and (7.2)
under (H4). As in Section 5 and following the idea of [6], we consider

η(x, t, s) =

{
ψ(x, t)− ψ(x, t− s) in case (7.1)
ϕ(x, t)− ϕ(x, t− s) in case (7.2)

η0(x, s) = η(x, 0, s), U = (ϕ,ψ, θ, ϕt, ψt, θt, η)T , and

U0 =

{
(ϕ0, ψ0(·, 0), θ0, ϕ1, ψ1, θ1, η0)T in case (7.1)
(ϕ0(·, 0), ψ0, θ0, ϕ1, ψ1, θ1, η0)T in case (7.2)

Then (7.1) and (7.2) can be formulated in the form (5.8), where A is the linear
operator given by A(v1, v2, v3, v4, v5, v6, v7) = (f1, f2, f3, f4, f5, f6, f7)T , where

f1 = −v4, f2 = −v5, f3 = −v6, f4 = −k1

ρ1
∂x(∂xv1 + v2),

f5 = − 1
ρ2

(
k2 −

∫ +∞

0

g(s)ds
)
∂xxv2 +

k1

ρ2
(∂xv1 + v2)

+
k4

ρ2
∂xv6 −

1
ρ2

∫ +∞

0

g(s)∂xxv7(s),
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f6 = −k3

ρ3
∂xxv3 +

k4

ρ3
∂xv5 −

k5

ρ3
∂xxv6, f7 = −v5 + ∂sv7,

in case (7.1), and

f1 = −v4, f2 = −v5, f3 = −v6,

f4 = −k1

ρ1
∂x(∂xv1 + v2) +

1
ρ1

(∫ +∞

0

g(s)ds
)
∂xxv1 −

1
ρ1

∫ +∞

0

g(s)∂xxv7(s),

f5 = −k2

ρ2
∂xxv2 +

k1

ρ2
(∂xv1 + v2) +

k4

ρ2
∂xv6,

f6 = −k3

ρ3
∂xxv3 +

k4

ρ3
∂xv5 −

k5

ρ3
∂xxv6, f7 = −v5 + ∂sv7,

in case (7.2). Let

H =
(
H1

0 (]0, L[)
)2 ×H1

∗ (]0, L[)×
(
L2(]0, L[)

)2 × L2
∗(]0, L[)× Lg,

where Lg is defined by (5.5) and endowed with the inner product (5.6),

H1
∗ (]0, L[) = {v ∈ H1(]0, L[),

∫ L

0

vdx = 0},

L2
∗(]0, L[) = {v ∈ L2(]0, L[),

∫ L

0

vdx = 0}.

The set H, together with the inner product defined, for V,W ∈ H, by

〈V,W 〉H = 〈v7, w7〉Lg +
∫ L

0

(
k1(∂xv1 + v2)(∂xw1 + w2) + k3∂xv3∂xw3

)
dx

+
∫ L

0

((
k2 −

∫ +∞

0

g(s)ds
)
∂xv2∂xw2 + ρ1v4w4 + ρ2v5w5 + ρ3v6w6

)
dx

in case (7.1), and

〈V,W 〉H = 〈v7, w7〉Lg
+

∫ L

0

(
k1(∂xv1 + v2)(∂xw1 + w2) + k3∂xv3∂xw3

)
dx

+
∫ L

0

(
−

(∫ +∞

0

g(s)ds
)
∂xv1∂xw1 + k2∂xv2∂xw2 + ρ1v4w4

+ ρ2v5w5 + ρ3v6w6

)
dx

in case (7.2), is a Hilbert space. The domain D(A) of A endowed with the norm
(5.9) is given by D(A) = {V ∈ H, AV ∈ H and v7(0) = 0} and A is a maximal
monotone operator (the proof is similar to the one of Section 5), and then A is
an infinitesimal generator of a contraction semigroup in H, which implies the well-
posedness results of Theorem 5.1 for (7.1) and (7.2).

Stability. We introduce the energy functionals in (7.1) and (7.2), respectively, as

E5(t) =
1
2

∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + k1(ϕx + ψ)2 +

(
k2 −

∫ +∞

0

g(s)ds
)
ψ2

x

)
dx

+
1
2

∫ L

0

(ρ3θ̃
2
t + k3θ̃

2
x)dx+

1
2
g ◦ ψx

(7.3)
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and

E6(t) =
1
2

∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + k1(ϕx + ψ)2 −

(∫ +∞

0

g(s)ds
)
ϕ2

x

)
dx

+
1
2

∫ L

0

(k2ψ
2
x + ρ3θ̃

2
t + k3θ̃

2
x)dx+

1
2
g ◦ ϕx,

(7.4)

where

θ̃(x, t) = θ(x, t)− t

L

∫ L

0

θ1(y)dy −
1
L

∫ L

0

θ0(y)dy. (7.5)

Remark 7.1. Using the third equation in (7.1) and (7.2) and the boundary con-
ditions, we easily verify that

∂tt

(∫ L

0

θ(x, t)dx
)

=
∫ L

0

θtt(x, t)dx =
1
ρ3

[
k3θx − k4ψt + k5θxt

]x=L

x=0
= 0, ∀t ∈ R+,

which implies that, using the initial data of θ,∫ L

0

θ(x, t)dx = t

∫ L

0

θ1(x)dx+
∫ L

0

θ0(x)dx, ∀t ∈ R+. (7.6)

Therefore, (7.5) and (7.6) imply that
∫ L

0
θ̃(x, t)dx = 0, and then Poincaré’s inequal-

ity (6.6) is applicable also for θ̃ and, in addition, (7.1) and (7.2) are satisfied with
θ̃, θ0 − 1

L

∫ L

0
θ0(y)dy and θ1 − 1

L

∫ L

0
θ1(y)dy instead of θ, θ0 and θ1, respectively. In

the sequel, we work with θ̃ instead of θ.

For the stability of (7.1), we distinguish two cases depending on (1.2).

Theorem 7.2 ((1.2) holds). . Assume that (H2), (H4) and (1.2) hold, and let
U0 ∈ H satisfying (2.5). Then there exist positive constants c′, c′′, ε0 (depending
continuously on E5(0)) for which E5 satisfies (2.6).

Theorem 7.3 ((1.2) does not hold). Assume that (H2) and (H4) hold, and let U0 ∈
D(A) satisfying (2.10). Then there exist positive constants C and ε0 (depending
continuously on ‖U0‖D(A)) such that E5 satisfies (2.11).

Concerning (7.2), the estimate (2.6) holds for E6 independently of (1.2).

Theorem 7.4. Assume that (H2) and (H4) hold, and let U0 ∈ H satisfying (2.5).
Then there exist positive constants c′, c′′, ε0 (depending continuously on E6(0)) for
which E6 satisfies (2.6).

7.2. Proof of Theorems 7.2 and 7.3. As for E1 − E4 and by multiplying the
first equation in (7.1) by ϕt, the second one by ψt and the third one (with θ̃ instead
of θ) by θ̃t, integrating over ]0, L[ and using the boundary conditions, we obtain

E′5(t) =
1
2
g′ ◦ ψx − k5

∫ L

0

θ̃2xtdx ≤ 0. (7.7)

Now, we consider the functionals I1–I8 defined in Section 3 and (as in (6.13))

I12(t) = N1E5(t) +N2I1(t) +N3I8(t) + I7(t). (7.8)
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Using (7.7) and the same computations as in Section 3 (for (7.1) with θ̃ instead of
θ), we obtain (instead of (3.17) and with g0 =

∫ +∞
0

g(s)ds and δ = k1
8N2

in (3.5)),

I ′12(t)

≤ −(
lN3

2
− c)

∫ L

0

ψ2
xdx− (

ρ1

16
− εN3)

∫ L

0

ϕ2
tdx−

k1

8

∫ L

0

(ϕx + ψ)2dx

−
(
N2ρ2g0 −

cN3

ε
− c

) ∫ L

0

ψ2
t dx

− 1
2ε
m(x)

(
k2ψx −

∫ +∞

0

g(s)ψx(t− s)ds
))
dx−N1k5

∫ L

0

θ̃2xtdx

+ (
N1

2
− cN2)g

′ ◦ ψx + cN2,N3g ◦ ψx + (
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx

+ k4

∫ L

0

θ̃xt

(
(
1
8
−N3)ψ − (ϕx + ψ) +N2

∫ +∞

0

g(s)(ψ(t)− ψ(t− s))ds .

(7.9)

Using Young’s inequality, (3.2), (6.6) (for ψ) and (7.3), for any ε1 > 0, we have

k4

∫ L

0

θ̃xt

(
(
1
8
−N3)ψ − (ϕx + ψ) +N2

∫ +∞

0

g(s)(ψ(t)− ψ(t− s))ds

− 1
2ε
m(x)

(
k2ψx −

∫ +∞

0

g(s)ψx(t− s)ds
))
dx

≤ ε1E5(t) + cN2,N3,ε,ε1

∫ L

0

θ̃2xtdx.

Then, with the same choice of N3, ε and N2 as in Section 3, we obtain, from (7.9),

I ′12(t) ≤ −c
(
g ◦ ψx +

∫ L

0

(ϕ2
t + ψ2

t + θ̃2t + (ϕx + ψ)2 + ψ2
x)dx

)
+ ε1E5(t) + cg ◦ ψx + (

ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx+ c

∫ L

0

θ̃2t dx

− (N1k5 − cε1)
∫ L

0

θ̃2xtdx+ (
N1

2
− c)g′ ◦ ψx.

(7.10)

On the other hand, let us set

R1(t) =
∫ L

0

(ρ3θ̃tθ̃ + k4ψxθ̃ +
k5

2
θ̃2x)dx. (7.11)

By differentiating R1 and using the third equation in (7.1) (with θ̃ instead of θ),
we obtain

R′1(t) = −k3

∫ L

0

θ̃2xdx+ ρ3

∫ L

0

θ̃2t dx+ k4

∫ L

0

ψxθ̃tdx.

Young’s inequality and the definition of E5 then yield, for any ε1 > 0,

R′1(t) ≤ −k3

∫ L

0

θ̃2xdx+ cε1

∫ L

0

θ̃2t dx+ ε1E5(t). (7.12)
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Let R2 = I12 + R1. Then, using the definition of E5 and applying Poincaré’s
inequality (6.6) for θ̃t, we deduce from (7.10) and (7.12) that

R′2(t) ≤ −(c− 2ε1)E5(t) + cg ◦ ψx + (
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx

− (N1k5 − cε1)
∫ L

0

θ̃2xtdx+ (
N1

2
− c)g′ ◦ ψx.

(7.13)

Then, by choosing ε1 small enough so that c−2ε1 > 0, and N1 large enough so that
N1
2 − c ≥ 0, N1k5− cε1 ≥ 0 and R2 ∼ E5 (which is possible thanks to the definition

of E5, I12, R1 and R2), we deduce that

R′2(t) ≤ −cE5(t) + cg ◦ ψx + (
ρ1k2

k1
− ρ2)

∫ L

0

ϕtψxtdx (7.14)

which is similar to (3.18). Then the proof of Theorems 7.2 and 7.3 can be completed
as in Sections 3 and 4, respectively.

7.3. Proof of Theorem 7.4. First, as for E5, we have

E′6(t) =
1
2
g′ ◦ ϕx − k5

∫ L

0

θ̃2xtdx ≤ 0. (7.15)

Now, we consider the functionals T1 = J1 and T2 = J2, where J1 and J2 are defined
in Lemmas 6.8 and 6.9, respectively. Then, exactly as for (6.18) and (6.19) (where
we used the first two equations in (6.2), which are the same as in (7.2) with θxt

instead of θx), we have, for any δ > 0,

T ′1(t) ≤ −ρ1

(∫ +∞

0

g(s)ds− δ
) ∫ L

0

ϕ2
t dx

+ δ

∫ L

0

(ψ2
x + (ϕx + ψ)2)dx+ cδg ◦ ϕx − cδg

′ ◦ ϕx,

(7.16)

and for some positive constants c and c̃,

T ′2(t) ≤
∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx

− c

∫ L

0

((ϕx + ψ)2 + ψ2
x)dx+ c̃

(∫ L

0

θ̃2t dx+ g ◦ ϕx

)
.

(7.17)

On the other hand, we we have the following lemma.

Lemma 7.5. The functional

T3(t) = ρ2ρ3

∫ L

0

ψt

(∫ x

0

θ̃t(y, t)dy
)
dx− ρ2k3

∫ L

0

θ̃xψdx

satisfies, for any ε > 0,

T ′3(t) ≤ −(ρ2k4 − ε)
∫ L

0

ψ2
t + ε

∫ L

0

(ψ2
x + (ϕx + ψ)2)dx+ cε

∫ L

0

θ̃2xtdx. (7.18)

Proof. By using the second and the third equations in (7.2) and integrating over
]0, L[, we obtain (note that

∫ L

0
θ̃(x, t)dx = 0, θ̃tt = θtt and θ̃x = θx)

T ′3(t) = ρ2

∫ L

0

ψt

(∫ x

0

(k3θ̃xx(y, t)− k4ψxt(y, t) + k5θ̃xxt(y, t))dy
)
dx
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+ ρ3

∫ L

0

(k2ψxx − k1(ϕx + ψ)− k4θ̃xt)
(∫ x

0

θ̃t(y, t)dy
)
dx

− ρ2k3

∫ L

0

(θ̃xψt + θ̃xtψ)dx

= −ρ2k4

∫ L

0

ψ2
t dx+ ρ2k5

∫ L

0

ψtθ̃xtdx+ ρ3

∫ L

0

(−k2ψx + k4θ̃t)θ̃tdx

− ρ3k1

∫ L

0

(ϕx + ψ)
(∫ x

0

θ̃t(y, t)dy
)
dx− ρ2k3

∫ L

0

θ̃xtψdx.

Using Young’s and Hölder’s inequalities for
∫ x

0
θ̃t(y, t)dy and Poincaré’s inequality

for θ̃t and ψ to estimate the last four integrals, we obtain (7.18). �

Now, we come back to the proof of Theorem 7.4. Let N1, N2, N3, N4 > 0 and

T5(t) = N1E6(t) +N2T1(t) +N3T2(t) +N4T3(t) + T4(t), (7.19)

where T4 = R1 and R1 is defined by (7.11). Note that, exactly as for (7.12) (where
we used the third equation and the boundary conditions in (7.1), which are the
same as in (7.2)), T4 satisfies, for any ε1 > 0,

T ′4(t) ≤ −k3

∫ L

0

θ̃2xdx+ cε1

∫ L

0

θ̃2t dx+ ε1E6(t). (7.20)

Then, using Poincaré’s inequality (6.6) for θ̃t, combining (7.15)-(7.18) and (7.20),
and choosing δ = 1

N2
and ε = 1

N4
in (7.16) and (7.18), respectively, we find

T ′5(t) ≤ −(cN3 − 2)
∫ L

0

(ψ2
x + (ϕx + ψ)2)dx+ ε1E6(t)

− (N4ρ2k4 − ρ2N3 − 1)
∫ L

0

ψ2
t dx− k3

∫ L

0

θ̃2xdx

− (N2ρ1g0 − ρ1N3 − ρ1)
∫ L

0

ϕ2
tdx+ cN2,N3g ◦ ϕx

− (N1k5 − cN3,N4,ε1)
∫ L

0

θ̃2xtdx+ (
N1

2
− cN2)g

′ ◦ ϕx.

(7.21)

So, we choose N3 large enough so that cN3 − 2 > 0, then N2 and N4 large enough
so that N2ρ1g0 − ρ1N3 − ρ1 > 0 and N4ρ2k4 − ρ2N3 − 1 > 0. Consequently, using
again Poincaré’s inequality (6.6) for θ̃t, from (7.21), we obtain

T ′5(t) ≤ −c
(
g ◦ ϕx +

∫ L

0

(
ϕ2

t + ψ2
t + θ̃2t + (ϕx + ψ)2 + ψ2

x + θ̃2x

)
dx

)
+ ε1E6(t) + cg ◦ ϕx − (N1k5 − cε1)

∫ L

0

θ̃2xtdx+ (
N1

2
− c)g′ ◦ ϕx.

Therefore, using the definition of E6,

T ′5(t) ≤ −(c− ε1)E6(t) + cg ◦ ϕx − (N1k5 − cε1)
∫ L

0

θ̃2xtdx+ (
N1

2
− c)g′ ◦ ϕx.

Now, as in previous sections, choosing ε1 < c andN1 large enough so that N1
2 −c ≥ 0,

N1k5 − cε1 ≥ 0 and T5 ∼ E6, we deduce that

T ′5(t) ≤ −cE6(t) + cg ◦ ϕx, (7.22)
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which is similar to (6.23). Then the proof can be ended exactly as for (6.23) in
Section 6, which shows (2.6) for E6.

8. General comments

Comment 1. Our results hold if we consider the following Neumann boundary
conditions (instead of the corresponding Dirichlet ones):

ϕx(0, t) = ϕx(L, t) = 0 for (1.1), (6.1), (6.4), (7.1) (8.1)

and

θx(0, t) = θx(L, t) = 0 for (6.1). (8.2)

The energy is defined with ϕ̃ instead of ϕ in case (8.1), and with θ̃ instead of θ in
case (8.2), where θ̃ is defined by (6.11) and

ϕ̃(x, t) = ϕ(x, t)− t

L

∫ L

0

ϕ1(y)dy −
1
L

∫ L

0

ϕ0(y)dy. (8.3)

Thanks to (6.11) and (8.3), we have
∫ L

0
ϕ̃(x, t)dx =

∫ L

0
θ̃(x, t)dx = 0, and then

Poincaré’s inequality (6.6) is still applicable for ϕ̃ and θ̃.
In case (6.2) and (7.2), the following boundary conditions:

ϕ(0, t) = ϕ(L, t) = ψx(0, t) = ψx(L, t) = θ(0, t) = θ(L, t) = 0 (8.4)

can be considered. The energy functionals E2 and E6 are now defined with ψ̃ and
θ instead of ψ and θ̃, respectively, where

ψ̃(x, t) = ψ(x, t)− 1
L

√
ρ2

k1

(∫ L

0

ψ1(y)dy
)

sin(

√
k1

ρ2
t)− 1

L

(∫ L

0

ψ0(y)dy
)

cos(

√
k1

ρ2
t).

Note that systems (6.2) and (7.2) are satisfied with ψ̃, ψ0 − 1
L

∫ L

0
ψ0(y)dy and

ψ1 − 1
L

∫ L

0
ψ1(y)dy instead of ψ, ψ0 and ψ1, respectively. On the other hand, by

integrating the second equation of (6.2) and (7.2) over ]0, L[ and using (8.4), we
obtain that

∫ L

0
ψ̃(x, t)dx = 0, and then (6.6) is applicable for ψ̃. In this case (8.4),

and as in [32], the functionals J3 (Lemma 6.10) and T3 (Lemma 7.5) are now defined
by

J3(t) = −ρ2ρ3

∫ L

0

θ
(∫ x

0

ψ̃t(y, t)dy
)
dx

and

T3(t) = −ρ2ρ3

∫ L

0

θt

(∫ x

0

ψ̃t(y, t)dy
)
dx− ρ2k3

∫ L

0

θxψ̃dx.

Comment 2. Our results remain true if we consider variable coefficients ρi(x)
(i = 1, . . . , 4) and ki(x) ( i = 1, . . . , 5) satisfying some smallness and smoothness
conditions. On the other hand, our approach can be adapted to different kind of
systems with an infinite history to get their stability with kernels satisfying the
weaker hypothesis (H2) (see [13]).
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Comment 3. Our stability results concerning (6.1) (Theorems 6.2 and 6.3)
hold for this porous thermoelastic system with an infinite history

ρ1ϕtt − k1(ϕx + ψ)x + k4θx = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ)− k5θ +
∫ +∞

0

g(s)ψxx(t− s)ds = 0,

ρ3θt − k3θxx + k4ϕxt + k5ψt = 0,

ϕ(0, t) = ψ(0, t) = θ(0, t) = ϕ(L, t) = ψ(L, t) = θ(L, t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), θ(0, t) = θ0(x),

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x).

(8.5)

This system was considered in [22, 39] under condition (1.2) and with a finite
history (that is the infinite integral in (8.5) is replaced by the finite one

∫ t

0
), and

exponential and polynomial decay estimates were proved in [39] under condition
(1.4), and a general decay estimate was proved in [22] under condition (1.6).

Comment 4. Our stability results hold if we consider a finite history of type∫ t

0
(instead of

∫ +∞
0

) with ψ0 = 0 in case (1.1), (6.1), (6.4) and (7.1), and ϕ0 = 0
in case (6.2), (6.3) and (7.2). In this case, the restrictions (2.5) and (2.10) are
automatically satisfied. In [16], the stability of (1.1) with a finite history was proved
under condition (1.7) but independently of ψ0 = 0 and (1.2). The arguments of [16]
can be applied to (6.1), (6.4) and (7.1) with a finite history to get their stability
under (1.7) even if ψ0 6= 0 and (1.2) does not hold.

Comment 5. To the best of our knowledge, getting a decay estimate for the
solution of (1.1) with (finite or infinite) history (or even with a frictional damping)
acting only on the first equation is an open problem. But if we consider an infinite
history on both first and second equations of (1.1), then the energy functional of
(1.1) satisfies (2.6) without the restriction (1.2). Let us consider this situation

ρ1ϕtt − k1(ϕx + ψ)x +
∫ +∞

0

g1(s)ϕxx(t− s)ds = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) +
∫ +∞

0

g2(s)ψxx(t− s)ds = 0,

ϕ(0, t) = ψ(0, t) = ϕ(L, t) = ψ(L, t) = 0,

ϕ(x,−t) = ϕ0(x, t), ϕt(x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x)

(8.6)

under the following hypothesis:

(H5) gi : R+ → R+ (i = 1, 2) is differentiable non-increasing function such that
gi(0) > 0,

l2 = k2 −
∫ +∞

0

g2(s)ds > 0, (8.7)

l1 = k1 −
∫ +∞

0

g1(s)ds >
k0k1

l2

∫ +∞

0

g1(s)ds, (8.8)

where k0 is defined in (6.6).
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As for (1.1) in Section 5 and following the idea of [6], we can prove that, under
(H5), (8.6) is well-posed according to Theorem 5.1 by considering

η1(x, t, s) = ϕ(x, t)− ϕ(x, t− s), in ]0, L[×R+ × R+,

η2(x, t, s) = ψ(x, t)− ψ(x, t− s), in ]0, L[×R+ × R+,

ηi
0(x, s) = ηi(x, 0, s), U = (ϕ,ψ, ϕt, ψt, η

1, η2)T ,

U0 = (ϕ0(·, 0), ψ0(·, 0), ϕ1, ψ1, η
1
0 , η

2
0)T

and
H =

(
H1

0 (]0, L[)
)2 ×

(
L2(]0, L[)

)2 × Lg1 × Lg2 ,

where Lgi is defined by (5.5) and endowed with the inner product (5.6) (with gi

instead of g). Then (8.6) is equivalent to (5.8), where A(v1, v2, v3, v4, v5, v6) =
(f1, f2, f3, f4, f5, f6)T and

f1 = −v3, f2 = −v4,

f3 = −k1

ρ1
∂x(∂xv1 + v2) +

1
ρ1

(∫ +∞

0

g1(s)ds
)
∂xxv1 −

1
ρ1

∫ +∞

0

g1(s)∂xxv5(s)ds,

f4 = − 1
ρ2

(
k2 −

∫ +∞

0

g2(s)ds
)
∂xxv2 −

1
ρ2

∫ +∞

0

g2(s)∂xxv6(s)ds+
k1

ρ2
(∂xv1 + v2),

f5 = −v3 + ∂sv5, f6 = −v4 + ∂sv6.

The domain D(A) of A (endowed with the graph norm (5.9)) is given by D(A) =
{V ∈ H, AV ∈ H and v5(0) = v6(0) = 0}. The proof of Theorem 5.1 for (8.6) can
be completed as in Section 5 by proving that A is a maximal monotone operator.

Now, the energy functional associated with (8.6) is defined by

E8(t) =
1
2

∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t −

(∫ +∞

0

g1(s)ds
)
ϕ2

x

+
(
k2 −

∫ +∞

0

g2(s)ds
)
ψ2

x + k1(ϕx + ψ)2
)
dx+

1
2
(g1 ◦ ϕx + g2 ◦ ψx).

(8.9)

Remark 8.1. Similarly to Remark 6.1, we mention here that (6.6) implies

k1

∫ L

0

(ϕx + ψ)2dx ≥ k1(1− ε)
∫ L

0

ϕ2
xdx+ k0k1(1−

1
ε
)
∫ L

0

ψ2
xdx,

for any 0 < ε < 1. Then, thanks to (8.7) and (8.8), we can choose k0k1
l2+k0k1

< ε < l1
k1

and obtain

ĉ

∫ L

0

(ϕ2
x + ψ2

x)dx ≤
∫ L

0

(
−

(∫ +∞

0

g1(s)ds
)
ϕ2

x

+
(
k2 −

∫ +∞

0

g2(s)ds
)
ψ2

x + k1(ϕx + ψ)2
)
dx,

(8.10)

where ĉ = min{l1 − εk1, l2 + (1− 1
ε )k0k1} > 0. This implies that the expression∫ L

0

(
−

(∫ +∞

0

g1(s)ds
)
ϕ2

x +
(
k2 −

∫ +∞

0

g2(s)ds
)
ψ2

x + k1(ϕx + ψ)2
)
dx
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defines a norm on
(
H1

0 (]0, L[)
)2, for (ϕ,ψ), equivalent to the one induced by(

H1(]0, L[)
)2. Consequently, the energy E8 defines a norm on H for U , and there-

fore, H equipped with the inner product that induces this energy norm is a Hilbert
space.

Theorem 8.2. Assume that (H5) holds and gi (i = 1, 2) satisfies (H2) (instead of
g). Let U0 ∈ H such that

∃Mi ≥ 0 : ‖ηi
0x(s)‖L2(]0,L[) < Mi, ∀s > 0 (i = 1, 2). (8.11)

Then there exist positive constants c′, c′′, ε0 (depending continuously on E8(0)) for
which E8 satisfies (2.6).

Proof. First, as for (1.1), we have that E8 satisfies

E′8(t) =
1
2
g′1 ◦ ϕx +

1
2
g′2 ◦ ψx ≤ 0.

Second, we consider the functionals

D1(t) = −ρ1

∫ L

0

ϕt

∫ +∞

0

g1(s)(ϕ(t)− ϕ(t− s)) ds dx,

D2(t) = −ρ2

∫ L

0

ψt

∫ +∞

0

g2(s)(ψ(t)− ψ(t− s)) ds dx,

D3(t) =
∫ L

0

(ρ1ϕϕt + ρ2ψψt)dx.

As in the previous sections, we can prove that, for any positive constant δ, D1−D3

satisfy

D′
1(t) ≤ δ

∫ L

0

(ψ2
x + (ϕx + ψ)2)dx− ρ1

(∫ +∞

0

g1(s)ds− δ
) ∫ L

0

ϕ2
tdx

+ cδ(g1 ◦ ϕx − g′1 ◦ ϕx),
(8.12)

D′
2(t) ≤ δ

∫ L

0

(ψ2
x + (ϕx + ψ)2)dx− ρ2

(∫ +∞

0

g2(s)ds− δ
) ∫ L

0

ψ2
t dx

+ cδ(g2 ◦ ψx − g′2 ◦ ψx)
(8.13)

and, for some positive constants δ1 and δ2,

D′
3(t) ≤

∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx− δ1

∫ L

0

(ψ2
x + (ϕx + ψ)2)dx

+ δ2(g1 ◦ ϕx + g2 ◦ ψx).
(8.14)

Now, let g0 = min
{ ∫ +∞

0
g1(s)ds,

∫ +∞
0

g2(s)ds
}
, N1, N2 > 0 and

D4 = N1E8 +N2(D1 +D2) +D3.

By combining (8)–(8.14) and taking δ = 1
N2

2
in (8.12) and (8.13), we obtain

D′
4(t) ≤ −(δ1 −

2
N2

)
∫ L

0

ψ2
xdx− (δ1 −

2
N2

)
∫ L

0

(ϕx + ψ)2dx

− ρ1

(
N2g0 −

1
N2

− 1
) ∫ L

0

ϕ2
tdx− ρ2

(
N2g0 −

1
N2

− 1
) ∫ L

0

ψ2
t dx

+ (
N1

2
− cN2)(g

′
1 ◦ ϕx + g′2 ◦ ψx) + cN2(g1 ◦ ϕx + g2 ◦ ψx).
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At this point, we choose N2 large enough so that

min{δ1 −
2
N2

, N2g0 −
1
N2

− 1} > 0.

Using (6.6) (for ϕ and ψ) and (8.10), we can find that there exists a positive constant
MN2 (depending on N2) such that

(N1 −MN2)E8 ≤ D4 ≤ (N1 +MN2)E8. (8.15)

Thus, choosing N1 large enough so that N1
2 − cN2 ≥ 0 and N1 > MN2 ,

D′
4(t) ≤ −c

∫ L

0

(
ϕ2

t + ψ2
t + ψ2

x + (ϕx + ψ)2
)
dx+ c(g1 ◦ ϕx + g2 ◦ ψx). (8.16)

Then, by using (8.9), Equation (8.16) implies

D′
4(t) ≤ −cE8(t) + c(g1 ◦ ϕx + g2 ◦ ψx). (8.17)

Using (H2) and (8.11), we have (as for (3.19) and (6.24))

G′(ε0E8(t))g1 ◦ ϕx ≤ −cE′8(t) + cε0E8(t)G′(ε0E8(t)), ∀t ∈ R+, ∀ε0 > 0,

G′(ε0E8(t))g2 ◦ ψx ≤ −cE′8(t) + cε0E8(t)G′(ε0E8(t)), ∀t ∈ R+, ∀ε0 > 0.

The proof of Theorem 8.2 can be finalized as in Section 3. �

Comment 6. For (1.1), (6.1) and (7.1) when (1.2) does not hold, and for (6.4),
the estimate (2.11) proved in Theorems 2.4, 6.3, 6.5 and 7.3 can be generalized by
giving a relationship between the smoothness of the initial data and the decay rate
of the energy. Indeed, let us consider the case (1.1). We have the following result.

Theorem 8.3. Assume that (H1) and (H2) hold and let n ∈ N∗ and U0 ∈ D(An)
satisfying

∃M0 ≥ 0 : max
m∈{0,...,n}

{‖∂(m)
s η0x(s)‖L2(]0,L[)} ≤M0, ∀s > 0. (8.18)

Then there exist positive constants cn and ε0 (depending continuously on ‖U0‖D(An))
such that

E(t) ≤ φn(
cn
t

), ∀t > 0, (8.19)

where φ1 = G−1
0 , G0 is defined by (2.12) and φm(s) = G−1

0 (sφm−1(s)), for m =
2, 3, . . . , n and s ∈ R+.

Remark 8.4. 1. Under the hypotheses of Theorem 8.3, E1, E4 and E5 satisfy
(8.19). The proof is exactly the same one given below.

2. The estimate (8.19) is weaker than

E(t) ≤ cn
tn
, ∀t > 0. (8.20)

The estimate (8.19) coincides with (8.20) when G = Id, and (8.19) generalizes
(8.20) proved in [30] (under (1.3)) and the one proved in [28, 29] (under (1.4) and
n = 1).

Example 8.5. Let us consider here a simple example to illustrate how the smooth-
ness of U0 improves the decay rate in (8.19). Let g(t) = d/(1 + t)q, for q > 1, and
d > 0 small enough so that (2.1) is satisfied. The classical condition (1.4) is not
satisfied if 1 < q ≤ 2, while (H2) holds with G(t) = tp, for any q > 1 and p > q+1

q−1 .
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Then φn(s) = csrn , where c is some positive constant and rn =
∑n

m=1
1

pm . There-
fore, (8.19) takes the form

E(t) ≤ cn
trn

, ∀t > 0, ∀p > q + 1
q − 1

. (8.21)

The decay rate rn increases when n increases or p decreases, and it converges to n
(which is the decay rate in (8.20)) when p converges to 1 (that is, when q converges
to +∞).

Proof of Theorem 8.3. We prove (8.19) by induction on n. For n = 1, condition
(8.18) coincides with (2.10), and (8.19) is exactly (2.11) given in Theorem 2.4 and
proved in Section 4.

Now, suppose that (8.19) holds and let U0 ∈ D(An+1) satisfying (8.18), for n+1
instead of n. We have Ut(0) ∈ D(An) (thanks to Theorem 5.1), Ut(0) satisfies
(8.18) (because U0 satisfies (8.18), for n+1) and Ut satisfies the first two equations
and the boundary conditions of (1.1), and then the energy Ẽ of (4.1) (defined in
Section 4) also satisfies

Ẽ(t) ≤ φn(
c̃n
t

), ∀t > 0, (8.22)

where c̃n is a positive constant depending continuously on ‖U0‖D(An+1). Now,
integrating (4.7) over [T, 2T ], for T ∈ R+, and using the fact that F ∼ E and
G0(E) is non-increasing, we deduce that

G0(E(2T ))T ≤
∫ 2T

T

E(t)G′(ε0E(t))dt ≤ c(E(T ) + Ẽ(T )). (8.23)

By combining (8.19), (8.22) and (8.23), we obtain that for all T > 0,

E(2T ) ≤ G−1
0

( 2c
2T

(
φn(

2cn
2T

) + φn(
2c̃n
2T

)
))
,

which implies, for t = 2T and cn+1 = max{2cn, 2c̃n, 4c} (note that G−1
0 and φn are

non-decreasing),

E(t) ≤ G−1
0

(cn+1

t
φn(

cn+1

t
)
)

= φn+1(
cn+1

t
), ∀t > 0.

This proves (8.19), for n+ 1. The proof of Theorem 8.3 is complete �
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[32] J. E. Muñoz Rivera, R. Racke; Mildly dissipative nonlinear Timoshenko systems-global exis-
tence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-276.



EJDE-2012/193 STABILIZATION OF A LINEAR TIMOSHENKO SYSTEM 45
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