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DYNAMIC CONTACT OF TWO GAO BEAMS

JEONGHO AHN, KENNETH L. KUTTLER, MEIR SHILLOR

Abstract. The dynamic contact of two nonlinear Gao beams that are con-
nected with a joint is modeled, analyzed, and numerically simulated. Contact
is modeled with either (i) the normal compliance condition, or (ii) the unilat-
eral Signorini condition. The model is in the form of a variational equality in
case (i) and a variational inequality in case (ii). The existence of the unique
variational solution is established for the problem with normal compliance
and the existence of a weak solution is proved in case (ii). The solution in the
second case is obtained as a limit of the solutions of the first case when the
normal compliance stiffness tends to infinity. A numerical algorithm for the
problem is constructed using finite elements and a mixed time discretization.
Simulation results, based on the implementation of the algorithm, of the two
cases when the horizontal traction vanishes or when it is sufficiently large to
cause buckling, are presented. The spectrum of the vibrations, using the FFT,
shows a rather noisy system.

1. Introduction

This work models the vibrations of two uniform elastic or viscoelastic nonlinear
Gao beams that are connected with a mechanical joint that has a gap or clearance.
The Gao nonlinear beam was introduced in [17, 18] to allow for the investigation
of the vibrations of beams about buckled states. The model for the process is in
the form of a system of nonlinear partial differential equations that are coupled
across the joint. We establish the existence of a weak solution to the system. Then,
we describe in detail a numerical algorithm for the problem, based on mixed finite
elements, and present two typical numerical simulations. One deals with vibration
when there is buckling, the other one without buckling. This is a step in our
investigation of the noise properties of mechanical systems and the transmission of
vibrations across joints.

Noise and vibration characteristics of mechanical assemblies, parts, and com-
ponents are very important in industry. Currently, the automotive industry has
considerable interest in the dynamic vibrations of mechanical systems, stemming
from the customer’s perception of noise characteristics of cars. The topic is under
extensive research, mainly experimentally and in part computationally in the in-
dustry. However, there exists no complete methods for such investigation, and full
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mathematical analysis of typical automotive problems is still out of reach. There-
fore, most of the models use various ad hoc assumptions, many of which are too
simplistic, and thus unrealistic, and not very useful.

Here, we introduce a simple one-dimensional geometrical setting to avoid certain
mathematical complications related to two- or three-dimensions. On the other
hand, the physical content of the problem is not simplified. Our long-term goal
is to understand the transmission of vibrations across mechanical joints. This will
help industry in the design of parts, assemblies and systems with acceptable noise
and vibration characteristics. Eventually, theory will replace the current practice
of finding that the system needs to be modified at the testing or even production
stages, because of unacceptable noise generation.

Preliminary steps in this program have been taken in [9, 10, 25, 27] where various
aspects of vibrations and contact of the Euler-Bernoulli linear beams were investi-
gated. In particular the modeling, analysis, and simulations of the vibrations of a
beam between two stops can be found in [9, 25, 27]. Here, we extend this study
to include nonlinear beams, a fact that makes the analysis and computations much
more complicated, since more specialized ideas and methods must be used.

Various mathematical and numerical results about the nonlinear Gao beam were
reported in [4, 7, 8, 26, 33, 34, 31, 38]. The main interest there was to study the
buckling of the beam and its vibrations about a buckled state. Contact conditions,
even when the governing equations are linear, make the problems nonlinear, which
led to the currently developing Mathematical Theory of Contact Mechanics ([21,
39] and references therein). Having a nonlinear equation and nonlinear contact
conditions, again, makes the problem much harder, both in terms of its analysis
and computationally. Computational issues related to contact can be found in
[15, 21, 32, 37, 41]

Recent numerical schemes for dynamic contact problems of linear beams have
been developed in [5, 2, 3]. In this paper, we propose a more advanced numerical
algorithm that is more technical since we have to handle properly the nonlinear
term in the equation. The theory of its convergence is investigated in [4]. Issues of
control of the Gao beam can be found in [19, 20].

We assume, for the sake of generality, that the beams are viscoelastic, and de-
scribe the viscosity by a short-term memory of the Kelvin-Voigt type. Moreover,
we also deal with the the inviscid case by passing to the limit when the viscosity
vanishes. The dynamic contact is modeled by either the Signorini nonpenetration
condition which describes unilateral contact of two perfectly rigid stops, or by the
normal compliance condition, which describes reactive stops. This work is an ex-
tension of [8] where the problem of the vibrations of one Gao beam between two
reactive stops was investigated. Some numerical simulations of the vibrations of
two Euler-Bernoulli linear beams with a reactive joint problem can be found in [25],
where the method of lines was used.

Next, we present a rather complex numerical algorithm for the problems. The
complexity arises from the nonlinearity of the beam equation coupled with the
nonlinear contact condition. The main idea of the numerical algorithm is to use
time discretization and the combination of the central difference formula and the
mixed finite element methods in space. Two simulations for the vibrations of the
system when buckling takes place and when it is absent, are depicted, showing
that the numerical scheme seem to be work reasonably well. The finite elements
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naturally fit with the weak formulation of the problem, since this is their usual
setting. We note that, adding to the complexity, it follows from the results of [35]
that even a much simplified system of this type may exhibit chaotic behavior.

The rest of the work is organized as follows. In Section 2 we present the physical
setting, and the classical model. We describe either the Signorini or the normal
compliance contact conditions. The beams are assumed to be either viscoelastic
or elastic. Since we allow the left beam to be fixed to an oscillating support,
we introduce in Section 3 a change of variable that allows to consider a problem in
which the left end is stationary. To present the variational formulation we introduce
the relevant function spaces, and state our main existence results, the existence of
the unique weak solution for the problem with normal compliance, Theorem 3.1,
and an existence of a weak solution for the problem with the Signorini condition,
Theorem 3.2.

In Section 4 we investigate the model with the normal compliance condition,
which in addition to having its own merit, may be considered as regularization of
the Signorini condition. We prove Theorem 3.1. In Section 5 we establish Theorem
3.2, in which a solution is obtained as a limit of a sequence of solutions found in
Section 4. In Section 6 we show in Theorem 6.2 that the problems with the normal
compliance condition or the Signorini condition with vanishing viscosity posses a
weak solution, too. We obtain the necessary a priori estimates (Theorem 6.1) on
the solutions with viscosity, and pass to the limit when the viscosity vanishes and
the normal compliance stiffness coefficients tend to infinity.

We describe in Section 7 a numerical algorithm for the model, based on the mixed
finite elements method. The central idea of the algorithm is to drive the recursive
formula which enables to compute next time step solutions of the linear system per
each step satisfying the contact conditions. The results of our simulations are given
in Section 8. We present two sets of simulations without buckling (p = 0) and with
the buckling of the right beam (p = 895). We also show the Fast Fourier Transform
of the motion of the right end of the left beam, and the noise, i.e., the spectrum of
frequencies that it generates.

The paper is summarized in Section 9, where some unresolved issues and future
work are discussed, too.

2. The Model

This section presents the classical formulation of the model, a change of vari-
able, the necessary function spaces, the variational form, and a statement of our
theoretical results.

The physical setting, shown in Figure 2.1 and a detail of the joint in Figure
2.2, is as follows. Two uniform Gao beams are connected at at a joint with a
clearance. The left beam is attached rigidly at its left end to a supporting device
that may oscillate with time, possibly periodically. The right end of the second
beam is clamped to a rigid support, say a wall. The motion of the right end of
the left beam is constrained by the motion of the left end of beam 2, where it may
move only within the given clearance. The expanded view of the joint is depicted
in Figure 2.2, where g is the clearance or the gap. For the sake of generality we
assume that the joint may be asymmetrical, and let g = g1 + g2 (g1, g2 > 0), where
g1 is the upper clearance and g2 is the lower one, when the system is at rest.
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Figure 2.1: The two deflected Gao beams
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Figure 2.2: The joint; g = g1 + g2 is the gap

The area-centers of gravity of the beams in their (stress free) dimensionless
reference configurations coincide with the intervals 0 ≤ x ≤ l∗, and l∗ ≤ x ≤ 1,
respectively.

A prescribed traction p = p(t) acts at the right end x = 1; the beams’ edges
in the joint are assumed to be permanently in frictionless contact. Adding friction
may be of interest in a future study.

We use dimensionless variables and denote by u1 = u1(x, t) and u2 = u2(x, t)
the vertical displacements of the beams, and by σi = σi(x, t) the shear stresses, for
i = 1, 2, where here and below i = 1 indicates the left beam and i = 2 the right
one. The equations of motion are

ρ1u1tt − σ1x = ρ1f1, 0 < x < l∗, (2.1)

ρ2u2tt − σ2x = ρ2f2, l∗ < x < 1, (2.2)

where fi denote the density (per unit mass) of the vertical applied forces, and ρi are
the beams’ densities (per unit length). Also, the subscripts x and t indicate partial
derivatives. The time interval of interest is 0 ≤ t ≤ T . The beams are nonlinear
and the constitutive relations are,

σi(x, t) = −kiuixxx(x, t)− diuitxxx(x, t) +
1
3
aiu

3
ix − νipuix, (2.3)

where the ki are the coefficients of elasticity, di are the coefficients of viscosity, ai

are the Gao coefficients, and νi are positive coefficients related to the compressive
or tensile traction, for i = 1, 2. By assumption, the beams are uniform and so the
various coefficients are positive constants.

The initial conditions are

u1(x, 0) = u01(x), u1t(x, 0) = v01(x) 0 ≤ x ≤ l∗, (2.4)

u2(x, 0) = u02(x), u2t(x, 0) = v02(x) l∗ ≤ x ≤ 1, (2.5)

where u0i and v0i are prescribed functions representing the initial deflections and
velocities of the beams, respectively.
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We suppose that the left beam is rigidly attached at its left end to a device that
may be oscillating in time with vertical displacement φ, thus, for 0 ≤ t ≤ T ,

u1(0, t) = φ(t), and u1x(0, t) = 0. (2.6)

Here φ is known, and we have more to say about it below. The right end of the
right beam is clamped, so

u2(1, t) = 0, and u2x(1, t) = 0. (2.7)

We turn to describe the contact process in the joint. First, we model it with
the normal compliance contact condition (see, e.g., [21, 22, 23, 24, 32, 39] and the
references therein), which describes reactive stops. The contact shears satisfy

σ = σ(t) ≡ σ1(l∗, t) = −σ2(l∗, t). (2.8)

When there is no contact the shear vanishes, thus,

u2 − g2 < u1 < u2 + g1 =⇒ σ = 0.

The reaction of the stops takes place only when the displacement of the end of the
left beam exceeds the clearance, is proportional to the interpenetration, and when

u2(l∗, t) + g1 ≤ u1(l∗, t),

the reaction is
σ = −λ1(u1(l∗, t)− u2(l∗, t),−g1)

where λ1 > 0 is the normal compliance stiffness of the top stop, and the reaction
(acting on the edge of the left beam) is downward. When

u1(l∗, t) ≤ u2(l∗, t)− g2,

the reaction is
σ = λ2(u2(l∗, t)− u1(l∗, t)− g2),

where λ2 > 0 is the normal compliance stiffness of the lower stop, and the reaction
(acting on the edge of the left beam) is upward. The discussion of the reaction of
the stops can be summarized as follows,

σ(t) = Λ(u1(l∗, t)− u2(l∗, t))

≡ −λ1(u1(l∗, t)− u2(l∗, t)− g1)+ + λ2(u2(l∗, t)− u1(l∗, t)− g2)+,
(2.9)

and (f)+ = max(f, 0) is the positive part of the function.
We note that more general normal compliance power laws were introduced and

used in [21, 6, 22, 23, 24, 32, 39], among many other references.
Finally, we assume that the ends do not exert moments on each other, and thus,

wixx = 0, x = l∗. (2.10)

Given the problem data; i.e., u0i = u0i(x), v0i = v0i(x), (i = 1, 2), p(t), and
φ = φ(t), the physical parameters and the constitutive relations (2.3), the classical
formulation of the dynamic contact at a joint of two Gao beams with the normal
compliance contact condition is:

Problem 2.1. Find a pair of functions (u1, u2) such that (2.1)–(2.10) hold.
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The problem, in its variational form, is studied in Section 4 where we establish
the existence of its unique weak solution.

The second contact condition that is often used is the so-called Signorini non-
penetration or unilateral condition in which the stops are assumed to be perfectly
rigid. It is, essentially, an idealization of the normal compliance condition, and may
be justified in certain settings. We discuss the relationship between the conditions
below.

Since the stops are rigid right, the right end of the left beam must be within the
clearance of the left end of the right beam. Thus,

u2(l∗, t)− g2 ≤ u1(l∗, t) ≤ u2(l∗, t) + g1.

When strict inequalities hold, there is no contact, the ends are free, and then
σ(t) = 0. On the other hand, when the ends are in contact, the stresses are equal
but opposite, then (2.8) holds.

Next, when contact takes place at the lower stop u1(l∗, t) = u2(l∗, t) − g2 and
σ ≥ 0, and when the contact is at the upper stop, u1(l∗, t) = u2(l∗, t) + g1 and
σ ≤ 0. We may write it concisely by using the indicator function χ,

χ(r) =

{
0 if u2 − g2 ≤ r ≤ u2 + g1,

+∞ otherwise.
(2.11)

Then, we let ∂χ denote the subdifferential of χ, i.e.,

∂χ(r) =


0 if u2 − g2 < r < u2 + g1,

(−∞, 0] if r = u2 − g2,
[0,∞) if r = u2 + g1.

(2.12)

We note that the effective domain of both χ and ∂χ is [u2 − g2, u2 + g1].
The contact conditions may be summarized in the form of the following set

inclusion that represents the complementary conditions:

u2 − g2 ≤ u1 ≤ u2 + g1, (2.13)
−σ ∈ ∂χ(u1), (2.14)

evaluated at x = l∗, together with (2.8).
Given the problem data, i.e., u0i = u0i(x), v0i = v0i(x), (i = 1, 2), p, and

φ = φ(x), the physical parameters and the constitutive relations (2.3), the ‘classical’
formulation of the dynamic contact of two Gao beams with the Signorini contact
condition is:

Problem 2.2. Find a pair of functions (u1, u2) such that (2.1)–(2.8), (2.10) and
(2.13)–(2.14) hold.

However, the Signorini condition is an over-idealization when dynamic contact
takes place [39]. In the literature, the normal compliance condition is often used
as a regularization of the Signorini condition, although physically, the Signorini
condition seems to be an idealization of the normal compliance condition, as there
are no perfectly rigid objects. Moreover, the Signorini condition introduces sever
mathematical difficulties in multidimensional dynamic contact problems, that re-
flect the fact that there are no perfectly rigid objects. Moreover, there are issues of
energy conservation when using it [5, 37]. The Signorini condition can be obtained
(formally) as a limit when the stiffness in the normal compliance condition tends
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to infinity. This has been established rigorously in many works, see, e.g., [16, 28]
and the references therein. Indeed, in this work and establish the solvability of the
problem with the Signorini condition in the limit λ1, λ2 → ∞. However, we do it
mainly to show that the normal compliance problems behave well even when the
stiffnesses are arbitrarily large and, also, for the sake of completeness.

3. Variational formulation and results

We proceed to a weak or variational formulation of the two problems, since the
solutions may not be sufficiently regular. Indeed, this is the case in the problem with
the Signorini condition since the velocity is discontinuous upon impact. Moreover,
there is regularity ceiling for the problem with normal compliance (see [29] for
the details). More importantly, we use it since the mathematical tools for weak
solutions are much more advanced. Moreover, the variational formulation is the
basis for the finite element algorithm presented in Section 7.

We turn to introduce the function spaces that are needed. However, first we
change the variable u1 so as to have a zero boundary condition at x = 0, so that
the function spaces we use below that incorporate the boundary conditions do not
depend on time. To that end, we introduce a smooth function Φ = Φ(x, t), for
0 ≤ x ≤ l∗, such that

Φ(0, t) = φ(t), Φx(0, t) = 0,

Φ(l∗, t) = Φx(l∗, t) = Φxx(l∗, t) = Φxxx(l∗, t) = 0.
(3.1)

We note that the function

Φ(x, t) = φ(t) cos4(
πx

2l∗
)

satisfies all these conditions. The new dependent variable

u1(x, t) = u1(x, t)− Φ(x, t), (3.2)

satisfies,

u1(0, t) = u1x(0, t) = 0,

u1(l∗, t) = u1x(l∗, t) = u1xx(l∗, t) = u1xxx(l∗, t) = 0.

These properties guarantee that the contact conditions in terms of u1 remain the
same as above.

We perform the same change of the initial condition u10 and v10.
The shear stress in the first beam may be written as

σ1(x, t) = −k1u1xxx − d1u1txxx +
1
3
a1(u1x + Φx)3

− ν1pu1x + Ψ(x, t, p),
(3.3)

where we set
Ψ(x, t, p(t)) = −k1Φxxx − d1Φtxxx − ν1pΦx. (3.4)

We note that Ψ(l∗, t, p(t)) = 0, so that the change of the variable does not change
the contact shear stress.

Next, we rewrite the force as

f1 = f1 − φ̈(t) cos4
(πx
2l∗

)
.
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For the sake of simplicity, we do not use the bar below, and so u1 denotes u1(x, t)
and f1 stands for f1, so that the equation of motion (2.1) remains the same. We
also rescale the variables so that ρ1 = ρ2 = 1 for the sake of simplicity of the
presentation.

We now proceed to the variational formulation of the problem. We use the
following notation:

V1 ≡ {w ∈ H2(0, l∗) : w(0) = wx(0) = 0},
V2 ≡ {w ∈ H2(l∗, 1) : w(1) = wx(1) = 0}.

We note that the transformation of u1 allows us to make V1 independent of time.
Also,

H1 ≡ L2(0, l∗), H2 ≡ L2(l∗, 1).

Let V ≡ V1 × V2 and H ≡ H1 ×H2. Then, identifying H and H ′, we may write,

V ⊆ H = H ′ ⊆ V ′.

Let Vi ≡ L2(0, T ;Vi), Hi ≡ L2(0, T ;Hi), for i = 1, 2, and V ≡ L2(0, T ;V ), and
H ≡ L2(0, T ;H), for T > 0. We denote by (v, v)Hi the inner product on Hi and
the norm by |v|2Hi

= (v, v)Hi , for i = 1, 2. The inner products and norms on the
other spaces are defined similarly. On V we may use the equivalent norm

‖v‖ = |vxx|H ,

and we do so when it is convenient. We also define

W1 ≡ {w ∈ H1(0, l∗) : w(0) = 0}, W2 ≡ {w ∈ H1(l∗, 1) : w(1) = 0},

with similar notation as above.
Let w = (w1, w2) ∈ V, and let φ ∈ C∞([0, T ]) with φ(T ) = 0. We multiply

(2.1) with w1(x)φ(t) and integrate (formally) over (0, l∗) × (0, T ), and integrating
by parts we obtain the following variational equations for u1,

− (v01, w1)H1φ(0)−
∫ T

0

(u1t, w1)H1φ
′(t)dt

−
∫ T

0

(σ1(l∗)w1(l∗) + (k1u1xx + d1u1txx, w1xx)H1)φ(t)dt

+
1
3
a1

∫ T

0

(
(u1x + Φx)3, w1x

)
H1

φ(t) dt

+
∫ T

0

(−ν1p(t)(u1x, w1x)H1 − (Ψx, w1)H1)φ(t) dt

=
∫ T

0

(f1, w1)H1φ(t).

(3.5)
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Similarly, we multiply (2.2) with w2(x)φ(t), integrate over (l∗, 1)× (0, T ) and find

− (v02, w2)H2φ(0)−
∫ T

0

(u2t, w2)H1φ
′(t)dt

+
∫ T

0

(σ2(l∗)w2(l∗) + (k2u2xx + d2u2txx, w2xx)H2)φ(t)dt

+
∫ T

0

((
1
3
a2u

3
2x − ν2p(t)u2x), w2x)H2φ(t)dt

=
∫ T

0

(f2, w2s)H2φ(t)dt

(3.6)

Here, the shear stresses σ1(l∗) and σ2(l∗) satisfy (2.8) and either the normal
compliance condition (2.9) or the Signorini condition (2.13) and (2.14).

The convex set of admissible pairs of displacements is

K =
{
w = (w1, w2) ∈ V : w1(0) = 0, w2(1) = 0,

w2(l∗)− g2 ≤ w1(l∗) ≤ w2(l∗) + g1
}
.

(3.7)

and we set K = L2(0, T ;K).
We make the following assumptions on the problem data:
(A1) The initial displacements u0 = (u01, u02) and velocities v0 = (v01, v02)

satisfy
u0 ∈ K, v0 ∈ H. (3.8)

(A2) The traction p = p(t) satisfies

p ∈ C1([0, T ]), |p|, |p′| ≤ p0. (3.9)

(A3) The motion of the left support φ = φ(t) satisfies

φ ∈ C2([0, T ]), u01(0) = φ(0). (3.10)

(A4) The body forces f = (f1(x, t), f2(x, t)) satisfy

f ∈ H. (3.11)

(A5) The coefficients

g1, g2, ki, di, ai, νi, λi, i = 1, 2, (3.12)

are positive constants.
The main theoretical result in this work is the following existence and uniqueness

result for the problem with the normal compliance contact condition.

Theorem 3.1. Assume that (A1)–(A5) hold. Then, there exists a unique solution
u = (u1, u2) ∈ V, such that u(·, 0) = u0, ut(·, 0) = v0, and the variational equations
(3.5) and (3.6) hold. The stress σ(t) satisfies (2.9) in a weak sense.

The proof of the theorem is presented in Section 4. We conclude that Problem
2.1 has a unique weak solution.

In the case of the Signorini condition, we consider the following variational for-
mulation of the problem to find u, v ∈ V such that if w,w′ ∈ V is such that
w(T ) = u(T ) and

−g2 ≤ w1(l∗, t)− w2(l∗, t) ≤ g1,
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then,

(v0,w(0)− u0)H −
∫ T

0

(v,v −w′)Hdt

+
∫ T

0

((∫ l∗

0

k1u1xx(u1xx − w1xx)dx
)

+
(∫ 1

l∗

k2u2xx(u2xx − w2xx)dx
))
ds

+
∫ T

0

((∫ l∗

0

d1v1xx(u1xx − w1xx)dx
)

+
(∫ 1

l∗

d2v2xx(u2xx − w2xx)dx
))
ds

+
∫ T

0

1
3
a1

(
(u1x + Φx)3, u1x − w1x

)
H1

− ν1(pu1x, u1x − w1x)H1dt

+
∫ T

0

−(Ψx, u1 − w1)H1

1
3
a2

(
((u2x)3 − ν2pu2x), u2x − w2x

)
H2

dt

≤
∫ T

0

(f ,u−w)Hds.

The existence result for the problem with the Signorini condition is:

Theorem 3.2. Assume that (A1)–(A5) hold. Then, there exists a function u =
(u1, u2) ∈ K, such that u(·, 0) = u0, ut(·, 0) = v0, and for a.a. t ∈ (0, T ) the
variational equations (3.5) and (3.6) hold, together with (2.13) and (2.14).

The theorem is established in Section 5, and is based on obtaining the necessary
a priori estimates on the solutions of the problems with normal compliance and
passing to the limit as the normal compliance stiffnesses become rigid; i.e., λ1, λ2 →
∞.

We conclude that Problem 2.2 has a weak solution and note that, quite typically,
the uniqueness of the solution is an unresolved question.

We also note that the corresponding problems without viscosity have variational
solutions, too, see Section 6, however their uniqueness is open.

4. The problem with normal compliance

We establish Theorem 3.1 by transforming the variational equation into an ab-
stract evolution equation in V ′ to which we apply various results for such abstract
equations. To deal with the cubic terms in the constitutive relations (2.3) we in-
troduce a truncation. For detailed description of the various Sobolev Spaced used
here, we refer to [1].

First, we depict in Figure 4.1 the normal compliance condition (2.9) with the
Lipschitz continuous function Λ, and the contact shear is given by

σ(t) = Λ(u1(l∗, t)− u2(l∗, t)). (4.1)

When we study the problem with the Signorini condition, in the following section,
we let λ1, λ2 →∞ leading the multifunction Λ∞ = ∂χ given in (2.12) and depicted
in Figure 5.1.

To deal with the nonlinear cubic term, we use truncation and replace the function
Q(r) = r3 with

Qm(r) ≡


m3 if r > m

r3 if |r| ≤ m
−m3 if r < −m

(4.2)
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Λ(r)

Figure 4.1: The normal compliance graph, the slopes are λi, i = 1, 2, r = 0
corresponds to the center at u2(l∗, t)

Integration of (3.5) and (3.6) in time over (0, T ) leads to the approximate prob-
lem of finding, for a fixed m > 0, a pair um = (u1m, u2m) ∈ V such that

〈u1tt, w1〉V1 −
∫ T

0

σ(t)w1(l∗) dt+ (k1u1xx + d1u1txx, w1xx)H1

+
1
3
a1(Qm(u1x + Φx), w1x)H1 − ν1(pu1x, w1x)H1 − (Ψx, w1)H1

= (f1, w1)H1 ,

(4.3)

and

〈u2tt, w2〉V2 −
∫ T

0

σ(t)w2(l∗) dt+ (k2u2xx + d2u2txx, w2xx)H2

+
1
3
a2((Qm(u2x)− ν2pu2x), w2x)H2

= (f2, w2)H2 ,

(4.4)

where we used condition (2.8) for σ, along with the initial conditions u(·, 0) = u0,
ut(·, 0) = v0. Here, wi ∈ Vi and the time derivatives are understood in the sense
of V ′i valued distributions.

Let u = (u1, u2) ∈ V, we use the notation

v = u′, u(t) = u0 +
∫ t

0

v(s) ds,

where here and below the prime denotes the partial t derivative. We use the notation
γ for the trace map from V on x = l∗ and the projection πiu ≡ ui, for i = 1, 2, and
γ∗ is the adjoint map of γ. Next, we define the operators A,B,Nm(t, ·) : V → V ′

by

〈Av,w〉 ≡ (
∫ l∗

0

d1v1xxw1xxdx) + (
∫ 1

l∗

d2v2xxw2xxdx), (4.5)

〈Bu,w〉 ≡ (
∫ l∗

0

k1u1xxw1xxdx) + (
∫ 1

l∗

k2u2xxw2xxdx), (4.6)
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and

〈Nm(t,u),w〉 =
1
3
a1(Qm(u1x + Φx), w1x)H1 − ν1(pu1x, w1x)H1

− (Ψx, w1)H1 +
1
3
a2((Qm(u2x)− ν2pu2x), w2x)H2 .

(4.7)

Here and below, 〈·, ·〉 denotes the duality pairing between V and V ′ and we consider
these operators as also being defined on V in the obvious way.

Then, (3.5) and (3.6), along with the initial conditions, can be written as an
abstract equation in V ′ as follows:

Problem 4.1. Find a pair um,vm ∈ V with v′m ∈ V ′, for integer m > 0, such that,

v′ +Av +Bu +Nm(·,u) + π∗1γ
∗Λ(u1(l∗, ·)− u2(l∗, ·))

− π∗2γ∗Λ(u1(l∗, ·)− u2(l∗, ·)) = f ,
(4.8)

v(0) = v0, (4.9)

u(t) = u0 +
∫ t

0

v(s)ds. (4.10)

Here, and below, we omit the subscript m from the solution, until we need it in
passing to the limit m→∞.

We note that the operator Nm is Lipschitz continuous, and satisfies

‖Nm(t,u)−Nm(t,w)‖V ′ ≤ Km‖u−w‖V ,
where the constant Km which is independent of t.

Also, let N(t,u) : V → V ′ be defined by

〈N(·,u),w〉 =
1
3
a1((u1x + Φx)3, w1x)H1 − ν1(pu1x, w1x)H1

− (Ψx, w1)H1 +
1
3
a2(((u2x)3 − ν2pu2x), w2x)H2 .

(4.11)

Next, let

Rm(r) =
∫ r

0

Qm(z)dz,

Moreover, using assumption (A2), we obtain∫ t

0

p(s)(u1x, u1tx)H1 ds =
1
2

∫ t

0

p(s)
d

ds
|u1x|2H1

≥ −p0|u1x(t)|2H1
− C(p(0), u01)− p0

∫ t

0

|u1x(s)|2H1
ds.

This implies that for suitable δ > 0, depending only on a1 and a2, we can derive
the estimate∫ t

0

〈Nm(s,u(s)),v(s)〉ds

≥ δ
∫ l∗

0

Rm(u1x(t) + Φx(t))dx− a1

3

∫ t

0

(Qm(u1x + Φx),Φ′x)H1dt

+ δ

∫ 1

l∗

Rm(u2x(t))dx− C(u10,Φx(0, ·),Φx)− (2 + p0)
∫ t

0

∫ l∗

0

|u1x|2 dx ds

− C(Ψx,Ψtx,Ψx(0, ·))− C(p)|u1x(t)|2H1
.
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Consider that second term on the right of the inequality.∣∣ ∫ t

0

(Qm(u1x + Φx),Φ′x)Hdt
∣∣ ≤ C(Φ′x)

∫ t

0

∫ l∗

0

Qm(|u1x + Φx|) dx ds+ C(Φ′x,Φx).

Then, adjusting the constants, we find

≤ C(Φ′x)
∫ t

0

∫ l∗

0

Rm(u1x + Φx) dx ds+ C(Φ′x,Φx).

It follows that∫ t

0

〈Nm(s,u(s)),v(s)〉ds

≥ δ
∫ l∗

0

Rm(u1x(t) + Φx(t))dx− C(Φ′x)
∫ t

0

∫ l∗

0

Rm(u1x + Φx) dx ds

− C(Φ′x,Φx) + δ

∫ 1

l∗

Rm(u2x(t))dx− C(u10,Φx(0, ·),Φx)

− (2 + p0)
∫ t

0

∫ l∗

0

|u1x|2 dx ds− C(Ψx,Ψtx,Ψx(0, ·))− C(p)|u1x(t)|2H1
.

Written in a simpler form, we have,∫ t

0

〈Nm(s,u(s)),v(s)〉ds

≥ δ
∫ l∗

0

Rm(u1x(t) + Φx(t))dx+ δ

∫ 1

l∗

Rm(u2x(t))dx

− C(p)
∫ t

0

‖u‖2W ds− C(p)‖u(t)‖2W − C
∫ t

0

∫ l∗

0

Rm(u1x + Φx) dx ds− C,

(4.12)

where the constants depend on the initial data and the given functions, but not on
ai, di or ki, i = 1, 2.

The following existence and uniqueness result holds for each integer m.

Lemma 4.2. For each positive integer m, there exists a unique solution (um,vm)
to Problem 4.1.

Proof. For the sake of convenience, let the operator M(·,u) be defined as

Bu +Nm(·,u) + π∗1γ
∗Λ(u1(l∗)− u2(l∗))− π∗2γ∗Λ(u1(l∗)− u2(l∗)),

so that M is Lipschitz as a map from V to V ′ with a constant K depending on m
and λ1, λ2.

For u1 ∈ V, let v1 be the solution of

v′1 +Av1 +M(t,u1) = f , v1(0) = v0.

Then, let w1 be given by

w1(t) = u0 +
∫ t

0

v1(s)ds.
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Consider the map u1 → v1 → w1. Consider u1,u2 and the corresponding wi that
result in this way. First, from the equation, we have

1
2
|v1(t)− v2(t)|2H + δ

∫ t

0

‖v1(s)− v2(s)‖2V ds

≤
∫ t

0

〈M(s,u1)−M(s,u1),v1(s)− v2(s)〉ds

≤ C
∫ t

0

‖u1(s)− u2(s)‖2V ds+
δ

2

∫ t

0

‖v1(s)− v2(s)‖2V ds,

and so

|v1(t)− v2(t)|2H +
∫ t

0

‖v1(s)− v2(s)‖2V ds ≤ C
∫ t

0

‖u1(s)− u2(s)‖2V ds.

Now, it follows from the definition of wi and the above inequality, that

‖w1(t)−w2(t)‖2V ≤ C(T )
∫ t

0

‖v1(s)− v2(s)‖2V ds

≤ C
∫ t

0

‖u1(s)− u2(s)‖2V ds.

Iterating this inequality sufficient number of times shows that a high enough power
of this map is a contraction map on V. Therefore, it has a unique fixed point u
which yields the unique solution to Problem 4.1. �

Next, we derive the necessary estimates that are independent of m. We denote
by (um,vm) the solution guaranteed in Lemma 4.2, however, below we omit the
subscript m.

From (4.8) and the estimate given for Nm in (4.12), it follows that there exists
a constant δ > 0, depending on the parameters of the problem, such that

1
2
|v(t)|2H + min(d1, d2)

∫ t

0

‖v(s)‖2V ds+ min(k1, k2)‖u(t)‖2V

+ δ

∫ l∗

0

Rm(u1x(t) + Φx(t))dx+ δ

∫ 1

l∗

Rm(u2x(t))dx

+
∫ t

0

Λ(u1(s, l∗)− u2(s, l∗))(v1(s, l∗))ds

−
∫ t

0

Λ(u1(s, l∗)− u2(s, l∗))(v2(s, l∗))ds

≤ 1
2
|v0|2H + C(p′)

∫ t

0

‖u‖2W ds+ C(p)‖u(t)‖2W

+
∫ t

0

∫ l∗

0

Rm(u1x + Φx) dx ds+ C.

The two terms involving Λ taken together are nonnegative. In fact, they equal

S(u1(t, l∗)− u2(t, l∗)),

where

S(r) =
∫ r

0

Λ(s)ds.
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Then, by using Gronwall’s inequality to eliminate the term∫ t

0

∫ l∗

0

Rm(u1x + Φx) dx ds,

on the right-hand side, we can adjust the constants and obtain

|v(t)|2H + min(d1, d2)
∫ t

0

‖v(s)‖2V ds+ min(k1, k2)‖u(t)‖2V

+ δ

∫ l∗

0

Rm(u1x(t) + Φx(t))dx+ δ

∫ 1

l∗

Rm(u2x(t))dx+ S(u1(t, l∗)− u2(t, l∗))

≤ C
(
|v0|2H +

∫ t

0

‖u‖2W ds+ ‖u(t)‖2W + 1
)
.

The two terms involving Rm are nonnegative, since Rm is nonnegative. Therefore,
discarding these two terms yields

|v(t)|2H + min(d1, d2)
∫ t

0

‖v(s)‖2V ds

+ min(k1, k2)‖u(t)‖2V + S(u1(t, l∗)− u2(t, l∗))

≤ C
(
|v0|2H +

∫ t

0

‖u‖2W ds+ ‖u(t)‖2W + 1
)
.

The compactness of the embedding of V into W implies

|v(t)|2H + min(d1, d2)
∫ t

0

‖v(s)‖2V ds

+ min(k1, k2)‖u(t)‖2V + S(u1(t, l∗)− u2(t, l∗))

≤ C
(
|v0|2H +

∫ t

0

‖u‖2W ds+ 1
)

+
1
2

min(k1, k2)‖u(t)‖2V + C|u(t)|2H .

Also,

|u(t)|2H ≤ C
(
|u0|2 +

∫ t

0

|v(s)|2ds
)
,

and so an application of the Gronwall inequality yields

|v(t)|2H + min(d1, d2)
∫ t

0

‖v(s)‖2V ds

+ S(u1(t, l∗)− u2(t, l∗)) + min(k1, k2)‖u(t)‖2V
≤ C(Φ, u0, v0, T, p0, k1, k2).

(4.13)

It follows from the continuity of the embedding of H1 into C([0, 1]) that this
estimate provides an upper bound on the values of |uix(x, t)| that is independent
of m. Therefore, by taking m sufficiently large, we find that the values of uix and
u1x(t) + Φx(t) remain in the unmodified region in the definition of Qm in (4.2).
This observation completes the proof of the following abstract version of Theorem
3.1.

Theorem 4.3. Let (A1)–(A5) hold. Then, for each pair (λ1, λ2) there exists a
unique solution (u,v) to

v′ +Av +Bu +N(·,u) + π∗1γ
∗Λ(u1(l∗)− u2(l∗))

− π∗2γ∗Λ(u1(l∗)− u2(l∗)) = f ,
(4.14)
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v(0) = v0, (4.15)

u(t) = u0 +
∫ t

0

v(s)ds. (4.16)

This solution satisfies the estimate

|v(t)|2H + min(d1, d2)
∫ t

0

‖v(s)‖2V ds+ ‖u(t)‖2V

+
∫ l∗

0

u4
1x(t) dx+

∫ 1

l∗

u4
2x(t) dx+ S(u1(t, l∗)− u2(t, l∗))

≤ C(p0, u0, v0, C0, k1, k2, T ),

(4.17)

where the constant on the right depends on the indicated quantities but is indepen-
dent of λ1, λ2, d1, and d2.

The estimate follows directly from (4.13) and the continuity of the embedding
of H1(I) into C(I) when I is an interval. The continuity of this embedding implies
that the solution to the truncated problem is such that u1x and u2x remain in the
region where the truncation is inactive, thus yielding the unique solution in the
theorem. This proves Theorem 3.1 as well.

5. The problem with the Signorini condition

We turn to the idealized problem with perfectly rigid stops, and use the results
of the previous section. Indeed, we obtain a weak solution for the problem with the
Signorini contact condition as a limit of the solutions of the problem with normal
compliance in the limit when the normal compliance stiffness coefficients tend to
infinity. Therefore, in this section we replace the coefficients with

λ1 = λ2 = n, (5.1)

and obtain the necessary a priori estimates to pass to the limit as n→∞.

-

6

r0−g2 g1

∂χ(r)

Figure 5.1: The Signorini graph ∂χ(r), r = 0 corresponds to the center at u2(l∗, t)

We have that the graph ∂χ(r), depicted in Figure 5.1, can be obtained from the
graph of Λ in Figure 4.1 in the limit n→∞.

For the sake of convenience we will assume in this section that

u0ixx ∈ L∞(Ii), i = 1, 2.

Now, we recall the Signorini condition (2.13)-(2.14),

−g2 ≤ u1 − u2 ≤ g1,
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σ(t) = σ1(l∗, t) = −σ2(l∗, t) ∈ ∂χ(u1(l∗, t)− u2(l∗, t)).

We note that assumption (A1) implies that χ(u10(l∗)− u20(l∗)) = 0.
We now add a subscript n to the solution to the problem with the normal com-

pliance condition obtained in Section 4 that corresponds to the stiffnesses (5.1), so
we denote the solutions of (4.14)–(4.16) as (un,vn).

We use below the following important theorem found in [40].

Theorem 5.1. Let q > 1 and let E ⊆ W ⊆ X, where the injection map from W
to X is continuous and is compact from E to W . Let SR be defined by

SR =
{
u : ‖u(t)‖E + ‖u′‖Lq([a,b];X) ≤ R, t ∈ [a, b]

}
.

Then, SR ⊆ C([a, b];W ) and if {un} ⊆ SR, there exists a subsequence, {unk
} that

converges uniformly to a function u ∈ C([a, b];W ).

It follows from the theorem and estimate (4.17) that there exists a subsequence,
still denoted as un, such that as n→∞ the following convergences are obtained.

uinx → uix strongly in C([0, T ];C(Ii)), (5.2)

where here and below I1 = [0, l∗], I2 = [l∗, 1], and i = 1, 2.

uni → ui strongly in C([0, T ];C(Ii)), (5.3)

un → u weak ∗ in L∞(0, T ;V ), (5.4)

vn → v weakly in V, (5.5)

vn → v weak ∗ in L∞(0, T ;H). (5.6)

Next, let Λn be the function (2.9) with an obvious subscript, then it follows from
the bound in (4.17) that

Sn(u1n(l∗, t)− u2n(l∗, t)) ≤ C,

where C is independent of n, and so in the limit it follows from (5.3) that

−g2 ≤ (u1(l∗, t)− u2(l∗, t)) ≤ g1.

Therefore, u ∈ K and so it satisfies the necessary constraint.
It follows from the equations estimate (5.2), that v′i is bounded in

L2
(
0, T ; (H2

0 (Ii))′
)
.

More precisely, we mean i∗v′in is bounded, where i : H2
0 → V0 is the inclusion map.

Therefore, we can also assume that

v′ni → v′ in L2(0, T ; (H2
0 (Ii))′). (5.7)

To continue, we need the following fundamental theorem in [30].

Theorem 5.2. Let E ⊆W ⊆ X, where the injection map i : W → X is continuous
and is compact from E to W . Let p ≥ 1, let q > 1, and define

S ≡
{
u ∈ Lp([a, b];E) : u′ ∈ Lq([a, b];X) and

‖u‖Lp([a,b];E) + ‖u′‖Lq([a,b];X) ≤ R
}
.

Then, S is precompact in Lp([a, b];W ), hence, if {un}∞n=1 ⊆ S, it has a subsequence
{unk

} which converges in Lp([a, b];W ).
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We apply this theorem to the case where W = Hi and E = Vi and find that
addition to the above convergences, we also have

vni → vi strongly in Hi, (5.8)

for a suitable subsequence. We let

V0 = {u = (u1, u2) ∈ V : ui ∈ H2
0 (Ii) i = 1, 2},

and let V0 = L2((0, T );V0). Then, it follows from the definition of the operators in
(4.14) and the estimates above, that the expression

un1tt + d1vn1xxxx + k1un1xxxx −
1
3
a1((un1x + Φx)3)x + ν1pun1xx + Ψxx (5.9)

is bounded in H1, independently of n. Here, we use the appropriate measurable
representatives so that the result is product measurable. It is obtained by applying
the expression to (ϕ, 0), where ϕ ∈ C∞0 ([0, T ]× [0, l∗]), and using the density of the
functions ϕ in H1. Similarly, we find that the expression

un2tt + d2vn2xxxx + k2un2xxxx −
1
3
a2((un2x)3 − ν2pun2x)x (5.10)

is bounded in H2, independently of n.
Because of the strong convergence in (5.2) - (5.6), there exists a further subse-

quence, still indexed by n, such that, in addition to (5.2) - (5.6), it also follows that
the expression in (5.9) converges weakly in H1 to

m(x, t) ≡ u1tt + d1v1xxxx + k1u1xxxx−
1
3
a1((u1x +Φx)3)x + ν1pu1xx +Ψxx, (5.11)

and the expression in (5.10) converges weakly in H1 to

u2tt + d2v2xxxx + k2u2xxxx − (
a2

3
(u2x)3 − ν2pu2x)x. (5.12)

Now, let ψ ∈W 2,∞
0 (I1), ϕ ∈W 1,∞

0 (0, T ) and consider∫
I1

∫ T

0

m(x, t)u1(x, t)ψ(x)ϕ(t) dt dx (5.13)

=
∫

I1

∫ T

0

(
−u2

1t + d1v1xxu1xx + k1u
2
1xx

+
a1

3
(u1x + Φx)3u1x

)
ψ(x)ϕ(t)s dt dx (5.14)

+
∫

I1

∫ T

0

(−ν1pu
2
1x −Ψxu1x)ψ(x)ϕ(t) dt dx (5.15)

+
∫

I1

∫ T

0

(−u1tϕ
′(t)ψ(x)u1 + d1v1xxψxx(x)ϕ(t)u1) dt dx (5.16)

+
∫

I1

∫ T

0

(
k1u1xxψxx(x)φ(t)u1 +

1
3
a1(u1x + Φx)3ψx(x)φ(t)u1

)
dt dx (5.17)

−
∫

I1

∫ T

0

(ν1pu1xψx(x)φ(t)u1 + Φxψx(x)φ(t)u1) dt dx. (5.18)

We proceed in a similar way and obtain the analogous expression for the solutions
that depend on n, so we replace u1 with un1 and v1 with vn1 in (5.13)–(5.18). We
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also replace m(x, t) with mn(x, t). We obtain,∫
I1

∫ T

0

mn(x, t)un1(x, t)ψ(x)ϕ(t) dt dx (5.19)

=
∫

I1

∫ T

0

(
−u2

n1t + d1vn1xxun1xx + k1u
2
n1xx

+
1
3
a1(un1x + Φx)3un1x

)
ψ(x)ϕ(t) dt dx (5.20)

+
∫

I1

∫ T

0

(−ν1pu
2
n1x −Ψxun1x)ψ(x)ϕ(t) dt dx (5.21)

+
∫

I1

∫ T

0

(−un1tϕ
′(t)ψ(x)un1 + d1vn1xxψxx(x)ϕ(t)un1) dt dx

+
∫

I1

∫ T

0

(k1un1xxψxx(x)ϕ(t)un1 +
1
3
a1(un1x + Φx)3ψx(x)ϕ(t)un1) dt dx

−
∫

I1

∫ T

0

(ν1pun1xψx(x)ϕ(t)un1 + Ψxψx(x)ϕ(t)un1) dt dx. (5.22)

Then, the convergences established above imply that mn converges weakly to m
in H1 as n→∞. Indeed, (5.19) converges to (5.13) and the part between (5.21) -
(5.22) converges to (5.15) - (5.18), and the part between (5.20) - (5.21) converges
to (5.14) - (5.15). This is summarized as the following lemma.

Lemma 5.3. Let ψ ∈W 2,∞
0 (I1), φ ∈W 1,∞

0 (0, T ), then

lim
n→∞

∫
I1

∫ T

0

(
− u2

n1t + d1vn1xxun1xx + k1u
2
n1xx

+
1
3
a1(un1x + Φx)3un1x

)
ψφdt dx

+
∫

I1

∫ T

0

(−ν1pu
2
n1x −Ψxun1x)ψφdt dx

=
∫

I1

∫ T

0

(
−u2

1t + d1v1xxu1xx + k1u
2
1xx +

1
3
a1(u1x + Φx)3u1x

)
ψφdt dx

+
∫

I1

∫ T

0

(−ν1pu
2
1x −Ψxu1x)ψφdt dx.

We claim that the above estimate holds without the product ψφ. To show this,
we let ϕδ be a piecewise linear function such that ϕδ(0) = ϕδ(T ) = 0, and ϕδ(t) = 1
for t ∈ [δ, T − δ], and let ψδ ∈W 2,∞

0 (I1) be a function such that ψδ(0) = ψδ(1) = 0,
and ψδ(x) = 1 for x ∈ [δ2, l∗ − δ2], with both ψδ and φδ having values in [0, 1].
Then, we have the following lemma.

Lemma 5.4. The following estimate holds,

lim sup
n→∞

∫
I1

∫ T

0

(
u2

n1t − d1vn1xxun1xx − k1u
2
n1xx −

1
3
a1(un1x + Φx)3un1x

)
dt dx

+
∫

I1

∫ T

0

(ν1pu
2
n1x + Ψxun1x) dt dx
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≤
∫

I1

∫ T

0

(
u2

1t − d1v1xxu1xx − k1u
2
1xx −

1
3
a1(u1x + Φx)3u1x

)
dt dx

+
∫

I1

∫ T

0

(ν1pu
2
1x + Ψxu1x) dt dx.

Proof. Let φδ and ψδ be the functions described above. We denote by Qδ = I1 \
[ψδ = 1], and assume that

meas(Qδ) < δ,

and that δ is small enough so that if η > 0 is given then the following estimate is
valid:

d1

2δ

∫
I1

u2
01xx(1− ψδ)dx < η. (5.23)

This is easily obtained because of the assumption that u01xx ∈ L∞ and by the
construction, 1 − ψδ = 0 off a set of measure 2δ2. Also, let δ be small enough so
that ∫

I1

∫ T

0

v2
1(1− ψδφδ) dt dx < η. (5.24)

Next, consider the following integrals

J11 ≡
∫

I1

∫ T

0

v2
n1(1− ψδφδ) dt dx, (5.25)

J12 ≡
∫

I1

∫ T

0

−d1vn1xxun1xx(1− ψδφδ) dt dx, (5.26)

J13 ≡
∫

I1

∫ T

0

−k1u
2
n1xx(1− ψδφδ) dt dx. (5.27)

First, we note that it follows from (5.24) and the strong convergence result in (5.8),
that if n is sufficiently large, then∫

I1

∫ T

0

v2
n1(1− ψδφδ) dt dx < η.

Below, we only consider such n. Next, we consider (5.27) and find

lim sup
n→∞

∫
I1

∫ T

0

−k1u
2
n1xx(1− ψδφδ) dt dx < η

It remains to consider (5.26), which is of the form

−1
2
d1

∫
I1

∫ T

0

d

dt
(u2

n1xx)(1− ψδφδ) dt dx.

We integrate this by parts and obtain

− 1
2
d1

∫
I1

(
u2

n1xx(1− ψδφδ)|T0 −
∫ T

0

u2
n1xx(−ψδφ

′
δ)dt

)
dx

= −1
2
d1

(∫
I1

u2
n1xx(T )dx−

∫
I1

u2
01xx +

∫
I1

∫ T

0

u2
n1xxψδφ

′
δ

)
dt dx

= −d1

2

∫
I1

u2
n1xx(T )dx+

d1

2

∫
I1

u2
01xxdx
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− d1

2δ

∫
I1

∫ δ

0

u2
n1xxψδ dt dx+

d1

2δ

∫
I1

∫ T

T−δ

u2
n1xxψδ dt dx

≤ d1

2δ

∫
I1

∫ T

T−δ

(u2
n1xx − u2

n1xx(T )) dt dx+
d1

2δ

∫
I1

∫ δ

0

(u2
01xx − u2

n1xxψδ) dt dx

=
d1

2δ

∫
I1

∫ T

T−δ

(u2
n1xx − u2

n1xx(T )) dt dx+
d1

2δ

∫
I1

∫ δ

0

(u2
01xx − u2

n1xx)ψδ dt dx

+
d1

2δ

∫
I1

∫ δ

0

u2
01xx(1− ψδ) dt dx

and (5.23) implies

≤ d1

2δ

∫
I1

∫ T

T−δ

(u2
n1xx − u2

n1xx(T )) dt dx+
d1

2δ

∫
I1

∫ δ

0

(u2
01xx − u2

n1xx)ψδ dt dx+ ηl∗.

(5.28)
Now, the second term in (5.28) is dominated by

d1

2δ

∫
I1

∫ δ

0

|(u2
01xx − u2

n1xx)| dt dx

≤ d1

δ

∫
I1

∫ δ

0

∫ t

0

|vn1xxun1xx|ds dt dx,

≤ d1

δ

∫ δ

0

∫
I1

∫ δ

0

|vn1xx(x, s)un1xx(x, s)| ds dx dt

≤ d1(
∫

I1

∫ δ

0

|vn1xx(x, s)|2dsdx)1/2(
∫ δ

0

∫
I1

|un1xx(x, s)|2 dx ds)1/2

≤ Cd1

√
δ ≡ C

√
δ,

thanks to estimate (4.17). Similar considerations apply to the first term of (5.28).
Therefore, if δ is small enough, J12 in (5.26) is no larger than η(1+ l∗). We assume
below that δ is this small.

Next, recall the strong convergence results on the lower order terms in (5.2). It
follows that

lim sup
n→∞

∫
I1

∫ T

0

(
u2

n1t − d1vn1xxun1xx − k1u
2
n1xx −

1
3
a1(un1x + Φx)3un1x

)
dt dx

+
∫

I1

∫ T

0

(ν1pu
2
n1x + Ψxun1x) dt dx

≤ lim sup
n→∞

∫
I1

∫ T

0

(u2
n1t − d1vn1xxun1xx − k1u

2
n1xx)ψδφδ dt dx

− lim
n→∞

1
3
a1

∫
I1

∫ T

0

(un1x + Φx)3un1x dt dx

+ lim
n→∞

∫
I1

∫ T

0

(ν1pu
2
n1x + Ψxun1x) dt dx

+ lim sup
n→∞

∫
I1

∫ T

0

(u2
n1t − d1vn1xxun1xx − k1u

2
n1xx)(1− ψδφδ) dt dx.



22 J. AHN, K. L. KUTTLER, M. SHILLOR EJDE-2012/194

Now, by Lemma 5.3 and the above estimates on the integrals (5.25) - (5.27), we
find

lim sup
n→∞

∫
I1

∫ T

0

(
u2

n1t − d1vn1xxun1xx − k1u
2
n1xx −

1
3
a1(un1x + Φx)3un1x

)
dt dx

+
∫

I1

∫ T

0

(ν1pu
2
n1x + Ψxun1x) dt dx

≤
∫

I1

∫ T

0

(u2
1t − d1v1xxu1xx − k1u

2
1xx)ψδφδ dt dx

− 1
3
a1

∫
I1

∫ T

0

((u1x + Φx)3u1x) dt dx

+
∫

I1

∫ T

0

(ν1pu
2
1x + Ψxu1x) dt dx+ (3 + l∗)η

since u2
1t−d1v1xxu1xx−k1u

2
1xx is in L1, this implies that for δ possibly even smaller,

≤
∫

I1

∫ T

0

(u2
1t − d1v1xxu1xx − k1u

2
1xx) dt dx− 1

3
a1

∫
I1

∫ T

0

((u1x + Φx)3u1x) dt dx

+
∫

I1

∫ T

0

(ν1pu
2
1x + Ψxu1x) dt dx+ (4 + l∗)η.

Since η is arbitrary, this establishes the lemma. �

The same arguments establish the following lemma.

Lemma 5.5. The following estimate holds,

lim sup
n→∞

∫
I2

∫ T

0

(u2
n2t − d2vn2xxun2xx − k1u

2
n2xx −

a2

3
(un2x)4) dt dx

+
∫

I2

∫ T

0

ν2pu
2
n2x dt dx

≤
∫

I2

∫ T

0

(u2
2t − d2v2xxu2xx − k1u

2
2xx −

a2

3
(u2x)4) dt dx+

∫
I2

∫ T

0

ν2pu
2
2x dt dx.

Lemmas 5.4 and 5.4 imply the following two inequalities.

lim inf
n→∞

∫
I2

∫ T

0

(−u2
n2t + d2vn2xxun2xx + k1u

2
n2xx +

a2

3
(un2x)4) dt dx

−
∫

I2

∫ T

0

ν2pu
2
n2x dt dx

≥
∫

I2

∫ T

0

(−u2
2t + d2v2xxu2xx + k1u

2
2xx +

a2

3
(u2x)4) dt dx

−
∫

I2

∫ T

0

ν2pu
2
2x dt dx,

(5.29)
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and

lim inf
n→∞

∫
I1

∫ T

0

(
−u2

n1t + d1vn1xxun1xx + k1u
2
n1xx +

1
3
a1(un1x + Φx)3un1x

)
dt dx

−
∫

I1

∫ T

0

(ν1pu
2
n1x + Ψxun1x) dt dx

≥
∫

I1

∫ T

0

(
− u2

1t+d1v1xxu1xx + k1u
2
1xx +

a1

3
(u1x + Φx)3u1x) dt dx

−
∫

I1

∫ T

0

(ν1pu
2
1x + Ψxu1x) dt dx.

(5.30)

Now, we define Λn as

Λn(un1(l∗, t)− un2(l∗, t))

≡ −n(un1(l∗, t)− un2(l∗, t)− g1)+ + n(un2(l∗, t)− un1(l∗, t)− g2)+,
(5.31)

and the two operators

Pn(un) ≡ π∗1γ∗Λn(un1(l∗, t)− un2(l∗, t))− π∗2γ∗Λn(u1(l∗, t)− u2(l∗, t)),

P (u) ≡ π∗1γ∗∂χ(u1(l∗, t)− u2(l∗, t))− π∗2γ∗∂χ(u1(l∗, t)− u2(l∗, t)).

As was noted above, these operators are monotone because of the graph of Λn.
Also, the solution of the problem with normal compliance satisfies

v′n +Avn +Bun +N(·,un) + Pn(un) = f , (5.32)

together with vn(0) = v0 and un(t) = u0 +
∫ t

0
vn(s)ds. It was shown above that

−g2 ≤ u1(l∗, t)− u2(l∗, t) ≤ g1.
Inequalities (5.29) - (5.30) can be written simply in terms of the operators as

lim inf
n→∞

(
−
∫ T

0

(vn,vn)Hdt+
∫ T

0

〈Avn,un〉dt

+
∫ T

0

〈Bun,un〉dt+
∫ T

0

〈N(·,un),un〉dt
)

≥
(
−
∫ T

0

(v,v)Hdt+
∫ T

0

〈Av,u〉dt+
∫ T

0

〈Bu,u〉dt+
∫ T

0

〈N(·,u),u〉dt
)
.

(5.33)
Here, we used the notation 〈·, ·〉 for the duality pairing between V and V ′.

Now, let w,w′ ∈ V such that w(T ) = u(T ) and for each t,

−g2 ≤ w1(l∗, t)− w2(l∗, t) ≤ g1.
We apply (5.32) to un −w and perform time integration on both sides. Thus,

−
∫ T

0

(vn,vn −w
′
)dt+ (v0,w(0)− u0)H +

∫ T

0

〈Avn,un −w〉ds

+
∫ T

0

〈Bun,un −w〉ds+
∫ T

0

〈N(·,un),un −w〉dt+
∫ T

0

〈Pn(un),un −w〉dt

=
∫ T

0

(f ,un −w)Hds.
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Since Pn(w) = 0, it follows that∫ T

0

〈Pn(un),un −w〉dt =
∫ T

0

〈Pn(un)− Pn(w),un −w〉dt ≥ 0;

therefore,

−
∫ T

0

(vn,vn −w′)dt+ (v0,w(0)− u0)H +
∫ T

0

〈Avn,un −w〉ds

+
∫ T

0

〈Bun,un −w〉ds+
∫ T

0

〈N(·,un),un −w〉dt

≤
∫ T

0

(f ,un −w)Hds.

Passing to the lim infn→∞ of both sides, it follows from (5.33) that

−
∫ T

0

(v,v −w′)dt+ (v0,w(0)− u0)H +
∫ T

0

〈Av,u−w〉ds

+
∫ T

0

〈Bu,u−w〉ds+
∫ T

0

〈N(·,u),u−w〉dt

≤
∫ T

0

(f ,u−w)Hds.

(5.34)

This concludes the proof of Theorem 3.2, which we restate as:

Theorem 5.6. Assume that (A1)–(A5) hold along with the regularity assumption
on the initial data

u0ixx ∈ L∞(Ii).
Then, there exists a pair (u,v) such that

u(t) = u0 +
∫ t

0

v(s)ds,

v ∈ V, and u(t) ∈ K such that whenever w(t) ∈ K with w,w′ ∈ V, and w(T ) =
u(T ), then the variational inequality (5.34) holds.

6. The inviscid case

In this section we study the case with the Signorini contact condition when there
is no viscosity, so, as above, we replace the normal compliance stiffness coefficients
λ1, λ2 and the viscosity coefficients d1, d2 with the modified coefficients

nλ1, nλ2,
d1

n
,

d2

n
,

and consider a sequence of solutions, one for each positive integer n. Then, we
obtain the necessary estimates and consider the limit when n → ∞. The above
discussion of the normal compliance case yields the following result.

Theorem 6.1. Assume that (A1)–(A5) hold. Then, for each n there exists a unique
solution to the abstract problem

v′ +
1
n
Av +Bu +N(·,u) + π∗1γ

∗nΛ(u1(l∗)− u2(l∗))

− π∗2γ∗nΛ(u1(l∗)− u2(l∗)) = f ,
(6.1)
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together with v(0) = v0, and u(t) = u0 +
∫ t

0
v(s)ds.

This solution satisfies for a.e. t ∈ (0, T ) the estimate

|v(t)|2H +
1
n

min(d1, d2)
∫ t

0

‖v(s)‖2V ds+
∫ l∗

0

u1x(t)4dx

+
∫ 1

l∗

u2x(t)4dx+ ‖u(t)‖2V + nS(u1(t, l∗)− u2(t, l∗))

≤ C(p0,v0,u0, C0, k1, k2, T )

(6.2)

where the constant C depends on the indicated quantities but is independent of n
and di.

Estimate (6.2) yields the same type of convergence results that were obtained
above, with the exception of (5.5), which is lost but is replaced with a related
convergence. Specifically, we have

uinx → uix strongly in C([0, T ];C(Ii)),

uni → ui strongly in C([0, T ];C(Ii)),

un → u weak ∗ in L∞(0, T ;V )
1√
n
vnxx → 0 strongly in H,

vn → v weak ∗ in L∞(0, T ;H).

(6.3)

It follows from (6.2) and (6.3), as above, that

−g2 ≤ (u1(t, l∗)− u2(t, l∗)) ≤ g1.
Therefore, u ∈ K and so it satisfies the necessary constraint.

Estimates (6.2) and (6.1) imply that, just as above, the function v′i is bounded
in L2(0, T ; (H2

0 (Ii))′). Therefore, we can also assume that

v′ni → v′ in L2
(
0, T ; (H2

0 (Ii))′
)
.

Now, the rest of the argument is similar to the above except for the issue involving
the viscous term. The formula (5.26) now takes the form

− d1

n

∫
I1

∫ T

0

vn1xxun1xx(1− ψδφδ) dt dx. (6.4)

Then, all the same considerations hold in the argument for approximation. Consider
next the integral

1
n

∫
I1

∫ T

0

vn1xxun1xx dt dx,

which converges to 0 because of the estimate∣∣ 1
n

∫
I1

∫ T

0

vn1xxun1xx dt dx
∣∣

≤
( 1
n2

∫
I1

∫ T

0

v2
nxx dt dx

)1/2(∫
I1

∫ T

0

u2
n1xx dt dx

)1/2

≤ 1√
n

(∫
I1

∫ T

0

1
n
v2

nxx dt dx
)1/2(∫

I1

∫ T

0

u2
n1xx dt dx

)1/2

,

which converges to 0 by the estimates derived above.
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It follows that

lim inf
n→∞

(
−
∫ T

0

(vn,vn)Hdt+
∫ T

0

〈 1
n
Avn,un〉dt

+
∫ T

0

〈Bun,un〉dt+
∫ T

0

〈N(·,un),un〉dt
)

≥
(
−
∫ T

0

(v,v)Hdt+
∫ T

0

〈Bu,u〉dt+
∫ T

0

〈N(·,u),u〉dt
)
,

so that the viscous term disappears. Then, the same argument as above yields the
theorem for the inviscid case and with the Signorini contact condition.

Theorem 6.2. Assume that (A1)–(A5) hold along with the regularity assumption
on the initial data

u0ixx ∈ L∞(Ii).

Then, there exists a pair u,v ∈ V, u(t) = u0 +
∫ t

0
v(s)ds, u(t) ∈ K such that

whenever w(t) ∈ K with w′ ∈ V, w(T ) = u(T ), it follows

−
∫ T

0

(v,v −w′)Hdt+
∫ T

0

〈Bu,u−w〉ds+
∫ T

0

〈N(·,u),u−w〉dt

≤
∫ T

0

(f ,u−w)Hds− (v0,w(0)− u0)H .

To obtain the existence result for the inviscid problem with normal compliance
we replace the inequality with the following variational equation

−
∫ T

0

(v,v −w′)Hdt+
∫ T

0

〈Bu,u−w〉ds+
∫ T

0

〈N(·,u),u−w〉dt

+
∫ T

0

Λ(u1(t, l∗)− u2(t, l∗))(w1(t, l∗))dt

−
∫ T

0

Λ(u1(t, l∗)− u2(t, l∗))(w2(t, l∗))dt

=
∫ T

0

(f ,u−w)Hds− (v0,w(0)− u0)H ,

and note that the requirement that u ∈ K is not needed.
This concludes the analysis part of this work. The rest of the paper deals with

the numerical aspects of the model.

7. Computational method; numerical algorithm

In this section we describe our numerical schemes for the model. Unlike the
Euler–Bernoulli or the Timoshenko beams, the two Gao beams are nonlinear, which
makes the approach more complex.

We choose a fully discrete numerical method and use a uniform discretization
of the time domain [0, T ] and a mixture of the Galerkin approximation and cen-
tral difference formula to discretize the space domain [0, 1]. The central difference
formula is combined with the finite element method (FEM) when we deal with the
nonlinear Gao terms in the two equations. Convergence results of similar numer-
ical schemes have been investigated in [4], using a modified truncated operator in
the discrete case. We note that a different numerical algorithm for a Gao beam,
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but without contact, was presented in [7], where the fully explicit finite difference
method (FDM) was used.

Since the equation of a Gao beam contains second and fourth order derivatives,
we use a nonconforming mixed finite element method. Indeed, nonconforming meth-
ods which have been studied in many papers and books (e.g., [13, 14] and the refer-
ences therein) provide more efficient and practical algorithms for the fourth order
or even higher order PDEs. The mixed method that yields a saddle-point prob-
lem has been first proposed in [36] and its convergence analysis has been studied
extensively, see, e.g., [11, 12] and the references therein.

We now describe our numerical schemes. The interval [0, 1] is divided into m
subintervals Ii = [xi, xi+1], for 0 ≤ i ≤ m− 1, with grid points

0 = x0 < x1 < x2 < · · · < xi∗ < · · · < xm−2 < xm−1 < xm = 1.

For the sake of simplicity, a uniform spacing is used and the mesh size is denoted
by hx = xi+1 − xi. We assume that the two beams are joined at the node x = xi∗ .
According to the nonconforming finite element methods and Sobolev imbedding
theorem, we choose Vhx as the finite dimensional space

Vhx = {whx ∈ C[0, 1] : whx

∣∣
Ii
∈ L(Ii) ∪ B(Ii), 1 ≤ i ≤ m− 1},

where L is the family of piecewise linear functions and B is the family of the
piecewise cubic functions. The finite element space can be written in the equivalent
way

Vhx = span{ψi ∈ C[0, xi∗ ] ∪ C[xi∗ , 1] : 1 ≤ i ≤ m− 1}.
The basis functions ψi are constructed next. We note that on the node xi∗ two dif-
ferent basis functions have to be constructed separately, since one is associated with
the right end of the left beam and the other is with the left end of the right beam.
We construct the basis functions ψi = ψ1,i with compact supports [xi−1, xi+1] and
ψi = ψ3,i with compact supports [xi−2, xi+2]; the first is a typical piecewise linear
function L(s) for the basis functions denoted by ψ1,i ∈ C[0, 1] and the other is a
cubic spline functions B(s) for the basis functions denoted by ψ3,i ∈ C1[0, 1]. It
is easy to construct the piecewise linear functions on the reference interval [−1, 1]
and the standard cubic spline functions B(s) on the reference interval [−2, 2],

L(s) =

{
−|s|+ 1 if |s| ≤ 1,
0 if |s| ≥ 1,

and

B(s) =
2
3


1 + 3

4 |s|
3 − 3

2 |s|
2 for |s| ≤ 1,

1
4 (2− |s|)3 for 1 ≤ |s| ≤ 2,
0 for |s| ≥ 2.

For the piecewise linear functions with 1 < i ≤ m − 1 the basis functions ψ1,i is
defined by the shifted linear function

ψ1,i(x) = L
(x− xi

hx

)
,

where each node is xi = i hx and their supports are [xi − hx, xi + hx]. For the
B-spline functions with 2 < i ≤ i∗ − 2 and i∗ + 2 < i ≤ m − 1 we use mostly the
basis functions ψ3,i defined by the shifted cubic splines

ψ3,i(x) = B
(x− xi

hx

)
,
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where each node is xi = i hx and their supports are [xi−2hx, xi +2hx]. While it is
not hard to set up the piecewise linear functions ψ1,i with the boundary conditions,
we need to be more careful about constructing the basis functions ψ3,i so as to
satisfy the boundary conditions. In order to satisfy all the conditions, the cubic
functions are modified as follows:

ψ3,1(x) =


− 5

3 ( x
hx

)3 + 5
2 ( x

hx
)2 on [0, hx],

5
6 ( x

hx
− 1)3 − 3

2 ( x
hx
− 1)2 + 5

6 on [hx, 2hx],
1
6 (2− ( x

hx
− 1))3 on [2hx, 3hx],

and

ψ3,m−1(x)

=


5
3 ( x

hx
−m)3 + 5

2 ( x
hx
−m)2 on [1− hx, 1],

− 5
6 ( x

hx
− (m− 1))3 − 3

2 ( x
hx
− (m− 1))2 + 5

6 on [1− 2hx, 1− hx],
1
6 (2 + ( x

hx
− (m− 1)))3 on [1− 3hx, 1− 2hx].

We need to construct the two basis functions satisfying the natural boundary con-
ditions imposed at x = l∗. The basis functions ψi∗−1 and ψi∗ are

ψ3,i∗−1(x)

=


− 5

3 ( x
hx
− (i∗ − 1))3 + 5

2 ( x
hx
− (i∗ − 1))2 on [xi∗ − hx, xi∗ ],

5
6 ( x

hx
− (i∗ − 2))3 − 3

2 ( x
hx
− (i∗ − 2))2 + 5

6 on [xi∗ − 2hx, xi∗ − hx],
1
6 (2− ( x

hx
− (i∗ − 2)))3 on [xi∗ − 3hx, xi∗ − 2hx],

and

ψ3,i∗(x) = − 2
h3

x

(x− (i∗ − 1))3 − 3
h2

x

(x− (i∗ − 1))2 on [xi∗ − hx, xi∗ ].

Similarly for the right Gao beam, we can obtain

ψ3,i∗(x) =
2
h3

x

(x− (i∗ + 1))3 +
3
h2

x

(x− (i∗ + 1))2 on [xi∗ , xi∗ + hx].

and

ψ3,i∗+1(x)

=


− 5

3 ( x
hx
− i∗)3 + 5

2 ( x
hx
− i∗)2 on [xi∗ , xi∗ + hx],

5
6 ( x

hx
− (i∗ + 1))3 − 3

2 ( x
hx
− (i∗ + 1))2 + 5

6 on [xi∗ + hx, xi∗ + 2hx],
− 1

6 (2− ( x
hx
− (i∗ + 2)))3 on [xi∗ + 2hx, xi∗ + 3hx].

The time interval [0, T ] is also uniformly partitioned as

0 = t0 < t1 < t2 · · · < tk < · · · < tn−1 < tn = T,

where ht = tk − tk−1, for 1 ≤ k ≤ n. We suppose that at each time step t = tk the
fully discrete solutions uk

1ht,hx
and uk

2ht,hx
are represented by linear combinations

of B-splines over the domain [0, 1] as

uk
1ht,hx

=
i∗∑

i=1

uk
1iψd,i(x), uk

2ht,hx
=

m−1∑
i=i∗

uk
2iψd,i(x),
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where d is the degree of the B-splines. When we deal with the 0th and 2nd order
partial derivative with respect to x, we write the fully discrete solutions of the
displacement and velocity as

uk
1ht,hx

=
i∗∑

i=1

uk
1iψ1,i(x), uk

2ht,hx
=

m−1∑
i=i∗

uk
2iψ1,i(x),

(uk
1ht,hx

)t =
i∗∑

i=1

vk
1iψ1,i(x), (uk

2ht,hx
)t =

m−1∑
i=i∗

vk
2iψ1,i(x).

(7.1)

Similarly, the solutions of the fourth-order partial derivative are

uk
1ht,hx

=
i∗∑

i=1

uk
1iψ3,i(x), uk

2ht,hx
=

m−1∑
i=i∗

uk
2iψ3,i(x). (7.2)

To derive the mixed method, we rewrite the original problem as the following mixed
form, 

u1tt

ω1

u2tt

ω2

 =


−k1ω1 − d1ω1t + a1(u1x)2u1xx − ν̄1 p(t)u1xx + f1(t)

u1xxxx

−k2$2 − d2$2t + a2(u2x)2u2xx − ν̄2 p(t)u2xx + f2(t)
u2xxxx

 .
Multiplying each equation by a suitable test function and using integration by parts,
it is straightforward to obtain the following weak formulation:
Find (u1, ω1, u2, ω2) ∈ H2(0, l∗)× L2(0, l∗)×H2(l∗, 1)× L2(l∗, 1) such that

0 = (u1tt + k1ω1 + d1ω1t − a1(u1x)2u1xx + ν̄1 p(t)u1xx − f1(t), w)L2(0, l∗)

+ σ(t)w(l∗) for all w ∈ L2(0, l∗),

0 = (ω1, v)L2(0, l∗) − (u1xx, vxx)L2(0, l∗) for all v ∈ H2(0, l∗),

0 =
(
u2tt + k2$2 + d2$2t − a2(u2x)2w2xx + ν̄2 p(t)w2xx − f2(t), u

)
L2(l∗, 1)

− σ(t)w(l∗) for all u ∈ L2(l∗, 1),

0 = (ω2, µ)L2(l∗, 1) − (w2xx, µxx)L2(l∗, 1) for all µ ∈ H2(l∗, 1),

where at x = l∗ we have σ(t) = σ1(t) = −σ2(t). Then, the corresponding FEM
can be applied easily. We assume that the auxiliary variables ω1 = u1xxxx and
$2 = u2xxxx and ω1t = u1txxxx and $2t = u2txxxx are linear combinations of the
piecewise constant functions ψ0,i with 1 ≤ i ≤ m− 1,

ωk
1ht,hx

=
i∗∑

i=1

ωk
1iψ0,i(x), ωk

2ht,hx
=

m−1∑
i=i∗

ωk
2iψ0,i(x),

(ωk
1ht,hx

)t =
i∗∑

i=1

$k
1iψ0,i(x), (ωk

2ht,hx
)t =

m−1∑
i=i∗

$k
2iψ0,i(x) at t = tk.

When the weak formulation is written in the corresponding matrix form, the sup-
ports of the ψ0,i change, since when we deal with the B-spline of the degree d = 0,
we use ψ0,i(x) = 1 over [xi−1, xi+1] and when we deal with cubic B-spline, we use
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ψ0,i(x) = 1 over [xi−2, xi+2]. In the discrete form, we obtain the following equation
by using the test functions. Let

ωk
ht,hx

= (ωk
1ht,hx

, ωk
2ht,hx

)T , (ωk
ht,hx

)t = ($k
1ht,hx

, $k
2ht,hx

)T ,

uk
ht,hx

= (uk
1ht,hx

, uk
2ht,hx

)T , vk
ht,hx

= (vk
1ht,hx

, vk
2ht,hx

)T ,

at each time step tk. For the sake of simplicity, we assume that there are no body
forces, i.e., f1 = f2 = 0. In particular, this means that the left end of the left beam
is clamped. Then, the following fully discrete numerical formulation holds in the
distributional sense; for i = 1, 2,

1
ht

(vk+1
iht,hx

− vk
iht,hx

)

= −ki

2
(ωk+1

iht,hx
+ ωk

iht,hx
) + (−1)i+1σk

iht,hx

− di

2

(
(ωk

iht,hx
)t + (ωk+1

iht,hx
)t

)
+
(
((uk

iht,hx
)′)2 − ν pk

)
(uk

iht,hx
)′′,

(7.3)

ωk
iht,hx

= (uk
iht,hx

)′′′′, (ωk
iht,hx

)t = (vk
iht,hx

)′′′′, (7.4)
1
ht

(uk+1
iht,hx

− uk
iht,hx

) =
1
2
(vk+1

iht,hx
+ vk

iht,hx
). (7.5)

By the contact condition (2.8) the numerical approximation of contact forces be-
comes σk

ht,hx
= σk

1ht,hx
= −σk

2ht,hx
.

We turn to the contact of the two Gao beams at the joint. The contact at x = xi∗

is described by the normal compliance condition (2.14), where we set λ = λ1 = λ2,
thus at t = tk,

σk
ht,hx

:= σht,hx(tk) = λ(uk+1
2ht,hx

(xi∗)− uk+1
1ht,hx

(xi∗)− g2)+
− λ(uk+1

1ht,hx
(xi∗)− uk+1

2ht,hx
(xi∗)− g1)+,

(7.6)

where the normal compliance stiffness coefficient λ > 0 is likely to be large.
As can be seen, over the time interval [0, T ], we use a hybrid of three numerical

schemes: for the elasticity and viscosity the midpoint rule is applied and for the
contact conditions the implicit Euler method is used, and for the nonlinear term in
the equation of motion the central difference formula is applied. The fully discrete
approximation of the displacement, uht,hx is a linear interpolant with

uht,hx(·, tk) = uk
hx
, and uht,hx(·, tk+1) = uk+1

hx
,

and the fully discrete approximation of the velocity vht,hx is a constant interpolant
with vht,hx(·, t) = vk+1

hx
for t ∈ (tk, tk+1]. We regard the nonlinear term ((uk

ht,hx
)′)2

as the square of a strong derivative, so we apply the central difference formula
into it. Thus, at each time step tk = k ht, we deal with the following numerical
differentiations, at x = xi,(

(uk
1ht,hx

)′
)2

=
(uk

1i+1 − uk
1i−1

2hx

)2

,
(
(uk

2ht,hx
)′
)2

=
(uk

2i+1 − uk
2i−1

2hx

)2

.

Next, we set up the linear system associated with the nonlinear term. The coefficient
matrix, at each time step t = tk, has the form

Lk
1 ≡ (Lk

1)ij =
∫ l∗

0

ψ′1,i(x)ψ
′
1,j(x)

(
a1

(uk
1i+1 − uk

1i−1

2hx

)2

− ν pk
)
dx,
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Lk
2 ≡ (Lk

2)ij =
∫ l

l∗

ψ′1,i(x)ψ
′
1,j(x)

(
a2

( (uk
2i+1 − uk

2i−1)
2hx

)2

− ν pk
)
dx.

Thus, we obtain the tridiagonal finite element coefficient matrix. The main diagonal
is assembled in the way that if i = j, (Lk

1)ij = ςki−1 + ςki for 1 ≤ i ≤ i∗. The two
subdiagonals are assembled as follows; if j = i+1 or (Lk

1)ij = −ςki for 1 ≤ i ≤ i∗−1
and if i = j + 1 or (Lk

1)ij = −ςki for 1 ≤ j ≤ i∗ − 1. If |i− j| > 1, (Lk
1)ij = 0. Here

each element of the symmetric matrix Lk
ij with 1 ≤ i, j ≤ i∗ is defined by

ςki =
∫ xi+1

xi

(
a1(
(
fracuk

1i+1 − uk
1i−12hx

)2

− ν pk
)
dx

=
a1(uk

1i+1 − uk
1i−1)

4hx

2

− ν pkhx.

Similarly, the coefficient matrix Lk
2 can be assembled at each time step t = tk.

When we compute the next step solutions (uk+1
hx

, vk+1
hx

) satisfying the fully discrete
formulations (7.3)–(7.5), we multiply both sides of (7.3) by the basis functions
ψ1,i(x) and apply integration by parts, thus,(

1
ht

∑i∗
j=1(v

k+1
1j − vk

1j)
∫ l∗
0
ψ1,j(x)ψ1,i(x)dx

1
ht

∑m−1
j=i∗

(vk+1
2j − vk

2j)
∫ 0

l∗
ψ1,j(x)ψ1,i(x)dx

)
=
(
D1

D2

)
, (7.7)

where

D1 = −k1

2

i∗∑
j=1

(ωk+1
1j + ωk

1j)
∫ l

0

ψ0,j(x)ψ1,i(x)dx

− d1

2

i∗∑
j=1

($k
1i +$k

1i)
∫ l

0

ψ0,j(x)ψ1,i(x)dx+ σk
1

−
i∗∑

j=1

(
a1

(uk
1j+1 − uk

1j−1

2hx

)2

− ν pk
)
uk

1j

∫ l

0

ψ′1,j(x)ψ
′
1,i(x)dx,

(7.8)

and

D2 = −k2

2

m−1∑
j=i∗

(ωk+1
2j + ωk

2j)
∫ l

0

ψ0,j(x)ψ1,i(x)dx

− d2

2

m−1∑
j=i∗

($k
2i +$k

2i)
∫ l

0

ψ0,j(x)ψ1,i(x)dx− σk
2

−
m−1∑
j=i∗

(
a2

(uk
2j+1 − uk

2j−1

2hx

)2

− ν pk
)
uk

2j

∫ l

0

ψ′1,j(x)ψ
′
1,i(x)dx.

(7.9)

The substitutions ωk
ht,hx

= (uk
ht,hx

)′′′′, and ($k
ht,hx

)t = (vk
ht,hx

)′′′′ in the equation
(7.4) allow us to obtain the following intermediate equations:

i∗∑
j=1

ωk
1j

∫ l

0

ψ0,j(x)ψ3,i(x)dx =
i∗∑

j=1

uk
1j

∫ l

0

ψ′′3,j(x)ψ
′′
3,i(x)dx, (7.10)
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and
i∗∑

j=1

ωk
2j

∫ l

0

ψ0,j(x)ψ3,i(x)dx =
i∗∑

j=1

uk
2j

∫ l

0

ψ′′3,j(x)ψ
′′
3,i(x)dx. (7.11)

Since the volumes of the linear and the cubic B-splines near each node are equal,
it follows that, for 1 ≤ j ≤ m− 1,∫ l

0

ψ1,j(x) dx =
∫ l

0

ψ3,j(x) dx. (7.12)

Thus, it follows from (7.7)–(7.12) that the linear system corresponding to equation
(7.7) can be written as follows,(

1
ht

M1(vk+1
1 − vk

1)
1
ht

M2(vk+1
2 − vk

2)

)
=
(
D1

D2

)
,

where

D1 = −k1

2
K1(uk+1

1 + uk
1)− d1

2
K1(vk+1

1 + vk
1)− Lk

1u
k
1 + σk

1 ,

D2 = −k2

2
K2(uk+1

2 + uk
2)− d2

2
K2(vk+1

2 + vk
2)− L1uk

2 − σk
2 .

Here,

uk
1 = (uk

11, u
k
12, . . . , u

k
1i−1, u

k
1i∗)

T , uk
2 = (uk

2i∗ , u
k
2i∗+1, . . . , u

k
2m−2, u

k
2m−1)

T ,

vk
1 = (vk

11, v
k
12, . . . , v

k
1i∗−1, v

k
1i∗)

T , vk
2 = (vk

2i∗ , v
k
2i∗+1, . . . , v

k
2m−2, v

k
2m−1)

T ,

σk
1 = (0, 0, . . . , 0, σk

ht,hx
)T , σk

2 = (σk
ht,hx

, 0, . . . , 0)T .

The symmetric matrices M1, M2, K1, and K2 are defined by

M1 ≡ (M1)ij =
∫ l∗

0

ψ1,i(x)ψ1,j(x),

M2 ≡ (M2)ij =
∫ l

l∗

ψ1,i(x)ψ1,j(x) dx,

K1 ≡ (K1)ij =
∫ l∗

0

ψ′′3,i(x)ψ
′′
3,j(x) dx,

K2 ≡ (K2)ij =
∫ l

l∗

ψ′′3,i(x)ψ
′′
3,j(x) dx,

and they are banded with three subdiagonals and superdiagonals. From the extra
equation (7.5), we find

1
ht

i∗∑
j=1

(uk+1
1j − uk

1j)
∫ l

0

ψ1,j(x)ψ1,i(x)dx =
1
2

i∗∑
j=1

(vk+1
1j + vk

1j)
∫ l

0

ψ1,j(x)ψ1,i(x)dx,

and

1
ht

m−1∑
j=i∗

(uk+1
2j − uk

2j)
∫ l

0

ψ1,j(x)ψ1,i(x)dx =
1
2

m−1∑
j=i∗

(vk+1
2j + vk

2j)
∫ l

0

ψ1,j(x)ψ1,i(x)dx.
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Now, we can use (7.5) to set up the linear system that marches the solution one
time step, for ι = 1, 2

uk+1
ι =

( 2
h2

t

Mι + (
kι

2
+
di

ht
)Kι

)−1

×
(( 2

h2
t

Mι − (
kι

2
− di

ht
)Kι − Lk

ι

)
uk

ι +
2
ht

Mιvk
ι + (−1)ι+1σk

ι

)
.

(7.13)

We note that this linear system does not yet satisfy the normal compliance
contact condition (7.6). So, we introduce additional notation to deal with the
condition and that will allow us to compute the next step solutions uk+1

ι which
satisfy (7.6) and (7.13).

Consider a matrix A ∈ Ri∗×(m−1−i∗). Then the notation of block matrices is as
follows. If 1 ≤ i1 ≤ i2 ≤ i∗ and 1 ≤ j1 ≤ j2 ≤ m − 1 − i∗, i.e., we extract i1th
row to i2th row and j1th column to j2th column, the block matrix is denoted by
A(i1 : i2, j1 : j2) ∈ R(i2−i1−1)×(j2−j1−1). We use the following substitutions in the
linear system (7.13) to simply the matrices involved,

Bι =
2
h2

t

Mι + (
kι

2
+
dι

ht
)Kι,

Qk
ι =

2
h2

t

Mι − (
kι

2
− dι

ht
)Kι − Lk

ι .

Note that the matrix Qk
ι changes at each time step t = tk. Next, algebraic manip-

ulations allow us to obtain the normal compliance in terms of only uk+1
1i∗

and uk+1
2i∗

,
indeed, we can write

q1u
k+1
1i∗
− bk1 = λ(uk+1

1i∗
− uk+1

2i∗
− g1)+, (7.14)

q2u
k+1
2i∗
− bk2 = λ(uk+1

2i∗
− uk+1

1i∗
− g2)+, (7.15)

where

q1 = (B1)i∗i∗ −B1(i∗, 1 : i∗ − 1)[B1(1 : i∗ − 1, 1 : i∗ − 1)]−1

×B1(1 : i∗ − 1, i∗),

bk1 = −B1(i∗ , 1 : i∗ − 1)× [B1(1 : i∗ − 1, 1 : i∗ − 1)]−1

× (Qk
1(1 : i∗ − 1, 1 : i∗)uk

1 +
2
ht
M1(1 : i∗ − 1, 1 : i∗)vk

1)

+Qk
1(i∗, 1 : i∗)uk

1 +
2
ht
M1(i∗ , 1 : i∗)vk

1 ,

q2 = (B2)i∗i∗ −B2(i∗, i∗ + 1 : m− 1)

× [B1(i∗ + 1 : m− 1, i∗ + 1 : m− 1)]−1B1(i∗ + 1 : m− 1, i∗),

bk2 = −B2(i∗ , i∗ : m− 1)× [B1(i∗ : m− 1, i∗ : m− 1)]−1

×
(
Qk

2(i∗ : m− 1, i∗ : m− 1)uk
2 +

2
ht
M2(i∗ : m− 1, i∗ : m− 1)vk

1

)
+Qk

2(i∗, i∗ : m− 1)uk
2 +

2
ht
M2(i∗ , i∗ : m− 1)vk

2 .

Once uk+1
1i∗

and uk+1
2i∗

have been computed from (7.14) and (7.15), the next step
solutions uk+1

1 and uk+1
2 can be computed. Excluding the last component of uk+1

1
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and the first component of uk+1
2 , we let

xk+1
1 = (uk+1

11 , uk+1
12 , . . . , uk+1

1i∗−2, u
k+1
1i∗−1) ∈ Ri∗−1,

xk+1
2 = (uk+1

2i∗+1, . . . , u
k+1
2i∗+2, . . . , u

k+1
2m−1, u

k+1
2m−2) ∈ Rm−i∗ .

Then

xk+1
1 = [B1(1; i∗ − 1, 1; i∗ − 1)]−1

(
Qk

1(1; i∗ − 1, 1; i∗)uk
1

+
2
ht
M1(1; i∗ − 1, 1; i∗)vk

1 −Qk
1(1; i∗ − 1, i∗)uk+1

1i∗

)
,

(7.16)

xk+1
2 = [B1(i∗;m, i∗;m)]−1

(
Qk

2(i∗ + 1;m, i∗;m)uk
2

+
2
ht
M2(i∗ + 1;m, i∗;m)vk

2 −Qk
2(i∗ + 1;m, i∗)uk+1

2i∗

)
.

(7.17)

At the final step, the actual approximation of u1 is computed.
The discussion above can be summarized as the following algorithm.

Algorithm 7.1. Assume that initial data u0
1 and u0

2 are given and λ > 0 is
sufficiently large.
for k = 1 : T/ht

the previous solution (uk−1
1 , uk−1

2 )T is known
Compute (uk

1 , u
k
2)T using the linear system (7.13)

Compute (uk+1
1i∗

, uk+1
2i∗

) using (7.14) and (7.15)
if uk

1i∗
− uk

2i∗+1 < g1 and uk
2i∗+1 − uk

1i∗
< g2

σk−1 ← 0, uk
1i∗
← b1/q

k−1
1 , uk

2i∗+1 ← b2/q
k−1
2 from (7.14)–(7.15)

else if g1 ≤ uk
1i∗
− uk

2i∗+1 ≤ g1 + 1/λ
compute (uk

1i∗
, uk

2i∗
) from (7.14) and (7.15) and then

σk ← −λ(uk+1
1i∗
− uk+1

2i∗
− g1)+

else if g2 ≤ uk
2i∗+1 − uk

1i∗
≤ g2 + 1/λ compute (uk

1i∗
, uk

2i∗
) from (7.14) and (7.15)

and then
σk ← λ(uk+1

2i∗
− uk+1

1i∗
− g2)+

end if
Compute (uk

1 , u
k
2) by using (7.16) and (7.17).

Compute (vk
1 , v

k
2) from the following identities

vk
1 =

2
ht

(uk
1 − uk−1

1 )− vk−1
1 , vk

2 =
2
ht

(uk
2 − uk−1

2 )− vk−1
2

end for

The algorithm was implemented and a typical run took on the average 0.1274
seconds to compute one time step for the solutions with p = 0 and an average of
0.1259 seconds to compute each time step in the case of p = 895. The numerical
analysis of the algorithm is currently under study in [4].

8. Numerical Results

In this section we present results of preliminary numerical simulations obtained
by using a code based on the algorithm described in the previous section. We show
two sets of simulations that depict some of the behaviors of the system. Following
the simulations, we make a few remarks on the possible types of behavior and
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on the implementation. Our main interest is in the simulations of the dynamic
behavior of the system in two cases: p = 0, in which there is no buckling, and
p = 895, in which there is buckling. This is a preliminary study of the transmission
of vibrations across joints between two Gao beams. As can be seen below, even the
two ‘simple’ cases are not simple and lead to very complicated behavior. Therefore,
a further in-depth study of the numerics has merit in and of itself.

The two simulations are of two long beams made of steel. For the sake of
simplicity, we assumed that the viscosity is negligible and set d1 = d2 = 0. We
assumed that no forces acted on the beams; i.e., f1 = f2 = 0, and let Φ = 0.
Indeed, when the left end of the left beam is clamped to a stationary device, φ = 0
and the shift with Φ is not needed. Therefore, the equations of the two Gao beams
are,

u1tt + k1u1xxxx + (ν1p− a1u
2
1x)u1xx = 0,

u2tt + k2u2xxxx + (ν2p− a2u
2
2x)u2xx = 0.

Table 1: Input data (dimensionless)

L1 L2 k1 k2 ν1 = ν2 λ a1 a2 g1 = g2
0.5 0.5 14.7 7.35 1.30 104 40 110 4× 10−7

The input data (in dimensionless form) is provided in Table 1. We note that the
stops are relatively very rigid, the left beam is twice as stiff as the right one, the
Gao coefficients are large, and the gap is very small.

In the first simulation the horizontal traction is p = 0, and so we do not expect
bucking of the two beams. In the second simulation the horizontal traction is
p = 895 which allows for buckling. Moreover, we assumed that l∗ = 0.5, so the two
beams are of equal length. The fact that the left beam is stiffer than the right one
causes asymmetrical behavior that is clearly seen in the simulations. We used the
normal compliance contact condition with very large stiffness (λ = 104). The case
of the Signorini contact condition was deemed not realistic and was not simulated.

The initial displacements and velocities of the beams were, respectively,

u01(x) = 2.5 · 10−5 x3, v01(x) = 0, 0 ≤ x ≤ 0.5,

u02(x) = −2.5 · 10−5(x− 1)3, v02(x) = 0, 0.5 ≤ x ≤ 1.

Both displacements were very small and there was no contact initially, also, the the
vibrations started from rest.

We now describe the numerical experiments. The size of the subinterval, i.e., the
space step, was hx = 2× 10−4 and the time step was ht = 1× 10−4. We computed
the solution over 1×104 time steps, that is over the time interval 0 ≤ t ≤ 1. At each
time step the 2500×2500 linear system, composed of band matrices, was computed
by using the sparse matrix function in MATLAB, which is based on the Gaussian
elimination. This allowed us to save memory by compressing the zero elements in
the band matrices.

In the actual computations, about 1275 seconds of real time elapsed for the
results in the case p = 0 and over 1260 seconds in the case of p = 895. Therefore,
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the average time to compute one step of the numerical solutions was approximately
0.126 second.

The system started without contact, and in the case p = 0 the first contact was
at the upper stop at about t = 0.4546, and for p = 895 the first contact was also
at the upper stop at about t = 0.4490. Then, the oscillations exhibited a slower
wave that moved from the joint to the ends, upon which oscillations with higher
frequency were superimposed.

0 0.2 0.4 0.6 0.8 1
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−0.01

0

0.01

0.02
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0.04

(a) p = 0

0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

0.03

0.04

(b) p = 895

Figure 8.1: Contact forces for 0 ≤ t ≤ 1

The contact force, computed from the normal compliance condition (7.14) and
(7.15), is displayed in Figure 8.1. The sampling was done at every 41 time steps. It
reflects a very interesting feature of both simulations, namely, up to about t = 0.45
the amplitude of the oscillations was comparable to the initial displacements, and
then, once first contact was established, the amplitude switched to about .04 and
then decreased to about 0.02, where it stabilized. We see that once contact started,
the left beam’s end oscillated and contacted both stops consecutively, and that the
contact stress was negative at the top stop and positive at the bottom stop. The
contact stress amplitude in both cases shows a very similar trend and magnitude.
However, the oscillations in the case p = 895 were more orderly.

The displacements behaved in a way that is very different from that of the related
linear beams (a1 = a2 = 0). Indeed, in addition to the buckling of the right beam,
the oscillations were quite complex, as can be seen in Figure 8.2.

The displacements of the two beams at six different times in the interval 0 < t ≤
0.45 are depicted in parts (a) and (b) of Figure 8.2. The left beam (which is stiffer)
oscillates about u1 = 0, that is its zero equilibrium state, while the right beam
(which is softer) oscillates about a buckled state. In both cases small amplitude
high frequency oscillations are superimposed on the main ones. We note that the
scale is 10−6, which is the same as the scale of the initial displacements. Next, i(c)
and (d) show the displacements of the two beams at six different times in the time
interval 0.45 < t ≤ 0.75. Here, the scale is 10−3 for the left beam and 10−5 for
the right one. The left beam is oscillating about the zero equilibrium state with a
much higher amplitude, while the right beam is oscillating about a buckled state.
Again, small amplitude high frequency oscillations are superimposed on the main
ones. Finally, (e) and (f) depict the displacements of the two beams at 6 different
times in the interval 0.75 < t ≤ 1. The scale is 10−3 for the left beam that oscillates
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(c) 0.45 < t ≤ 0.75
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(d) 0.45 < t ≤ 0.75
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(e) 0.75 < t ≤ 1
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(f) 0.75 < t ≤ 1

Figure 8.2: Displacements of the beams (left and right) about three different times,
p = 895

about the zero state., while the scale is 10−4 for the right beam, and it oscillates
about its buckled state. However, there are no small amplitude high frequency
oscillations that were observed earlier.

As was noted above, the difference in the beams’ behavior is related to the differ-
ence in their stiffness and the Gao coefficient (a1 and a2 in Table 1). Concerning the
small amplitude high frequency oscillations, at this stage it is not clear if these are
just ‘noise,’ since they seem to be very regular, therefore, additional investigation
is needed to determine if these are ‘real’ or just numerical noise.

We now describe the frequency spectrum or the ‘noise’ characteristics of the sys-
tem. To that end we present the Fast Fourier Transform (FFT) of the displacements
u1(0.25, t) and u2(0.75, t) in Figs. 8.3 and 8.4. These provide the system behavior
in the frequency domain.
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Figure 8.3: The frequency spectrum (FFT) of the beams, p = 0
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Figure 8.4: The frequency spectrum (FFT) of the beams, p = 895

The number of points in the FFT is fs = 512, and the scale has been normalized
so the frequency is in between 0 and 1, also the sample was of 200 signals. We
depict the frequencies in [−0.5, 0.5] to better capture the signal near the origin.

It is seen in the case p = 0, Figure 8.3, that the main two frequencies lie near
zero, but there are many activated frequencies, and also the spectrum near 0.5 is
quite dense. It is noted that the system is rather noisy, with many small amplitude
frequencies present.

Next, Figure 8.4 depicts the FFT of the motion of the two beams in the case
of p = 895. The FFT is similar the one in the first case, but the central peak and
the second peak are much more pronounced in the right beam, indeed, they are an
order of magnitude larger. On the other hand the other frequencies are distributed
somewhat differently.

We note that the presence of contact between the beams makes the results much
more noisy. Indeed, as is indicated in the FFT, a whole spectrum of frequencies is
present, which means plenty of noise. A further study is warranted to determine
how much of the noise is numerical.

As was pointed above, these numerical experiments are preliminary and they
open a whole new direction for research, and more will be done in our future
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studies. An interesting set would be the study of the motion when one beam is
vibrating about an upper buckled state and the other one about a lower state.

9. Conclusions

This work studies the vibrations of two nonlinear Gao beams that are connected
via a joint in which there are two stops at the left end of the right beam with a
clearance between them (see Figs. 2.1 and 2.2). The right end of the left beam
is constrained to move within this clearance. The motivation for the study is our
long-term goal of studying the transmission of vibrations across joints. The interest
in using the Gao beam model arises from the fact that it can naturally predict
oscillations about a buckled steady state.

The process was modeled using the system (2.1)–(2.10) when contact was mod-
eled with the normal compliance contact condition, which means that the stops
were reactive. When the stops were perfectly rigid, contact was modeled with the
Signorini nonpenetration condition, and the system consisted of (2.1)–(2.8), (2.10)
and (2.13)–(2.14).

The existence of the unique weak solution of the problem with the normal com-
pliance condition was stated in Theorem 3.1 and established in Section 4. The
main issue was to deal with the cubic term (ux)3 in the variational formulation.
The existence of the weak solution to the problem with the Signorini condition was
stated in Theorem 3.2, and shown in Section 5. It was based on obtaining a priori
estimates on the solutions of the problem with the normal compliance condition
and passing to the limit when the normal compliance stiffness tends to infinity. As
usual, the question of the uniqueness of the solutions remains unresolved. The exis-
tence of weak solutions to the respective problems without viscosity were obtained
in Section 6, again, as the limits of convergent sequences of solutions with viscosity
when the viscosity coefficients vanish.

The mathematical and numerical difficulties associated with the Signorini con-
tact condition are very challenging, and it seems to us of very little applied rel-
evance, since there are no perfectly rigid materials or stops. In passing we just
mention that, in addition to the weak regularity of the solutions with this condi-
tion, the non-uniqueness seems to be related to the fact that following contact there
is no clear rule about the rebound, which often is masked by supplementing the
so-called restitution coefficient.

The numerical algorithm for the computer simulations of the model with the
normal compliance condition was developed in Section 7. It is a fully discrete
numerical method and uses a uniform discretization of the time interval [0, T ] and
a mixture of the Galerkin approximation and central difference formula to discretize
the space interval [0, 1]. The central difference formula is combined with the finite
element method (FEM) when we deal with the nonlinear Gao terms in the two
equations. The basis functions for the FEM were piecewise linear and piecewise
cubic splines, with special attention to the two elements on both sides of the joint.
The normal compliance contact condition was implemented by using an implicit
discretization. The weak formulation led to a linear system that was sparse and
solved using (7.13). The convergence of the algorithm is under study in [4].

Finally, the results of the numerical simulations obtained by implementing the
algorithm, were presented in Section 8. We used two sets of simulations for beams
with different Gao coefficients and stiffnesses. In the first set the applied horizontal
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traction was p = 0, so the beams oscillated about the zero equilibrium. The os-
cillations were quite interesting and there was superposition of fast frequencies on
top of the basic frequency. The vibrational spectrum, or the noise characteristics
in this case, depicted in Figure 8.3, is seen to be quite noisy. In the second case
of p = 895, the right beam was in a buckled state and the left beam was not. As
was found in [7, 26] in the case of one Gao beam, the oscillations were about the
buckled state, as can be seen clearly in Figure 8.2 (b, d, f). The system was also
noisy, but the basic frequency was more pronounced.

These results open the way to a thorough investigation of the vibrations trans-
mission across joints, which, as stated in the introduction, is the long-term goal of
this work. However, on the way we still need to make the implementation faster,
and to run numerical experiments to get a more comprehensive understanding of
the vibrations of Gao beams. Then, we plan to use the driving function φ = φ(t)
for the investigation.

Another issue of interest is to add friction to the contact condition in the joint.
That is likely to make the model substantially more complex both mathematically
and computationally.
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